Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 11;64(Pt 2):o418. doi: 10.1107/S160053680800041X

1,16-Diiodo­hexa­deca­ne

Naotake Nakamura a,*, Daisuke Ishizu a
PMCID: PMC2960330  PMID: 21201445

Abstract

The mol­ecular structure of the title compound, C16H32I2, is centrosymmetric and the mol­ecular skeleton, including both terminal I atoms, has an all-trans conformation. The mol­ecules form layers of thickness a. These features are similar to those of the smectic C phase of liquid crystals.

Related literature

For related literature, see: Kobayashi et al. (1995); Nakamura & Shimizu (2004); Nakamura et al. (2001); Ogawa & Nakamura (1999); Uno & Nakamura (2003).graphic file with name e-64-0o418-scheme1.jpg

Experimental

Crystal data

  • C16H32I2

  • M r = 478.22

  • Monoclinic, Inline graphic

  • a = 22.0407 (11) Å

  • b = 7.4596 (13) Å

  • c = 5.7981 (18) Å

  • β = 96.872 (12)°

  • V = 946.5 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 25.96 mm−1

  • T = 296 (2) K

  • 0.55 × 0.50 × 0.05 mm

Data collection

  • Rigaku AFC-5R diffractometer

  • Absorption correction: Gaussian (Coppens et al., 1965) T min = 0.022, T max = 0.336

  • 2681 measured reflections

  • 1781 independent reflections

  • 1560 reflections with I > 2σ(I)

  • R int = 0.044

  • 1 standard reflection every 150 reflections intensity decay: 7.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.137

  • S = 1.13

  • 1781 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −2.40 e Å−3

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680800041X/is2269sup1.cif

e-64-0o418-sup1.cif (13.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800041X/is2269Isup2.hkl

e-64-0o418-Isup2.hkl (85.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors express their gratitude to Mr K. Uno and Mr A. Ohishi for their support.

supplementary crystallographic information

Comment

Normal long-chain aliphatic compounds, such are n-alkanes have been studied to elucidate the principles of a crystallization for long-chain organic compounds, because the molecular skeleton consists of a simple trans zigzag straight hydrocarbon chain. The molecular shape of these compounds can be regarded as a rod-like one, and the molecules in the crystalline state form a layered structure similar to those of the smectic liquid crystalline phase. Moreover, some of these long-chain compounds exhibited a high-temperature rotator phase just below their melting points, in which molecules have some degree of motional freedom, comparable with that in liquid crystals. Thus, these long-chain compounds have been studied as model compounds for smectic liquid crystals.

In order to perform the investigations of mechanism of phase transition, it is important to obtain detailed crystallographic data. Many researchers have been analyzed the crystal structure of many different kinds of normal long-chain aliphatic compounds. Recently we have systematically analyzed the crystal structures of the alkane-α,ω-diols containing 10–24 C atoms using single-crystal X-ray diffraction (Nakamura et al., 2001; Uno & Nakamura, 2003), and one of the present authors has studied the phase transition phenomena of the series of the alkane-α,ω-diols containing 13–24 C atoms (Ogawa & Nakamura, 1999). In the present paper, we report a result of the crystal structure analysis of the title compound, (I), in order to clarify an effect of the terminal groups in the normal long-chain compounds on a construction of the layered structure. The molecular structure of (I) is shown in Fig. 1. The molecule is centrosymmetric and all torsion angles are close to ±180°, that is, the molecular structure including both terminal I atoms has an all-trans conformation. Figure 2 shows the projection of the crystal structure of (I) along the b axis. The molecules form layers with a thickness of a. In the layers, the long axes of all molecules are inclined to the bc plane. The layers are arranged in parallel manner between the neighboring layers, forming a bookshelf motif, as shown in Fig. 3. The molecular arrangement of (I) is similar to that of the smectic C phase of liquid crystals. In the crystal structure, the shortest I···I distance is 3.9095 (14) Å. In addition, it is attributed to the fact that the van der Waals radius of I atoms are longer than those of Cl and Br atoms, and I atoms cause strongest steric hindrance.

The results of structure analysis of 1,16-dichlorohexadecane (Nakamura & Shimizu, 2004) and 1,16-dibromohexadecane (Kobayashi et al., 1995) have been reported. These compounds are arranged in a zigzag manner between adjacent layers, forming a herring-bone motif. These molecular arrangement are similar to that of the tilt smectic C phase of liquid crystals. Therefore, it is elucidated that features of the structure of (I) is differ from those of 1,16-dichlorohexadecane and 1,16-dibromohexadecane. It is considered that this difference in the crystal structure are caused by the difference of the steric hindrance of atoms located in both ends.

Experimental

The single-crystal used for analysis was obtained by slow evaporation of a solution in a mixture of heptane and 2-propanol (1:1).

Refinement

H atoms were positioned geometrically and treated as riding, with C—H = 0.97 Å and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) 1 - x, 1 - y, 2 - z].

Fig. 2.

Fig. 2.

The projection of the crystal structure of (I) along the b axis.

Fig. 3.

Fig. 3.

The projection of the crystal structure of (I) along the c axis.

Crystal data

C16H32I2 F000 = 468
Mr = 478.22 Dx = 1.678 Mg m3
Monoclinic, P21/c Cu Kα radiation λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 23 reflections
a = 22.0407 (11) Å θ = 9.8–16.6º
b = 7.4596 (13) Å µ = 25.96 mm1
c = 5.7981 (18) Å T = 296 (2) K
β = 96.872 (12)º Plate, colorless
V = 946.5 (3) Å3 0.55 × 0.50 × 0.05 mm
Z = 2

Data collection

Rigaku AFC-5R diffractometer θmax = 70.1º
ω–2θ scans θmin = 4.0º
Absorption correction: Gaussian(Coppens et al., 1965) h = −26→26
Tmin = 0.022, Tmax = 0.336 k = −9→1
2681 measured reflections l = −1→6
1781 independent reflections 1 standard reflections
1560 reflections with I > 2σ(I) every 150 reflections
Rint = 0.044 intensity decay: 7.5%

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full   w = 1/[σ2(Fo2) + (0.07P)2 + 3.339P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.043 (Δ/σ)max < 0.001
wR(F2) = 0.137 Δρmax = 0.74 e Å3
S = 1.13 Δρmin = −2.40 e Å3
1781 reflections Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
83 parameters Extinction coefficient: 0.0096 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.063509 (19) 0.44809 (7) −0.24363 (7) 0.0532 (3)
C1 0.1149 (3) 0.5458 (9) 0.0698 (13) 0.0473 (16)
H1A 0.1174 0.6754 0.0628 0.057*
H1B 0.0937 0.5146 0.2015 0.057*
C2 0.1785 (3) 0.4687 (9) 0.1054 (12) 0.0428 (14)
H2A 0.1995 0.4979 −0.0274 0.051*
H2B 0.176 0.3392 0.116 0.051*
C3 0.2148 (3) 0.5417 (10) 0.3254 (13) 0.0480 (16)
H3A 0.193 0.5156 0.4571 0.058*
H3B 0.2179 0.671 0.3126 0.058*
C4 0.2789 (3) 0.4625 (10) 0.3699 (14) 0.0475 (16)
H4A 0.2758 0.3335 0.3867 0.057*
H4B 0.3004 0.4859 0.2366 0.057*
C5 0.3156 (3) 0.5386 (10) 0.5854 (14) 0.0492 (17)
H5A 0.294 0.5148 0.7185 0.059*
H5B 0.3183 0.6676 0.5687 0.059*
C6 0.3800 (3) 0.4614 (10) 0.6324 (14) 0.0509 (17)
H6A 0.3772 0.3325 0.6506 0.061*
H6B 0.4014 0.484 0.4985 0.061*
C7 0.4170 (3) 0.5383 (10) 0.8458 (14) 0.0497 (17)
H7A 0.3957 0.5156 0.9797 0.06*
H7B 0.4199 0.6672 0.8276 0.06*
C8 0.4813 (3) 0.4614 (10) 0.8924 (14) 0.0505 (17)
H8A 0.5027 0.4843 0.7585 0.061*
H8B 0.4785 0.3325 0.9103 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0459 (4) 0.0673 (4) 0.0437 (4) −0.00104 (19) −0.0057 (2) −0.00042 (19)
C1 0.036 (3) 0.055 (4) 0.049 (4) 0.003 (3) −0.004 (3) −0.010 (3)
C2 0.036 (3) 0.053 (4) 0.037 (3) 0.005 (3) −0.003 (3) −0.004 (3)
C3 0.038 (3) 0.057 (4) 0.046 (4) 0.001 (3) −0.006 (3) −0.006 (3)
C4 0.035 (3) 0.057 (4) 0.049 (4) 0.002 (3) −0.002 (3) 0.002 (3)
C5 0.036 (3) 0.063 (4) 0.047 (4) 0.004 (3) −0.002 (3) 0.000 (3)
C6 0.037 (3) 0.061 (4) 0.052 (4) 0.000 (3) −0.005 (3) −0.003 (3)
C7 0.035 (3) 0.064 (4) 0.048 (4) 0.001 (3) −0.003 (3) −0.002 (3)
C8 0.037 (3) 0.061 (4) 0.051 (4) 0.003 (3) −0.006 (3) −0.002 (3)

Geometric parameters (Å, °)

I1—C1 2.150 (7) C5—C6 1.527 (9)
C1—C2 1.506 (9) C5—H5A 0.97
C1—H1A 0.97 C5—H5B 0.97
C1—H1B 0.97 C6—C7 1.512 (10)
C2—C3 1.523 (9) C6—H6A 0.97
C2—H2A 0.97 C6—H6B 0.97
C2—H2B 0.97 C7—C8 1.522 (10)
C3—C4 1.524 (9) C7—H7A 0.97
C3—H3A 0.97 C7—H7B 0.97
C3—H3B 0.97 C8—C8i 1.523 (15)
C4—C5 1.515 (10) C8—H8A 0.97
C4—H4A 0.97 C8—H8B 0.97
C4—H4B 0.97
I1···I1ii 3.9095 (14)
C2—C1—I1 112.0 (4) C4—C5—C6 113.5 (6)
C2—C1—H1A 109.2 C4—C5—H5A 108.9
I1—C1—H1A 109.2 C6—C5—H5A 108.9
C2—C1—H1B 109.2 C4—C5—H5B 108.9
I1—C1—H1B 109.2 C6—C5—H5B 108.9
H1A—C1—H1B 107.9 H5A—C5—H5B 107.7
C1—C2—C3 111.5 (6) C7—C6—C5 113.7 (6)
C1—C2—H2A 109.3 C7—C6—H6A 108.8
C3—C2—H2A 109.3 C5—C6—H6A 108.8
C1—C2—H2B 109.3 C7—C6—H6B 108.8
C3—C2—H2B 109.3 C5—C6—H6B 108.8
H2A—C2—H2B 108 H6A—C6—H6B 107.7
C2—C3—C4 112.8 (6) C6—C7—C8 113.7 (6)
C2—C3—H3A 109 C6—C7—H7A 108.8
C4—C3—H3A 109 C8—C7—H7A 108.8
C2—C3—H3B 109 C6—C7—H7B 108.8
C4—C3—H3B 109 C8—C7—H7B 108.8
H3A—C3—H3B 107.8 H7A—C7—H7B 107.7
C5—C4—C3 112.7 (6) C7—C8—C8i 113.8 (8)
C5—C4—H4A 109 C7—C8—H8A 108.8
C3—C4—H4A 109 C8i—C8—H8A 108.8
C5—C4—H4B 109 C7—C8—H8B 108.8
C3—C4—H4B 109 C8i—C8—H8B 108.8
H4A—C4—H4B 107.8 H8A—C8—H8B 107.7
I1—C1—C2—C3 178.9 (5) C4—C5—C6—C7 179.4 (7)
C1—C2—C3—C4 178.5 (6) C5—C6—C7—C8 −180.0 (7)
C2—C3—C4—C5 178.6 (6) C6—C7—C8—C8i −179.9 (8)
C3—C4—C5—C6 −179.7 (7)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+1, −z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2269).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst.18, 1035–1038.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Kobayashi, H., Yamamoto, T. & Nakamura, N. (1995). Cryst. Res. Technol.30, 375–380.
  6. Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software MSC, The Woodlands, Texas, USA.
  7. Molecular Structure Corporation & Rigaku (2001). CrystalStructure Version 3.10. MSC, The Woodlands, Texas, USA & Rigaku Corporation, Tokyo, Japan.
  8. Nakamura, N. & Shimizu, H. (2004). Acta Cryst. E60, o131–o133.
  9. Nakamura, N., Uno, K. & Ogawa, Y. (2001). Acta Cryst. E57, o1091–o1093. [DOI] [PubMed]
  10. Ogawa, Y. & Nakamura, N. (1999). Bull. Chem. Soc. Jpn, 72, 943–946.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Uno, K. & Nakamura, N. (2003). Acta Cryst. E59, o708–o710.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680800041X/is2269sup1.cif

e-64-0o418-sup1.cif (13.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800041X/is2269Isup2.hkl

e-64-0o418-Isup2.hkl (85.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES