Abstract
Osmotic injury induced by rapid correction of severe chronic hyponatremia has been implicated in the development of central pontine myelinolysis. Organic osmolytes known previously as "idiogenic osmoles" accumulate intracellularly to protect cells from osmotic injury. We investigated the changes of these organic osmolytes as well as electrolytes in the brain during the induction and correction of chronic hyponatremia. Using 1H-nuclear magnetic resonance spectroscopy and HPLC, we found that in rats with chronic hyponatremia (3 d, serum sodium = 109 +/- 3 meq/liter), brain concentrations of myoinositol (41%), glycerophosphorylcholine (45%), phosphocreatine/creatine (60%), glutamate (53%), glutamine (45%), and taurine (37%) were all significantly decreased compared with control values (percentage control value shown, all P less than 0.01). The contribution of measured organic osmolytes and electrolytes to the total brain osmolality change was 23 and 72%, respectively. With rapid correction by 5% NaCl infusion, significant brain dehydration and elevation of brain Na and Cl levels above the normal range occurred at 24 h. These changes were not seen with slow correction by water deprivation. Reaccumulation of most organic osmolytes except glycerophosphorylcholine is delayed during the correction of hyponatremia and is independent of the correction rate of serum sodium. It is concluded that: most of the change of brain osmolality in chronic hyponatremia can be accounted by the changes in organic osmolytes and brain electrolytes; and rapid correction of hyponatremia is associated with an overshoot of brain sodium and chloride levels along with a low organic osmolyte level. The high cerebral ion concentrations in the absence of adequate concentrations of organic osmolytes may be relevant to the development of central pontine myelinolysis.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADAMS R. D., VICTOR M., MANCALL E. L. Central pontine myelinolysis: a hitherto undescribed disease occurring in alcoholic and malnourished patients. AMA Arch Neurol Psychiatry. 1959 Feb;81(2):154–172. [PubMed] [Google Scholar]
- Arieff A. I., Llach F., Massry S. G. Neurological manifestations and morbidity of hyponatremia: correlation with brain water and electrolytes. Medicine (Baltimore) 1976 Mar;55(2):121–129. doi: 10.1097/00005792-197603000-00002. [DOI] [PubMed] [Google Scholar]
- Cserr H. F., DePasquale M., Patlak C. S. Volume regulatory influx of electrolytes from plasma to brain during acute hyperosmolality. Am J Physiol. 1987 Sep;253(3 Pt 2):F530–F537. doi: 10.1152/ajprenal.1987.253.3.F530. [DOI] [PubMed] [Google Scholar]
- Dila C. J., Pappius H. M. Cerebral water and electrolytes. An experimental model of inappropriate secretion of antidiuretic hormone. Arch Neurol. 1972 Jan;26(1):85–90. doi: 10.1001/archneur.1972.00490070103013. [DOI] [PubMed] [Google Scholar]
- Grinstein S., Clarke C. A., Rothstein A. Activation of Na+/H+ exchange in lymphocytes by osmotically induced volume changes and by cytoplasmic acidification. J Gen Physiol. 1983 Nov;82(5):619–638. doi: 10.1085/jgp.82.5.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holliday M. A., Kalayci M. N., Harrah J. Factors that limit brain volume changes in response to acute and sustained hyper- and hyponatremia. J Clin Invest. 1968 Aug;47(8):1916–1928. doi: 10.1172/JCI105882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Illowsky B. P., Laureno R. Encephalopathy and myelinolysis after rapid correction of hyponatraemia. Brain. 1987 Aug;110(Pt 4):855–867. doi: 10.1093/brain/110.4.855. [DOI] [PubMed] [Google Scholar]
- Jean T., Frelin C., Vigne P., Lazdunski M. The Na+/H+ exchange system in glial cell lines. Properties and activation by an hyperosmotic shock. Eur J Biochem. 1986 Oct 15;160(2):211–219. doi: 10.1111/j.1432-1033.1986.tb09959.x. [DOI] [PubMed] [Google Scholar]
- Kleinschmidt-DeMasters B. K., Norenberg M. D. Rapid correction of hyponatremia causes demyelination: relation to central pontine myelinolysis. Science. 1981 Mar 6;211(4486):1068–1070. doi: 10.1126/science.7466381. [DOI] [PubMed] [Google Scholar]
- Laureno R. Central pontine myelinolysis following rapid correction of hyponatremia. Ann Neurol. 1983 Mar;13(3):232–242. doi: 10.1002/ana.410130303. [DOI] [PubMed] [Google Scholar]
- Lien Y. H., Shapiro J. I., Chan L. Effects of hypernatremia on organic brain osmoles. J Clin Invest. 1990 May;85(5):1427–1435. doi: 10.1172/JCI114587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lockwood A. H. Acute and chronic hyperosmolality. Effects on cerebral amino acids and energy metabolism. Arch Neurol. 1975 Jan;32(1):62–64. doi: 10.1001/archneur.1975.00490430084018. [DOI] [PubMed] [Google Scholar]
- Lohr J. W., McReynolds J., Grimaldi T., Acara M. Effect of acute and chronic hypernatremia on myoinositol and sorbitol concentration in rat brain and kidney. Life Sci. 1988;43(3):271–276. doi: 10.1016/0024-3205(88)90317-7. [DOI] [PubMed] [Google Scholar]
- McCormick W. F., Danneel C. M. Central pontine myelinolysis. Arch Intern Med. 1967 May;119(5):444–478. [PubMed] [Google Scholar]
- Norenberg M. D., Leslie K. O., Robertson A. S. Association between rise in serum sodium and central pontine myelinolysis. Ann Neurol. 1982 Feb;11(2):128–135. doi: 10.1002/ana.410110204. [DOI] [PubMed] [Google Scholar]
- Pullen R. G., DePasquale M., Cserr H. F. Bulk flow of cerebrospinal fluid into brain in response to acute hyperosmolality. Am J Physiol. 1987 Sep;253(3 Pt 2):F538–F545. doi: 10.1152/ajprenal.1987.253.3.F538. [DOI] [PubMed] [Google Scholar]
- Rymer M. M., Fishman R. A. Protective adaptation of brain to water intoxication. Arch Neurol. 1973 Jan;28(1):49–54. doi: 10.1001/archneur.1973.00490190067009. [DOI] [PubMed] [Google Scholar]
- Somero G. N. Protons, osmolytes, and fitness of internal milieu for protein function. Am J Physiol. 1986 Aug;251(2 Pt 2):R197–R213. doi: 10.1152/ajpregu.1986.251.2.R197. [DOI] [PubMed] [Google Scholar]
- Sterns R. H. Severe symptomatic hyponatremia: treatment and outcome. A study of 64 cases. Ann Intern Med. 1987 Nov;107(5):656–664. doi: 10.7326/0003-4819-107-5-656. [DOI] [PubMed] [Google Scholar]
- Sterns R. H., Thomas D. J., Herndon R. M. Brain dehydration and neurologic deterioration after rapid correction of hyponatremia. Kidney Int. 1989 Jan;35(1):69–75. doi: 10.1038/ki.1989.9. [DOI] [PubMed] [Google Scholar]
- Thurston J. H., Hauhart R. E. Brain amino acids decrease in chronic hyponatremia and rapid correction causes brain dehydration: possible clinical significance. Life Sci. 1987 Jun 29;40(26):2539–2542. doi: 10.1016/0024-3205(87)90076-2. [DOI] [PubMed] [Google Scholar]
- Thurston J. H., Hauhart R. E., Dirgo J. A. Taurine: a role in osmotic regulation of mammalian brain and possible clinical significance. Life Sci. 1980 May 12;26(19):1561–1568. doi: 10.1016/0024-3205(80)90358-6. [DOI] [PubMed] [Google Scholar]
- Thurston J. H., Sherman W. R., Hauhart R. E., Kloepper R. F. myo-inositol: a newly identified nonnitrogenous osmoregulatory molecule in mammalian brain. Pediatr Res. 1989 Nov;26(5):482–485. doi: 10.1203/00006450-198911000-00024. [DOI] [PubMed] [Google Scholar]
- Trachtman H., Barbour R., Sturman J. A., Finberg L. Taurine and osmoregulation: taurine is a cerebral osmoprotective molecule in chronic hypernatremic dehydration. Pediatr Res. 1988 Jan;23(1):35–39. doi: 10.1203/00006450-198801000-00008. [DOI] [PubMed] [Google Scholar]
- Verbalis J. G., Drutarosky M. D. Adaptation to chronic hypoosmolality in rats. Kidney Int. 1988 Sep;34(3):351–360. doi: 10.1038/ki.1988.188. [DOI] [PubMed] [Google Scholar]
- Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
- Wolff S. D., Yancey P. H., Stanton T. S., Balaban R. S. A simple HPLC method for quantitating major organic solutes of renal medulla. Am J Physiol. 1989 May;256(5 Pt 2):F954–F956. doi: 10.1152/ajprenal.1989.256.5.F954. [DOI] [PubMed] [Google Scholar]
- Wright D. G., Laureno R., Victor M. Pontine and extrapontine myelinolysis. Brain. 1979 Jun;102(2):361–385. doi: 10.1093/brain/102.2.361. [DOI] [PubMed] [Google Scholar]
- Yancey P. H., Burg M. B., Bagnasco S. M. Effects of NaCl, glucose, and aldose reductase inhibitors on cloning efficiency of renal medullary cells. Am J Physiol. 1990 Jan;258(1 Pt 1):C156–C163. doi: 10.1152/ajpcell.1990.258.1.C156. [DOI] [PubMed] [Google Scholar]
- Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]