Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 25;64(Pt 2):m406. doi: 10.1107/S1600536808002080

[μ-N,N′-Bis(3-meth­oxy-2-oxidobenzyl­idene)propane-1,3-diamine]trinitratocopper(II)terbium(III) acetone solvate

Liu Fei a,*, Zhang Fang a
PMCID: PMC2960331  PMID: 21201353

Abstract

In the title complex, [CuTb(C19H20N2O4)(NO3)3]·CH3COCH3, the CuII atom is four-coordinated by two O atoms and two N atoms from the deprotonated Schiff base in a square-planar geometry, while the TbIII atom is ten-coordin­ated by four O atoms from the deprotonated Schiff base and six O atoms from three bidentate nitrate anions. The compound is isostructural with the previously reported GdIII analogue [Elmali & Elerman (2004). Z. Naturforsch. Teil B, 59, 535–540], which was described in the space group P1 with two formula units in the asymmetric unit. The crystal stucture is, in fact, centrosymmetric and is described here in the space group P Inline graphic with one formula unit in the asymmetric unit.

Related literature

For the isostructural GdIII complex, see: Elmali & Elerman (2004). For a similar copper–cerium complex, see: Elmali & Elerman (2003).graphic file with name e-64-0m406-scheme1.jpg

Experimental

Crystal data

  • [CuTb(C19H20N2O4)(NO3)3]·C3H6O

  • M r = 806.94

  • Triclinic, Inline graphic

  • a = 9.388 (5) Å

  • b = 12.108 (6) Å

  • c = 13.604 (6) Å

  • α = 73.079 (16)°

  • β = 86.67 (2)°

  • γ = 72.33 (2)°

  • V = 1408.8 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.32 mm−1

  • T = 291 (2) K

  • 0.19 × 0.16 × 0.14 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.569, T max = 0.659

  • 12171 measured reflections

  • 6275 independent reflections

  • 5621 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.083

  • S = 1.11

  • 6275 reflections

  • 392 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808002080/bi2275sup1.cif

e-64-0m406-sup1.cif (24KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002080/bi2275Isup2.hkl

e-64-0m406-Isup2.hkl (307.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu2—O1 1.939 (3)
Cu2—O3 1.947 (2)
Cu2—N2 1.957 (3)
Cu2—N1 1.989 (3)
O1—Tb1 2.352 (2)
O2—Tb1 2.506 (3)
O3—Tb1 2.344 (3)
O4—Tb1 2.492 (2)
O5—Tb1 2.470 (3)
O7—Tb1 2.501 (3)
O8—Tb1 2.455 (3)
O10—Tb1 2.494 (3)
O11—Tb1 2.491 (3)
O13—Tb1 2.564 (3)

Acknowledgments

The authors gratefully acknowledge financial support from the Education Department of Liaoning Province (2006 B 112) and Liaoning University.

supplementary crystallographic information

Comment

As shown in Fig. 1, the hexadentate Schiff base ligand links the CuII and TbII atoms into a dinuclear complex through two phenolate O atoms. The TbIII atom is ten-coordinated by four O atoms from the ligand and six O atoms from three nitrate anions. The CuII atom is four-coordinated by two N atoms and two O atoms from the ligand. The acetone molecule is not associated with the complex. The complex is isostructural with its GdIII analogue (Elmali & Elerman, 2004), although that was refined in space group P1 with two independent complexes in the asymmetric unit. A similar compound with CeIII has also been reported (Elmali & Elerman, 2003).

Experimental

The title complex was obtained by reaction of copper(II) acetate monohydrate (0.05 g, 0.25 mmol) with the Schiff base (0.0855 g, 0.25 mmol) in methanol/acetone (20 ml:5 ml). Terbium (III) nitrate hexahydrate (0.1126 g, 0.25 mmol) was added and the mixture was refluxed for 3 h. The mixture was then cooled and filtered, and diethyl ether was allowed to diffuse slowly into the filtrate. Single crystals were obtained after several days. Elemental analysis calculated: C 32.65, H 3.29, N 8.67; found: C 32.75, H 3.25, N 8.68.

Refinement

H atoms bound to C atoms were placed in calculated positions and allowed to ride on their parent atoms, with C—H = 0.93 Å (C sp2), C—H = 0.97Å (methylene C), C—H = 0.96 Å (methyl C), and with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure, showing 40% probability displacement ellipsoids for non-H atoms. The acetone solvent molecule is not shown.

Crystal data

[CuTb(C19H20N2O4)(NO3)3]·C3H6O Z = 2
Mr = 806.94 F000 = 798
Triclinic, P1 Dx = 1.902 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 9.388 (5) Å Cell parameters from 11368 reflections
b = 12.108 (6) Å θ = 3.2–27.5º
c = 13.604 (6) Å µ = 3.32 mm1
α = 73.079 (16)º T = 291 (2) K
β = 86.67 (2)º Block, green
γ = 72.33 (2)º 0.19 × 0.16 × 0.14 mm
V = 1408.8 (12) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 6275 independent reflections
Radiation source: fine-focus sealed tube 5621 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.025
T = 291(2) K θmax = 27.5º
ω scans θmin = 3.1º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995) h = −12→12
Tmin = 0.569, Tmax = 0.659 k = −15→14
12171 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025 H-atom parameters constrained
wR(F2) = 0.083   w = 1/[σ2(Fo2) + (0.0525P)2] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.049
6275 reflections Δρmax = 0.74 e Å3
392 parameters Δρmin = −0.50 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5484 (3) 0.7337 (3) 0.4160 (3) 0.0363 (7)
C2 0.6382 (4) 0.7732 (3) 0.3361 (3) 0.0355 (7)
C3 0.7913 (4) 0.7362 (3) 0.3494 (3) 0.0442 (8)
H1 0.8502 0.7633 0.2961 0.053*
C4 0.8589 (4) 0.6565 (4) 0.4446 (4) 0.0527 (10)
H2 0.9624 0.6320 0.4537 0.063*
C5 0.7741 (4) 0.6157 (3) 0.5227 (3) 0.0508 (10)
H3 0.8202 0.5619 0.5842 0.061*
C6 0.6164 (4) 0.6543 (3) 0.5113 (3) 0.0421 (8)
C7 0.5320 (4) 0.6050 (3) 0.5939 (3) 0.0482 (9)
H4 0.5879 0.5473 0.6503 0.058*
C8 0.3378 (6) 0.5605 (5) 0.6968 (3) 0.0765 (15)
H5 0.3421 0.5970 0.7508 0.092*
H6 0.4050 0.4785 0.7172 0.092*
C9 0.1832 (6) 0.5563 (4) 0.6869 (4) 0.0644 (12)
H8 0.1638 0.4954 0.7459 0.077*
H7 0.1742 0.5325 0.6259 0.077*
C10 0.0688 (5) 0.6752 (4) 0.6798 (3) 0.0515 (9)
H9 −0.0289 0.6632 0.6933 0.062*
H10 0.0918 0.7081 0.7318 0.062*
C11 −0.0654 (4) 0.8417 (3) 0.5466 (3) 0.0411 (7)
H11 −0.1404 0.8382 0.5941 0.049*
C12 −0.1088 (4) 0.9332 (3) 0.4497 (3) 0.0381 (7)
C13 −0.2582 (4) 1.0089 (4) 0.4359 (3) 0.0467 (8)
H12 −0.3229 1.0025 0.4903 0.056*
C14 −0.3085 (4) 1.0922 (4) 0.3422 (3) 0.0517 (9)
H13 −0.4075 1.1409 0.3338 0.062*
C15 −0.2132 (4) 1.1044 (3) 0.2598 (3) 0.0445 (8)
H14 −0.2484 1.1608 0.1968 0.053*
C16 −0.0665 (4) 1.0325 (3) 0.2724 (2) 0.0350 (6)
C17 −0.0123 (3) 0.9448 (3) 0.3682 (2) 0.0325 (6)
C18 −0.0137 (5) 1.1106 (4) 0.0937 (3) 0.0528 (9)
H15 −0.0872 1.0826 0.0705 0.079*
H16 0.0692 1.1047 0.0487 0.079*
H17 −0.0574 1.1934 0.0934 0.079*
C19 0.6458 (5) 0.8876 (4) 0.1589 (3) 0.0559 (10)
H18 0.7078 0.9296 0.1766 0.084*
H19 0.5788 0.9410 0.1026 0.084*
H20 0.7076 0.8187 0.1393 0.084*
C20 0.1948 (9) 0.3899 (6) −0.0076 (6) 0.105 (2)
H24 0.1539 0.4022 −0.0743 0.158*
H25 0.1212 0.3778 0.0431 0.158*
H26 0.2814 0.3199 0.0078 0.158*
C21 0.2373 (7) 0.4967 (4) −0.0065 (4) 0.0723 (14)
C22 0.3355 (8) 0.4820 (5) 0.0826 (5) 0.0892 (17)
H21 0.3467 0.5590 0.0801 0.134*
H22 0.4319 0.4262 0.0789 0.134*
H23 0.2906 0.4515 0.1459 0.134*
Cu2 0.24442 (4) 0.75725 (3) 0.49586 (3) 0.03510 (10)
N1 0.3899 (4) 0.6295 (3) 0.6009 (2) 0.0473 (7)
N2 0.0640 (3) 0.7635 (3) 0.5764 (2) 0.0388 (6)
N3 0.3245 (4) 1.1092 (3) 0.2292 (3) 0.0481 (7)
N4 0.3809 (3) 0.8115 (3) 0.0469 (3) 0.0479 (7)
N5 0.1404 (4) 0.6928 (3) 0.2358 (3) 0.0500 (7)
O1 0.4010 (3) 0.7715 (2) 0.39786 (18) 0.0432 (5)
O2 0.5608 (3) 0.8481 (2) 0.24596 (19) 0.0437 (5)
O3 0.1291 (2) 0.8745 (2) 0.37547 (17) 0.0392 (5)
O4 0.0382 (3) 1.0369 (2) 0.19704 (18) 0.0426 (5)
O5 0.3132 (3) 1.0309 (3) 0.3128 (2) 0.0533 (6)
O6 0.3324 (4) 1.2069 (3) 0.2294 (3) 0.0737 (10)
O7 0.3240 (3) 1.0788 (2) 0.1473 (2) 0.0492 (6)
O8 0.3023 (3) 0.9175 (2) 0.0474 (2) 0.0493 (6)
O9 0.4110 (4) 0.7857 (3) −0.0338 (3) 0.0720 (9)
O10 0.4244 (3) 0.7372 (2) 0.1352 (2) 0.0505 (6)
O11 0.0991 (3) 0.7990 (2) 0.1769 (2) 0.0533 (6)
O12 0.0819 (4) 0.6173 (3) 0.2310 (3) 0.0802 (11)
O13 0.2473 (4) 0.6682 (2) 0.3006 (2) 0.0574 (7)
O14 0.2026 (6) 0.5872 (4) −0.0747 (3) 0.1106 (16)
Tb1 0.285531 (15) 0.877969 (12) 0.234617 (10) 0.03350 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0339 (15) 0.0339 (15) 0.0403 (17) −0.0059 (12) −0.0049 (13) −0.0129 (13)
C2 0.0362 (15) 0.0292 (14) 0.0398 (17) −0.0085 (12) −0.0044 (13) −0.0084 (13)
C3 0.0336 (16) 0.0386 (17) 0.063 (2) −0.0112 (13) −0.0018 (15) −0.0174 (17)
C4 0.0353 (17) 0.051 (2) 0.072 (3) −0.0046 (15) −0.0165 (18) −0.024 (2)
C5 0.046 (2) 0.0437 (19) 0.055 (2) 0.0031 (15) −0.0219 (18) −0.0149 (17)
C6 0.0411 (18) 0.0354 (16) 0.0444 (19) 0.0003 (13) −0.0121 (15) −0.0131 (15)
C7 0.056 (2) 0.0387 (18) 0.0319 (17) 0.0081 (15) −0.0086 (16) −0.0043 (14)
C8 0.077 (3) 0.066 (3) 0.040 (2) 0.009 (2) 0.010 (2) 0.022 (2)
C9 0.105 (4) 0.0377 (19) 0.048 (2) −0.027 (2) 0.012 (2) −0.0054 (17)
C10 0.057 (2) 0.060 (2) 0.0343 (18) −0.0255 (19) 0.0065 (16) −0.0008 (17)
C11 0.0421 (17) 0.0494 (19) 0.0397 (18) −0.0193 (15) 0.0100 (14) −0.0205 (16)
C12 0.0357 (16) 0.0404 (16) 0.0441 (18) −0.0139 (13) 0.0031 (13) −0.0187 (15)
C13 0.0377 (17) 0.057 (2) 0.053 (2) −0.0160 (16) 0.0086 (15) −0.0263 (18)
C14 0.0327 (17) 0.057 (2) 0.065 (2) 0.0007 (15) −0.0070 (17) −0.029 (2)
C15 0.0382 (17) 0.0423 (18) 0.051 (2) −0.0019 (14) −0.0113 (15) −0.0180 (16)
C16 0.0363 (15) 0.0312 (14) 0.0363 (16) −0.0056 (12) −0.0046 (13) −0.0118 (13)
C17 0.0304 (14) 0.0309 (14) 0.0371 (16) −0.0090 (11) −0.0020 (12) −0.0107 (13)
C18 0.056 (2) 0.047 (2) 0.0378 (19) 0.0001 (17) −0.0110 (17) 0.0009 (16)
C19 0.047 (2) 0.065 (2) 0.052 (2) −0.0237 (19) 0.0100 (17) −0.006 (2)
C20 0.127 (6) 0.070 (4) 0.099 (5) −0.021 (4) −0.041 (4) 0.004 (3)
C21 0.093 (4) 0.049 (2) 0.056 (3) −0.006 (2) 0.018 (3) −0.008 (2)
C22 0.124 (5) 0.057 (3) 0.080 (4) −0.021 (3) 0.001 (4) −0.017 (3)
Cu2 0.0369 (2) 0.03297 (19) 0.02827 (19) −0.00746 (16) 0.00002 (15) −0.00112 (16)
N1 0.0553 (18) 0.0390 (15) 0.0307 (14) 0.0011 (13) 0.0008 (13) −0.0005 (12)
N2 0.0462 (15) 0.0427 (15) 0.0307 (14) −0.0200 (13) 0.0034 (12) −0.0085 (12)
N3 0.0469 (17) 0.0448 (17) 0.0512 (19) −0.0138 (14) −0.0015 (14) −0.0113 (15)
N4 0.0419 (16) 0.0621 (19) 0.0450 (17) −0.0191 (15) 0.0063 (13) −0.0205 (16)
N5 0.0483 (17) 0.0406 (16) 0.060 (2) −0.0183 (14) 0.0202 (15) −0.0117 (15)
O1 0.0304 (11) 0.0507 (14) 0.0324 (11) −0.0035 (10) −0.0023 (9) 0.0036 (10)
O2 0.0343 (12) 0.0521 (14) 0.0374 (13) −0.0126 (11) 0.0025 (10) −0.0025 (11)
O3 0.0319 (11) 0.0414 (12) 0.0307 (11) −0.0015 (9) 0.0007 (9) 0.0001 (10)
O4 0.0387 (12) 0.0368 (12) 0.0369 (12) 0.0031 (10) −0.0076 (10) −0.0011 (10)
O5 0.0615 (17) 0.0517 (15) 0.0443 (14) −0.0160 (13) 0.0051 (12) −0.0118 (13)
O6 0.095 (3) 0.0440 (16) 0.084 (2) −0.0250 (16) −0.011 (2) −0.0140 (16)
O7 0.0602 (16) 0.0467 (14) 0.0375 (13) −0.0200 (12) 0.0008 (12) −0.0030 (11)
O8 0.0596 (16) 0.0458 (14) 0.0369 (13) −0.0136 (12) 0.0043 (11) −0.0065 (11)
O9 0.075 (2) 0.093 (2) 0.0543 (18) −0.0167 (18) 0.0059 (16) −0.0401 (18)
O10 0.0519 (15) 0.0448 (14) 0.0441 (14) −0.0038 (11) −0.0027 (12) −0.0073 (12)
O11 0.0455 (14) 0.0491 (15) 0.0627 (17) −0.0158 (12) 0.0011 (13) −0.0104 (13)
O12 0.079 (2) 0.070 (2) 0.115 (3) −0.0458 (19) 0.034 (2) −0.042 (2)
O13 0.0661 (18) 0.0377 (13) 0.0569 (17) −0.0112 (13) 0.0044 (14) −0.0016 (12)
O14 0.157 (5) 0.065 (2) 0.077 (3) −0.011 (3) 0.008 (3) 0.004 (2)
Tb1 0.03237 (9) 0.03267 (9) 0.02717 (9) −0.00535 (6) −0.00082 (6) −0.00045 (6)

Geometric parameters (Å, °)

C1—O1 1.332 (4) C18—H16 0.960
C1—C2 1.399 (5) C18—H17 0.960
C1—C6 1.418 (5) C19—O2 1.435 (5)
C2—C3 1.375 (4) C19—H18 0.960
C2—O2 1.382 (4) C19—H19 0.960
C3—C4 1.417 (6) C19—H20 0.960
C3—H1 0.930 C20—C21 1.469 (8)
C4—C5 1.357 (6) C20—H24 0.960
C4—H2 0.930 C20—H25 0.960
C5—C6 1.414 (5) C20—H26 0.960
C5—H3 0.930 C21—O14 1.181 (6)
C6—C7 1.428 (6) C21—C22 1.502 (8)
C7—N1 1.279 (5) C22—H21 0.960
C7—H4 0.930 C22—H22 0.960
C8—N1 1.476 (5) C22—H23 0.960
C8—C9 1.483 (8) Cu2—O1 1.939 (3)
C8—H5 0.970 Cu2—O3 1.947 (2)
C8—H6 0.970 Cu2—N2 1.957 (3)
C9—C10 1.493 (6) Cu2—N1 1.989 (3)
C9—H8 0.970 Cu2—Tb1 3.4749 (16)
C9—H7 0.970 N3—O6 1.208 (4)
C10—N2 1.492 (5) N3—O7 1.271 (4)
C10—H9 0.970 N3—O5 1.274 (4)
C10—H10 0.970 N4—O9 1.222 (4)
C11—N2 1.293 (5) N4—O8 1.274 (4)
C11—C12 1.439 (5) N4—O10 1.275 (4)
C11—H11 0.930 N5—O12 1.219 (4)
C12—C17 1.394 (5) N5—O11 1.257 (4)
C12—C13 1.411 (5) N5—O13 1.280 (5)
C13—C14 1.377 (6) O1—Tb1 2.352 (2)
C13—H12 0.930 O2—Tb1 2.506 (3)
C14—C15 1.396 (6) O3—Tb1 2.344 (3)
C14—H13 0.930 O4—Tb1 2.492 (2)
C15—C16 1.377 (5) O5—Tb1 2.470 (3)
C15—H14 0.930 O7—Tb1 2.501 (3)
C16—O4 1.379 (4) O8—Tb1 2.455 (3)
C16—C17 1.424 (4) O10—Tb1 2.494 (3)
C17—O3 1.333 (4) O11—Tb1 2.491 (3)
C18—O4 1.448 (4) O13—Tb1 2.564 (3)
C18—H15 0.960
O1—C1—C2 117.8 (3) O1—Cu2—Tb1 40.14 (7)
O1—C1—C6 122.7 (3) O3—Cu2—Tb1 39.95 (7)
C2—C1—C6 119.5 (3) N2—Cu2—Tb1 130.52 (9)
C3—C2—O2 124.7 (3) N1—Cu2—Tb1 129.85 (10)
C3—C2—C1 120.6 (3) C7—N1—C8 115.4 (3)
O2—C2—C1 114.7 (3) C7—N1—Cu2 123.8 (3)
C2—C3—C4 119.8 (4) C8—N1—Cu2 120.7 (3)
C2—C3—H1 120.1 C11—N2—C10 115.0 (3)
C4—C3—H1 120.1 C11—N2—Cu2 124.3 (2)
C5—C4—C3 120.7 (3) C10—N2—Cu2 120.7 (2)
C5—C4—H2 119.7 O6—N3—O7 123.1 (4)
C3—C4—H2 119.7 O6—N3—O5 120.8 (4)
C4—C5—C6 120.5 (3) O7—N3—O5 116.1 (3)
C4—C5—H3 119.7 O9—N4—O8 121.0 (4)
C6—C5—H3 119.7 O9—N4—O10 123.8 (4)
C5—C6—C1 118.9 (4) O8—N4—O10 115.2 (3)
C5—C6—C7 118.6 (3) O12—N5—O11 121.5 (4)
C1—C6—C7 122.3 (3) O12—N5—O13 122.0 (4)
N1—C7—C6 128.9 (3) O11—N5—O13 116.5 (3)
N1—C7—H4 115.6 C1—O1—Cu2 128.2 (2)
C6—C7—H4 115.6 C1—O1—Tb1 124.0 (2)
N1—C8—C9 113.1 (4) Cu2—O1—Tb1 107.76 (10)
N1—C8—H5 109.0 C2—O2—C19 118.0 (3)
C9—C8—H5 109.0 C2—O2—Tb1 118.0 (2)
N1—C8—H6 109.0 C19—O2—Tb1 123.2 (2)
C9—C8—H6 109.0 C17—O3—Cu2 129.3 (2)
H5—C8—H6 107.8 C17—O3—Tb1 122.90 (19)
C8—C9—C10 112.3 (4) Cu2—O3—Tb1 107.83 (10)
C8—C9—H8 109.1 C16—O4—C18 117.7 (3)
C10—C9—H8 109.1 C16—O4—Tb1 117.60 (18)
C8—C9—H7 109.1 C18—O4—Tb1 122.5 (2)
C10—C9—H7 109.1 N3—O5—Tb1 96.8 (2)
H8—C9—H7 107.9 N3—O7—Tb1 95.4 (2)
N2—C10—C9 111.7 (3) N4—O8—Tb1 97.5 (2)
N2—C10—H9 109.3 N4—O10—Tb1 95.6 (2)
C9—C10—H9 109.3 N5—O11—Tb1 98.5 (2)
N2—C10—H10 109.3 N5—O13—Tb1 94.4 (2)
C9—C10—H10 109.3 O3—Tb1—O1 63.45 (9)
H9—C10—H10 107.9 O3—Tb1—O8 146.77 (9)
N2—C11—C12 128.6 (3) O1—Tb1—O8 147.69 (9)
N2—C11—H11 115.7 O3—Tb1—O5 72.83 (9)
C12—C11—H11 115.7 O1—Tb1—O5 73.37 (10)
C17—C12—C13 119.4 (3) O8—Tb1—O5 118.67 (9)
C17—C12—C11 122.6 (3) O3—Tb1—O11 81.12 (10)
C13—C12—C11 117.9 (3) O1—Tb1—O11 116.73 (9)
C14—C13—C12 120.2 (4) O8—Tb1—O11 72.71 (10)
C14—C13—H12 119.9 O5—Tb1—O11 143.71 (10)
C12—C13—H12 119.9 O3—Tb1—O4 65.89 (8)
C13—C14—C15 121.0 (3) O1—Tb1—O4 126.51 (9)
C13—C14—H13 119.5 O8—Tb1—O4 85.75 (9)
C15—C14—H13 119.5 O5—Tb1—O4 76.54 (9)
C16—C15—C14 119.5 (3) O11—Tb1—O4 69.87 (9)
C16—C15—H14 120.2 O3—Tb1—O10 138.29 (9)
C14—C15—H14 120.2 O1—Tb1—O10 99.56 (9)
C15—C16—O4 124.8 (3) O8—Tb1—O10 51.53 (9)
C15—C16—C17 120.5 (3) O5—Tb1—O10 142.00 (10)
O4—C16—C17 114.6 (3) O11—Tb1—O10 73.34 (10)
O3—C17—C12 122.4 (3) O4—Tb1—O10 130.23 (8)
O3—C17—C16 118.3 (3) O3—Tb1—O7 115.07 (9)
C12—C17—C16 119.3 (3) O1—Tb1—O7 117.69 (9)
O4—C18—H15 109.5 O8—Tb1—O7 67.18 (9)
O4—C18—H16 109.5 O5—Tb1—O7 51.50 (9)
H15—C18—H16 109.5 O11—Tb1—O7 124.64 (9)
O4—C18—H17 109.5 O4—Tb1—O7 70.61 (10)
H15—C18—H17 109.5 O10—Tb1—O7 106.57 (10)
H16—C18—H17 109.5 O3—Tb1—O2 124.00 (8)
O2—C19—H18 109.5 O1—Tb1—O2 64.58 (8)
O2—C19—H19 109.5 O8—Tb1—O2 89.00 (9)
H18—C19—H19 109.5 O5—Tb1—O2 73.82 (9)
O2—C19—H20 109.5 O11—Tb1—O2 142.46 (9)
H18—C19—H20 109.5 O4—Tb1—O2 142.70 (9)
H19—C19—H20 109.5 O10—Tb1—O2 69.68 (9)
C21—C20—H24 109.5 O7—Tb1—O2 73.33 (9)
C21—C20—H25 109.5 O3—Tb1—O13 71.12 (10)
H24—C20—H25 109.5 O1—Tb1—O13 68.46 (10)
C21—C20—H26 109.5 O8—Tb1—O13 105.29 (10)
H24—C20—H26 109.5 O5—Tb1—O13 136.01 (10)
H25—C20—H26 109.5 O11—Tb1—O13 50.51 (10)
O14—C21—C20 121.7 (6) O4—Tb1—O13 109.79 (10)
O14—C21—C22 121.8 (5) O10—Tb1—O13 67.18 (10)
C20—C21—C22 116.4 (5) O7—Tb1—O13 172.48 (9)
C21—C22—H21 109.5 O2—Tb1—O13 107.22 (10)
C21—C22—H22 109.5 O3—Tb1—Cu2 32.23 (5)
H21—C22—H22 109.5 O1—Tb1—Cu2 32.10 (6)
C21—C22—H23 109.5 O8—Tb1—Cu2 165.72 (6)
H21—C22—H23 109.5 O5—Tb1—Cu2 75.60 (7)
H22—C22—H23 109.5 O11—Tb1—Cu2 95.49 (8)
O1—Cu2—O3 78.92 (10) O4—Tb1—Cu2 97.89 (6)
O1—Cu2—N2 170.42 (11) O10—Tb1—Cu2 118.11 (7)
O3—Cu2—N2 91.51 (12) O7—Tb1—Cu2 127.06 (6)
O1—Cu2—N1 91.40 (12) O2—Tb1—Cu2 96.16 (6)
O3—Cu2—N1 169.69 (12) O13—Tb1—Cu2 60.46 (7)
N2—Cu2—N1 98.17 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2275).

References

  1. Elmali, A. & Elerman, Y. (2003). Z. Naturforsch. Teil B, 58, 639–643.
  2. Elmali, A. & Elerman, Y. (2004). Z. Naturforsch. Teil B, 59, 535–540.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  5. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808002080/bi2275sup1.cif

e-64-0m406-sup1.cif (24KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002080/bi2275Isup2.hkl

e-64-0m406-Isup2.hkl (307.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES