Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 16;64(Pt 2):o442. doi: 10.1107/S1600536808000974

3,6-Dihydr­oxy-2′-[(2-hydr­oxy-1-naphth­yl)methyl­eneamino]xanthene-9-spiro-1′-isoindolin-3′-one acetonitrile solvate

Pei-San Wang a,b, Gen-Hua Wu a,*
PMCID: PMC2960338  PMID: 21201469

Abstract

The title compound, C31H20N2O5·C2H3N, was synthesized by the reaction of fluorescein hydrazide and excess 2-hydr­oxy-1-naphthaldehyde in acetonitrile. The spirolactam ring is planar and is nearly at right angles to the two benzene rings of the xanthene system. The dihedral angle between the two benzene rings of the xanthene system is 9.92 (4)°. In the crystal structure, the mol­ecules are linked into extended two-dimensional networks by inter­molecular hydrogen bonding. Acetonitrile mol­ecules are located in the voids between the two-dimensional networks.

Related literature

For general background, see: Chen et al., (2006). For related literature, see: Wu et al., (2007).graphic file with name e-64-0o442-scheme1.jpg

Experimental

Crystal data

  • C31H20N2O5·C2H3N

  • M r = 541.54

  • Monoclinic, Inline graphic

  • a = 18.729 (5) Å

  • b = 15.572 (4) Å

  • c = 9.021 (2) Å

  • β = 98.495 (4)°

  • V = 2601.9 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.26 × 0.22 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000) T min = 0.976, T max = 0.985

  • 12963 measured reflections

  • 4627 independent reflections

  • 3272 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.098

  • S = 1.03

  • 4627 reflections

  • 375 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT-Plus (Bruker, 1997); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808000974/at2535sup1.cif

e-64-0o442-sup1.cif (26KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000974/at2535Isup2.hkl

e-64-0o442-Isup2.hkl (226.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N1 0.82 1.83 2.5600 (16) 147
O3—H6⋯N3i 0.82 2.08 2.882 (2) 165
O1—H1⋯O4ii 0.82 1.94 2.7484 (16) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Project No. 20775003) and the Natural Science Foundation of the Education Committee of Anhui Province, China (Project No. 2002 K J201).

supplementary crystallographic information

Comment

Fluorescein dyes have been used extensively for conjugation with biomolecules, owing to their excellent fluorescence properties. A few Fluorescein have also been used as fluorescent chemosensors for metal ions. It was reported that rhodamine B hydrazide could be used as a fluorescent probe for Cu2+(Chen et al., 2006). In addition, Fluorescein-based fluorescent chemosensors have received increasing interest in recent years by virtue of their long-wavelength emission and availability. In our previous research using 2-pyridinecarbaldehyde and rhodamine 6 G hydrazide synthesized probe (Wu et al., 2007). The structures are similar with rhodamine 6 G hydrazone probe and fluorescein hydrazone probe. As an extension of our work on this series of complexes, we herein report the crystal structure of the title comound.

The asymmetric unit contains one organic molecule and one acetonitriler molecule. The benzene ring of phenol deviates only slightly from planarity with a dihedral angle of 9.12 (3)°. The water O atom acts as a hydrogen bond acceptor and donor from the hydroxy group in a neighouring organic molecule, thereby forming extended 2-D networks (Table1, Fig. 2). Acetonitrile molecules are located in the voids between the two-dimensional networks.

Experimental

Briefly, to a suspended solution of fluorescein (300 mg, 0.9 mmol) in CH3OH (15 ml), an excess of hydrazine hydrate (1.2 ml, 36 mmol) was added, and the reaction mixture was refluxed for 5 h with stirring. The resulting clear orange solution was evaporated in vacuo to give a brown oil, which was then recrystallized from ethanol–water, affording 1 as a light orange crystal (230 mg, yield 70%). Fluorescein hydrazide (0.46 g, 1 mmol) was dissolved in 20 ml absolute acetonitrile. An excessive 2-hydroxy-1-naphthaldehyde (4 mmol) was added then the mixture was refluxed in an air bath for 6 h. After that, the solution was cooled and allowed to stand at room temperature overnight. The yellow single-crystal which appeared after ten days was growed.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 - 0.96 Å and O—H = 0.82 Å), and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C or O).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C31H20N2O5·C2H3N F000 = 1128
Mr = 541.54 Dx = 1.382 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4034 reflections
a = 18.729 (5) Å θ = 2.4–27.0º
b = 15.572 (4) Å µ = 0.10 mm1
c = 9.021 (2) Å T = 293 (2) K
β = 98.495 (4)º Block, yellow
V = 2601.9 (11) Å3 0.26 × 0.22 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 4627 independent reflections
Radiation source: sealed tube 3272 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.047
T = 293(2) K θmax = 25.1º
φ and ω scans θmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 2000) h = −22→20
Tmin = 0.976, Tmax = 0.985 k = −17→18
12963 measured reflections l = −10→10

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037   w = 1/[σ2(Fo2) + (0.0455P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 0.14 e Å3
4627 reflections Δρmin = −0.15 e Å3
375 parameters Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0070 (7)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.33564 (7) 0.42174 (9) 0.79315 (17) 0.0395 (4)
C2 0.35217 (9) 0.33479 (10) 0.7884 (2) 0.0545 (4)
H2 0.3272 0.3011 0.7128 0.065*
C3 0.40416 (9) 0.29689 (10) 0.8916 (2) 0.0574 (5)
H7 0.4137 0.2385 0.8861 0.069*
C4 0.44199 (8) 0.34666 (10) 1.00373 (18) 0.0457 (4)
C5 0.42780 (8) 0.43291 (9) 1.01071 (17) 0.0425 (4)
H5 0.4536 0.4667 1.0851 0.051*
C6 0.37473 (7) 0.46933 (9) 0.90608 (16) 0.0394 (4)
C7 0.31973 (8) 0.59927 (9) 0.81305 (17) 0.0419 (4)
C8 0.32082 (8) 0.68757 (10) 0.82713 (18) 0.0480 (4)
H8 0.3494 0.7135 0.9078 0.058*
C9 0.27929 (8) 0.73684 (10) 0.72100 (19) 0.0479 (4)
C10 0.23642 (8) 0.69775 (10) 0.60184 (19) 0.0533 (4)
H10 0.2083 0.7308 0.5297 0.064*
C11 0.23580 (8) 0.60990 (10) 0.59104 (19) 0.0504 (4)
H11 0.2067 0.5842 0.5108 0.060*
C12 0.27727 (7) 0.55775 (9) 0.69603 (17) 0.0405 (4)
C13 0.27427 (7) 0.46102 (9) 0.68603 (16) 0.0396 (4)
C14 0.26945 (8) 0.42604 (9) 0.52772 (17) 0.0437 (4)
C15 0.31751 (9) 0.43535 (11) 0.4270 (2) 0.0594 (5)
H15 0.3601 0.4662 0.4521 0.071*
C16 0.30051 (11) 0.39730 (12) 0.2870 (2) 0.0693 (5)
H16 0.3318 0.4039 0.2169 0.083*
C17 0.23812 (11) 0.34980 (12) 0.2495 (2) 0.0635 (5)
H17 0.2284 0.3243 0.1555 0.076*
C18 0.19056 (9) 0.34007 (10) 0.34988 (18) 0.0548 (4)
H18 0.1486 0.3079 0.3256 0.066*
C19 0.20660 (8) 0.37939 (9) 0.48858 (17) 0.0436 (4)
C20 0.16357 (8) 0.38148 (10) 0.61280 (17) 0.0448 (4)
C21 0.13128 (7) 0.42358 (9) 0.91136 (17) 0.0408 (4)
H21 0.1084 0.3753 0.8659 0.049*
C22 0.10663 (7) 0.46010 (9) 1.04201 (16) 0.0396 (4)
C23 0.13326 (8) 0.53795 (10) 1.10112 (17) 0.0462 (4)
C24 0.10413 (10) 0.57803 (12) 1.21788 (19) 0.0598 (5)
H24 0.1220 0.6309 1.2540 0.072*
C25 0.05010 (10) 0.54010 (13) 1.27822 (19) 0.0622 (5)
H25 0.0308 0.5679 1.3544 0.075*
C26 0.02242 (8) 0.45900 (11) 1.22770 (18) 0.0518 (4)
C27 −0.03305 (9) 0.41847 (14) 1.2928 (2) 0.0682 (5)
H27 −0.0526 0.4462 1.3689 0.082*
C28 −0.05798 (11) 0.34026 (15) 1.2463 (2) 0.0771 (6)
H28 −0.0945 0.3143 1.2900 0.093*
C29 −0.02859 (9) 0.29812 (13) 1.1316 (2) 0.0708 (5)
H29 −0.0452 0.2437 1.1010 0.085*
C30 0.02372 (8) 0.33577 (11) 1.06483 (19) 0.0548 (4)
H30 0.0421 0.3069 0.9884 0.066*
C31 0.05084 (7) 0.41780 (10) 1.10902 (17) 0.0431 (4)
C32 0.54315 (12) 0.38827 (12) 0.6728 (2) 0.0826 (6)
H32A 0.5930 0.3955 0.7141 0.124*
H32B 0.5265 0.3336 0.7028 0.124*
H32C 0.5151 0.4332 0.7087 0.124*
C33 0.53548 (10) 0.39211 (12) 0.5109 (3) 0.0678 (5)
N1 0.18474 (6) 0.45736 (8) 0.85739 (13) 0.0403 (3)
N2 0.20397 (6) 0.42793 (7) 0.72513 (13) 0.0404 (3)
N3 0.52922 (10) 0.39621 (12) 0.3840 (2) 0.0900 (6)
O1 0.28347 (6) 0.82387 (7) 0.73845 (14) 0.0670 (4)
H1 0.2542 0.8470 0.6743 0.100*
O2 0.36425 (6) 0.55596 (6) 0.92433 (12) 0.0537 (3)
O3 0.49339 (6) 0.30663 (7) 1.10332 (14) 0.0644 (4)
H6 0.5067 0.3389 1.1738 0.097*
O4 0.18721 (6) 0.58052 (7) 1.04607 (13) 0.0589 (3)
H4 0.1992 0.5533 0.9759 0.088*
O5 0.10443 (6) 0.35036 (8) 0.61789 (13) 0.0678 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0349 (8) 0.0383 (9) 0.0458 (9) −0.0024 (6) 0.0074 (7) 0.0024 (7)
C2 0.0552 (10) 0.0407 (10) 0.0634 (11) −0.0034 (8) −0.0047 (9) −0.0041 (8)
C3 0.0630 (11) 0.0349 (9) 0.0695 (12) 0.0048 (8) −0.0057 (9) −0.0008 (8)
C4 0.0447 (9) 0.0421 (9) 0.0497 (10) 0.0035 (7) 0.0053 (8) 0.0050 (7)
C5 0.0452 (9) 0.0405 (9) 0.0407 (9) −0.0021 (7) 0.0024 (7) −0.0003 (7)
C6 0.0427 (9) 0.0329 (8) 0.0436 (9) 0.0006 (6) 0.0099 (7) 0.0016 (7)
C7 0.0416 (9) 0.0408 (9) 0.0432 (9) 0.0053 (7) 0.0059 (7) 0.0061 (7)
C8 0.0501 (9) 0.0400 (9) 0.0524 (10) 0.0037 (7) 0.0025 (8) −0.0007 (7)
C9 0.0491 (10) 0.0381 (9) 0.0575 (11) 0.0055 (7) 0.0115 (8) 0.0073 (8)
C10 0.0489 (10) 0.0502 (11) 0.0593 (11) 0.0057 (8) 0.0032 (9) 0.0163 (8)
C11 0.0435 (9) 0.0520 (11) 0.0534 (11) −0.0026 (7) −0.0004 (8) 0.0077 (8)
C12 0.0353 (8) 0.0411 (9) 0.0459 (9) −0.0010 (6) 0.0090 (7) 0.0047 (7)
C13 0.0345 (8) 0.0429 (9) 0.0419 (9) −0.0031 (6) 0.0077 (7) 0.0020 (7)
C14 0.0431 (9) 0.0453 (9) 0.0428 (9) 0.0058 (7) 0.0067 (7) 0.0032 (7)
C15 0.0573 (10) 0.0682 (12) 0.0561 (12) 0.0001 (9) 0.0196 (9) 0.0022 (9)
C16 0.0804 (14) 0.0795 (14) 0.0530 (12) 0.0217 (11) 0.0267 (11) 0.0086 (10)
C17 0.0785 (13) 0.0681 (12) 0.0422 (11) 0.0274 (10) 0.0039 (10) −0.0020 (9)
C18 0.0604 (11) 0.0537 (11) 0.0466 (10) 0.0122 (8) −0.0037 (9) −0.0050 (8)
C19 0.0459 (9) 0.0440 (9) 0.0396 (9) 0.0055 (7) 0.0020 (7) 0.0014 (7)
C20 0.0419 (9) 0.0451 (9) 0.0459 (10) −0.0040 (7) 0.0017 (7) −0.0033 (7)
C21 0.0386 (8) 0.0379 (8) 0.0457 (9) −0.0019 (7) 0.0052 (7) 0.0007 (7)
C22 0.0364 (8) 0.0437 (9) 0.0376 (9) 0.0050 (7) 0.0018 (7) 0.0039 (7)
C23 0.0454 (9) 0.0509 (10) 0.0413 (9) 0.0020 (7) 0.0028 (7) −0.0011 (7)
C24 0.0641 (11) 0.0649 (12) 0.0489 (11) 0.0051 (9) 0.0039 (9) −0.0121 (9)
C25 0.0634 (11) 0.0820 (14) 0.0417 (10) 0.0176 (10) 0.0092 (9) −0.0053 (9)
C26 0.0462 (9) 0.0688 (12) 0.0410 (10) 0.0137 (8) 0.0081 (8) 0.0133 (8)
C27 0.0582 (11) 0.0988 (16) 0.0508 (11) 0.0168 (11) 0.0188 (9) 0.0190 (11)
C28 0.0636 (12) 0.0927 (17) 0.0803 (15) −0.0013 (11) 0.0278 (11) 0.0310 (12)
C29 0.0632 (12) 0.0694 (13) 0.0838 (14) −0.0063 (10) 0.0240 (11) 0.0190 (11)
C30 0.0503 (10) 0.0556 (11) 0.0611 (11) 0.0010 (8) 0.0166 (9) 0.0118 (9)
C31 0.0378 (8) 0.0511 (10) 0.0398 (9) 0.0096 (7) 0.0040 (7) 0.0103 (7)
C32 0.1057 (17) 0.0644 (13) 0.0762 (15) −0.0114 (11) 0.0088 (13) −0.0104 (11)
C33 0.0679 (13) 0.0562 (12) 0.0775 (16) −0.0092 (9) 0.0048 (12) −0.0128 (11)
N1 0.0388 (7) 0.0432 (7) 0.0389 (7) −0.0020 (5) 0.0059 (6) −0.0012 (6)
N2 0.0366 (7) 0.0449 (7) 0.0399 (7) −0.0070 (5) 0.0068 (6) −0.0054 (6)
N3 0.0966 (14) 0.0927 (14) 0.0773 (13) −0.0082 (10) 0.0014 (12) −0.0090 (11)
O1 0.0785 (9) 0.0400 (7) 0.0783 (9) 0.0095 (6) −0.0022 (7) 0.0083 (6)
O2 0.0680 (7) 0.0367 (6) 0.0509 (7) 0.0085 (5) −0.0094 (6) −0.0027 (5)
O3 0.0701 (8) 0.0492 (7) 0.0668 (8) 0.0141 (6) −0.0135 (7) 0.0053 (6)
O4 0.0616 (7) 0.0571 (7) 0.0596 (8) −0.0153 (6) 0.0145 (6) −0.0149 (6)
O5 0.0510 (7) 0.0878 (9) 0.0651 (8) −0.0290 (6) 0.0100 (6) −0.0191 (7)

Geometric parameters (Å, °)

C1—C6 1.379 (2) C18—H18 0.9300
C1—C2 1.391 (2) C19—C20 1.474 (2)
C1—C13 1.5168 (19) C20—O5 1.2161 (17)
C2—C3 1.377 (2) C20—N2 1.3769 (18)
C2—H2 0.9300 C21—N1 1.2885 (17)
C3—C4 1.383 (2) C21—C22 1.444 (2)
C3—H7 0.9300 C21—H21 0.9300
C4—C5 1.372 (2) C22—C23 1.387 (2)
C4—O3 1.3663 (18) C22—C31 1.441 (2)
C5—C6 1.3867 (19) C23—O4 1.3620 (18)
C5—H5 0.9300 C23—C24 1.402 (2)
C6—O2 1.3767 (17) C24—C25 1.353 (2)
C7—C8 1.381 (2) C24—H24 0.9300
C7—O2 1.3821 (17) C25—C26 1.415 (2)
C7—C12 1.384 (2) C25—H25 0.9300
C8—C9 1.375 (2) C26—C31 1.418 (2)
C8—H8 0.9300 C26—C27 1.415 (2)
C9—O1 1.3652 (18) C27—C28 1.349 (3)
C9—C10 1.384 (2) C27—H27 0.9300
C10—C11 1.371 (2) C28—C29 1.404 (3)
C10—H10 0.9300 C28—H28 0.9300
C11—C12 1.394 (2) C29—C30 1.357 (2)
C11—H11 0.9300 C29—H29 0.9300
C12—C13 1.510 (2) C30—C31 1.410 (2)
C13—N2 1.5036 (17) C30—H30 0.9300
C13—C14 1.519 (2) C32—C33 1.447 (3)
C14—C15 1.378 (2) C32—H32A 0.9600
C14—C19 1.384 (2) C32—H32B 0.9600
C15—C16 1.389 (3) C32—H32C 0.9600
C15—H15 0.9300 C33—N3 1.135 (2)
C16—C17 1.382 (3) N1—N2 1.3747 (16)
C16—H16 0.9300 O1—H1 0.8200
C17—C18 1.369 (2) O3—H6 0.8200
C17—H17 0.9300 O4—H4 0.8200
C18—C19 1.385 (2)
C6—C1—C2 116.72 (13) C19—C18—H18 120.9
C6—C1—C13 121.57 (13) C18—C19—C14 121.68 (15)
C2—C1—C13 121.59 (13) C18—C19—C20 128.78 (15)
C3—C2—C1 122.31 (15) C14—C19—C20 109.53 (13)
C3—C2—H2 118.8 O5—C20—N2 125.88 (14)
C1—C2—H2 118.8 O5—C20—C19 128.55 (14)
C2—C3—C4 119.27 (15) N2—C20—C19 105.57 (13)
C2—C3—H7 120.4 N1—C21—C22 120.49 (14)
C4—C3—H7 120.4 N1—C21—H21 119.8
C5—C4—O3 122.60 (14) C22—C21—H21 119.8
C5—C4—C3 120.01 (14) C23—C22—C31 118.68 (14)
O3—C4—C3 117.39 (14) C23—C22—C21 121.17 (14)
C4—C5—C6 119.55 (14) C31—C22—C21 120.08 (14)
C4—C5—H5 120.2 O4—C23—C22 121.95 (14)
C6—C5—H5 120.2 O4—C23—C24 116.69 (15)
O2—C6—C1 123.04 (13) C22—C23—C24 121.33 (15)
O2—C6—C5 114.82 (13) C25—C24—C23 120.32 (17)
C1—C6—C5 122.14 (14) C25—C24—H24 119.8
C8—C7—O2 114.83 (13) C23—C24—H24 119.8
C8—C7—C12 122.28 (14) C24—C25—C26 121.34 (16)
O2—C7—C12 122.88 (14) C24—C25—H25 119.3
C9—C8—C7 119.51 (15) C26—C25—H25 119.3
C9—C8—H8 120.2 C31—C26—C27 119.49 (17)
C7—C8—H8 120.2 C31—C26—C25 119.12 (15)
O1—C9—C8 117.18 (15) C27—C26—C25 121.39 (17)
O1—C9—C10 122.88 (14) C28—C27—C26 120.99 (18)
C8—C9—C10 119.93 (15) C28—C27—H27 119.5
C11—C10—C9 119.46 (15) C26—C27—H27 119.5
C11—C10—H10 120.3 C27—C28—C29 119.73 (17)
C9—C10—H10 120.3 C27—C28—H28 120.1
C10—C11—C12 122.34 (15) C29—C28—H28 120.1
C10—C11—H11 118.8 C30—C29—C28 120.82 (19)
C12—C11—H11 118.8 C30—C29—H29 119.6
C7—C12—C11 116.47 (14) C28—C29—H29 119.6
C7—C12—C13 121.57 (13) C29—C30—C31 121.30 (17)
C11—C12—C13 121.93 (13) C29—C30—H30 119.3
N2—C13—C12 110.73 (11) C31—C30—H30 119.3
N2—C13—C1 108.65 (11) C26—C31—C30 117.62 (14)
C12—C13—C1 110.26 (12) C26—C31—C22 119.09 (15)
N2—C13—C14 99.51 (11) C30—C31—C22 123.27 (14)
C12—C13—C14 114.24 (12) C33—C32—H32A 109.5
C1—C13—C14 112.87 (12) C33—C32—H32B 109.5
C15—C14—C19 120.07 (15) H32A—C32—H32B 109.5
C15—C14—C13 128.93 (14) C33—C32—H32C 109.5
C19—C14—C13 111.00 (13) H32A—C32—H32C 109.5
C14—C15—C16 118.06 (17) H32B—C32—H32C 109.5
C14—C15—H15 121.0 N3—C33—C32 179.1 (2)
C16—C15—H15 121.0 C21—N1—N2 120.63 (12)
C17—C16—C15 121.52 (17) N1—N2—C20 128.89 (12)
C17—C16—H16 119.2 N1—N2—C13 116.11 (11)
C15—C16—H16 119.2 C20—N2—C13 114.35 (12)
C18—C17—C16 120.44 (17) C9—O1—H1 109.5
C18—C17—H17 119.8 C6—O2—C7 118.21 (11)
C16—C17—H17 119.8 C4—O3—H6 109.5
C17—C18—C19 118.22 (17) C23—O4—H4 109.5
C17—C18—H18 120.9
C6—C1—C2—C3 0.8 (2) C15—C14—C19—C18 0.9 (2)
C13—C1—C2—C3 −175.13 (15) C13—C14—C19—C18 −179.13 (13)
C1—C2—C3—C4 −0.6 (3) C15—C14—C19—C20 −178.10 (14)
C2—C3—C4—C5 −0.3 (2) C13—C14—C19—C20 1.88 (17)
C2—C3—C4—O3 −179.62 (15) C18—C19—C20—O5 −1.5 (3)
O3—C4—C5—C6 −179.86 (14) C14—C19—C20—O5 177.43 (16)
C3—C4—C5—C6 0.9 (2) C18—C19—C20—N2 179.33 (15)
C2—C1—C6—O2 179.93 (13) C14—C19—C20—N2 −1.77 (17)
C13—C1—C6—O2 −4.1 (2) N1—C21—C22—C23 8.3 (2)
C2—C1—C6—C5 −0.3 (2) N1—C21—C22—C31 −174.81 (12)
C13—C1—C6—C5 175.71 (13) C31—C22—C23—O4 178.31 (13)
C4—C5—C6—O2 179.24 (13) C21—C22—C23—O4 −4.7 (2)
C4—C5—C6—C1 −0.6 (2) C31—C22—C23—C24 −3.8 (2)
O2—C7—C8—C9 179.00 (13) C21—C22—C23—C24 173.18 (13)
C12—C7—C8—C9 −0.9 (2) O4—C23—C24—C25 179.68 (15)
C7—C8—C9—O1 −178.66 (14) C22—C23—C24—C25 1.6 (3)
C7—C8—C9—C10 0.5 (2) C23—C24—C25—C26 1.1 (3)
O1—C9—C10—C11 179.17 (15) C24—C25—C26—C31 −1.5 (2)
C8—C9—C10—C11 0.1 (2) C24—C25—C26—C27 178.67 (16)
C9—C10—C11—C12 −0.3 (2) C31—C26—C27—C28 1.7 (3)
C8—C7—C12—C11 0.7 (2) C25—C26—C27—C28 −178.46 (17)
O2—C7—C12—C11 −179.20 (13) C26—C27—C28—C29 0.0 (3)
C8—C7—C12—C13 −177.30 (14) C27—C28—C29—C30 −1.3 (3)
O2—C7—C12—C13 2.8 (2) C28—C29—C30—C31 0.7 (3)
C10—C11—C12—C7 −0.1 (2) C27—C26—C31—C30 −2.2 (2)
C10—C11—C12—C13 177.87 (14) C25—C26—C31—C30 177.93 (14)
C7—C12—C13—N2 106.04 (15) C27—C26—C31—C22 179.15 (13)
C11—C12—C13—N2 −71.84 (17) C25—C26—C31—C22 −0.7 (2)
C7—C12—C13—C1 −14.24 (18) C29—C30—C31—C26 1.1 (2)
C11—C12—C13—C1 167.88 (13) C29—C30—C31—C22 179.63 (15)
C7—C12—C13—C14 −142.61 (14) C23—C22—C31—C26 3.2 (2)
C11—C12—C13—C14 39.52 (19) C21—C22—C31—C26 −173.75 (13)
C6—C1—C13—N2 −106.63 (15) C23—C22—C31—C30 −175.28 (14)
C2—C1—C13—N2 69.15 (17) C21—C22—C31—C30 7.7 (2)
C6—C1—C13—C12 14.90 (18) C22—C21—N1—N2 −173.76 (12)
C2—C1—C13—C12 −169.33 (13) C21—N1—N2—C20 19.9 (2)
C6—C1—C13—C14 144.01 (14) C21—N1—N2—C13 −169.86 (12)
C2—C1—C13—C14 −40.22 (19) O5—C20—N2—N1 −7.9 (3)
N2—C13—C14—C15 178.80 (15) C19—C20—N2—N1 171.36 (13)
C12—C13—C14—C15 60.8 (2) O5—C20—N2—C13 −178.20 (15)
C1—C13—C14—C15 −66.2 (2) C19—C20—N2—C13 1.02 (16)
N2—C13—C14—C19 −1.18 (15) C12—C13—N2—N1 −51.04 (16)
C12—C13—C14—C19 −119.14 (14) C1—C13—N2—N1 70.20 (15)
C1—C13—C14—C19 113.83 (14) C14—C13—N2—N1 −171.60 (11)
C19—C14—C15—C16 0.4 (2) C12—C13—N2—C20 120.60 (14)
C13—C14—C15—C16 −179.55 (15) C1—C13—N2—C20 −118.17 (14)
C14—C15—C16—C17 −1.3 (3) C14—C13—N2—C20 0.03 (15)
C15—C16—C17—C18 1.0 (3) C1—C6—O2—C7 −9.1 (2)
C16—C17—C18—C19 0.3 (2) C5—C6—O2—C7 171.10 (12)
C17—C18—C19—C14 −1.3 (2) C8—C7—O2—C6 −170.15 (13)
C17—C18—C19—C20 177.50 (15) C12—C7—O2—C6 9.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4···N1 0.82 1.83 2.5600 (16) 147
O3—H6···N3i 0.82 2.08 2.882 (2) 165
O1—H1···O4ii 0.82 1.94 2.7484 (16) 170

Symmetry codes: (i) x, y, z+1; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2535).

References

  1. Bruker (1997). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2000). XP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, X. Q. & Ma, H. M. (2006). Anal. Chim. Acta, 575, 217–222. [DOI] [PubMed]
  4. Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wu, D. Y., Huang, W., Duan, C. Y., Li, Z. & Meng, Q. J. (2007). Inorg. Chem.46, 1538–1544. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808000974/at2535sup1.cif

e-64-0o442-sup1.cif (26KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000974/at2535Isup2.hkl

e-64-0o442-Isup2.hkl (226.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES