Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 9;64(Pt 2):m324–m325. doi: 10.1107/S1600536807068420

Tris(propane-1,2-diamine-κ2 N,N′)nickel(II) tetra­cyanidonickelate(II)

Juraj Kuchár a, Juraj Černák a,*
PMCID: PMC2960350  PMID: 21201293

Abstract

The title compound, [Ni(C3H10N2)3][Ni(CN)4], is built up of [Ni(pn)3]2+ cations (pn is 1,2-diamino­propane) and [Ni(CN)4]2− anions. Both NiII atoms in the cation and the anion lie on a mirror plane. The respective ions inter­act through Coulombic forces and through a complex network of hydrogen bonds. Extended disorder associated with the cation has been resolved. The occupancies of the respective disordered positions are 0.4:0.4:0.2.

Related literature

For related literature, see: Paharová et al. (2007); Rodriguez et al. (1999); Saha et al. (2005); Smékal et al. (2001); Černák et al. (2002); Bubanec et al. (2004); Potočňák et al. (2008).graphic file with name e-64-0m324-scheme1.jpg

Experimental

Crystal data

  • [Ni(C3H10N2)3][Ni(CN)4]

  • M r = 443.89

  • Orthorhombic, Inline graphic

  • a = 9.7310 (12) Å

  • b = 13.3770 (14) Å

  • c = 16.275 (3) Å

  • V = 2118.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.79 mm−1

  • T = 193 (2) K

  • 0.5 × 0.1 × 0.1 mm

Data collection

  • Stoe IPDS diffractometer

  • Absorption correction: Gaussian (XPREP in SHELXTL; Siemens, 1996) T min = 0.580, T max = 0.815

  • 14468 measured reflections

  • 1947 independent reflections

  • 1401 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.100

  • S = 0.92

  • 1947 reflections

  • 183 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: EXPOSE in IPDS (Stoe & Cie, 1999); cell refinement: CELL in IPDS; data reduction: INTEGRATE in IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: PARST (Nardelli, 1983) and SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068420/bg2155sup1.cif

e-64-0m324-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068420/bg2155Isup2.hkl

e-64-0m324-Isup2.hkl (116.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—C1 1.852 (7)
Ni1—C2 1.856 (4)
Ni1—C3 1.866 (7)
Ni2—N7 2.112 (6)
Ni2—N8 2.122 (6)
Ni2—N9 2.128 (6)
Ni2—N5 2.135 (6)
Ni2—N4 2.137 (6)
Ni2—N6 2.139 (5)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N2i 0.92 2.24 3.140 (7) 167
N5—H5A⋯N2ii 0.92 2.17 3.083 (6) 169
N5—H5B⋯N3 0.92 2.30 3.180 (8) 159
N6—H6A⋯N2i 0.92 2.23 3.073 (7) 152
N6—H6B⋯N3 0.92 2.54 3.349 (7) 147
N7—H7A⋯N1iii 0.92 2.42 3.295 (8) 158
N7—H7B⋯N1iv 0.92 2.36 3.159 (7) 145
N8—H8A⋯N1iii 0.92 2.07 2.985 (8) 179
N9—H9A⋯N2ii 0.92 2.42 3.212 (8) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Slovak Grant Agency VEGA (grant No. 1/3550/06) and by the APVV (grant No. 20-005204). The authors thank Professor Werner Massa (Phillips Universität, Marburg) for kind permission to use the diffractometer.

supplementary crystallographic information

Comment

The title compound, C13H30N10Ni2, was studied as part of a broader study of cyanocomplexes viewed as magnetic materials [Černák et al.2002). The complex is ionic and built up of [Ni(pn)3]2+cations (pn: 1,2-diaminopropane) and [Ni(CN)~4~]2– anions. Other similar ionic compounds with square tetracyanometallates(II) and [M(L—L)3]2+ cations (M = Ni, Zn, Cd; L—L: a chelating ligand), have already been described [Bubanec et al., 2004; Rodriguez et al., 1999; Paharová et al., 2007]. The Pt analogue was described by Potočňák et al. (2008).

The NiII atom in the complex cation exhibits pseudo-octahedral coordination by six nitrogen atoms from three chelate bonded pn ligands in gauche conformations. As the nickel atom occupies the position on a mirror plane the chelate bonded ligands are disordered in two positions with half occupancy (Fig. 1). Further disorder associated with the position of the methyl groups bonded to the carbon atom was detected so within the same metallocycle both R and S enantiomers are present with the same occupancy. Moreover, the structure is centrosymmetric so both opposite absolute configurations Λδδλ and Δλλδ of the chiral cations are present in the unit cell in equal quantities. It is worth noting that for the synthesis a racemic mixture of the pn ligand was used. The observed geometrical parameters are close to those observed in [Ni(pn)3][Fe(CN)5NO].H2O [Saha et al., 2005].

The charge of the cation is compensated by a [Ni(CN)4]2- anion. The latter is bisected by a mirror plane, leading to a rather regular NiC4 chromophore. The geometric characteristics are similar to those previously reported [Smékal et al., 2001].

The NiII atoms in the respective ions are not connected by covalent bonds, the shortest distance between NiII atoms being 8.527 (1) Å. The cations are connected by a complicated system of weak intermolecular hydrogen bonds of the N—H···N≡C—Ni—C≡N···H—N type, in which also the complex anions take part and where the H···N distance range is 2.103–2.488 Å.

Experimental

To 10 ml of a 0.1 M hot solution of NiSO4.6H2O (0.262 g, 1 mmol) 0.35 ml of pn (4 mmol) were added under continuous stirring, followed by addition of 10 ml of a 0.1 M warm solution of K2[Ni(CN)4].H2O (1 mmol). The resulting clear solution was left for crystallization at room temperature. Single crystals of the title compound, in the form of light violet needles suitable for X-ray studies, appeared after one day.

Refinement

The structure was solved by direct method. The model (including two 50:50% disordered positions of the pn ligands, forced by the crystallographic mirror symmetry in the cation) was completed by subsequent Fourier syntheses. At this stage the calculated difference Fourier map indicated the presence of further positional disorder of the methyl groups in the pn ligands. The occupational factors refined by fixing the common isotropic thermal parameters of the concerning carbon atoms indicated 50:50 occupancy which was in the subsequent refinement cycles fixed. Finally, the hydrogen atoms were put in the calculated positions taking into account the observed disorder. Anisotropic thermal parameters were refined for all non-H atoms. All H atoms positions were calculated using the appropriate riding model with isotropic temperature factors being 1.2 times larger then temperature factors of their parent atoms. Geometrical analysis was performed using PARST (Nardelli, 1983) and SHELXL97.

Figures

Fig. 1.

Fig. 1.

View of the complex cation and complex anion of the title compound. The thermal ellipsoids are drawn at 30% probability level. The disordered positions in the complex cation are shown with light colors (i: x, 0.5 - y, z).

Crystal data

[Ni(C3H10N2)3][Ni(CN)4] F000 = 936
Mr = 443.89 Dx = 1.392 Mg m3
Orthorhombic, Pnma Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 1308 reflections
a = 9.7310 (12) Å θ = 4.6–30.5º
b = 13.3770 (14) Å µ = 1.79 mm1
c = 16.275 (3) Å T = 193 (2) K
V = 2118.5 (5) Å3 Needle, light-violet
Z = 4 0.5 × 0.1 × 0.1 mm

Data collection

Stoe IPDS diffractometer 1947 independent reflections
Radiation source: fine-focus sealed tube 1401 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.052
Detector resolution: 150 pixels mm-1 θmax = 25.0º
T = 193(2) K θmin = 2.9º
φ scans h = −11→11
Absorption correction: gaussian(XPREP in SHELXTL; Siemens, 1996) k = −15→15
Tmin = 0.580, Tmax = 0.815 l = −19→19
14468 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.100   w = 1/[σ2(Fo2) + (0.0714P)2] where P = (Fo2 + 2Fc2)/3
S = 0.92 (Δ/σ)max < 0.001
1947 reflections Δρmax = 0.52 e Å3
183 parameters Δρmin = −0.60 e Å3
12 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni1 0.79310 (7) 0.2500 0.07496 (4) 0.0430 (2)
C1 0.8878 (6) 0.2500 0.1736 (4) 0.0505 (13)
N1 0.9497 (6) 0.2500 0.2336 (3) 0.0711 (14)
C2 0.7945 (5) 0.1112 (3) 0.0757 (3) 0.0605 (10)
N2 0.7977 (6) 0.0261 (3) 0.0772 (3) 0.0972 (15)
C3 0.6984 (5) 0.2500 −0.0248 (4) 0.0554 (14)
N3 0.6348 (6) 0.2500 −0.0840 (4) 0.0746 (15)
Ni2 0.26627 (6) 0.2500 0.03265 (4) 0.0396 (2)
C4 0.0955 (5) 0.2500 −0.1180 (3) 0.0644 (15)
H4C 0.0649 0.3200 −0.1066 0.077* 0.50
C5 0.2431 (5) 0.2500 −0.1451 (4) 0.0757 (18)
H5C 0.2799 0.1810 −0.1461 0.091* 0.50
H5D 0.2517 0.2790 −0.2008 0.091* 0.50
C6 0.3879 (5) 0.0651 (3) 0.0946 (3) 0.099 (2)
H6C 0.4498 0.0986 0.1343 0.119* 0.50
H6D 0.4220 −0.0039 0.0862 0.119* 0.50
H6E 0.4497 0.0288 0.1327 0.119* 0.50
H6F 0.3922 0.0328 0.0400 0.119* 0.50
C7 0.2450 (5) 0.0615 (3) 0.1294 (3) 0.0876 (16)
H7C 0.1813 0.0302 0.0886 0.105* 0.50
H7D 0.2619 0.1215 0.1646 0.105* 0.50
C8 0.0056 (10) 0.2045 (7) −0.1810 (6) 0.083 (3) 0.50
H8C 0.0391 0.1373 −0.1942 0.124* 0.50
H8D 0.0067 0.2458 −0.2307 0.124* 0.50
H8E −0.0885 0.2001 −0.1599 0.124* 0.50
N4 0.1011 (6) 0.1921 (4) −0.0397 (3) 0.0509 (14) 0.50
H4A 0.1155 0.1254 −0.0506 0.061* 0.50
H4B 0.0195 0.1984 −0.0117 0.061* 0.50
N5 0.3194 (6) 0.3121 (4) −0.0839 (3) 0.0475 (14) 0.50
H5A 0.2927 0.3780 −0.0871 0.057* 0.50
H5B 0.4126 0.3082 −0.0927 0.057* 0.50
N6 0.3911 (6) 0.1202 (4) 0.0147 (3) 0.0515 (15) 0.50
H6A 0.3562 0.0811 −0.0268 0.062* 0.50
H6B 0.4796 0.1381 0.0015 0.062* 0.50
N7 0.2107 (6) 0.1694 (3) 0.1391 (4) 0.0539 (15) 0.50
H7A 0.2568 0.1949 0.1838 0.065* 0.50
H7B 0.1180 0.1763 0.1484 0.065* 0.50
C9 0.258 (3) −0.0030 (11) 0.2011 (7) 0.073 (6) 0.42 (3)
H9C 0.3260 0.0252 0.2390 0.109* 0.42 (3)
H9D 0.2877 −0.0698 0.1837 0.109* 0.42 (3)
H9E 0.1689 −0.0080 0.2290 0.109* 0.42 (3)
N8 0.4263 (6) 0.3269 (3) 0.0947 (4) 0.0507 (14) 0.50
H8A 0.4347 0.3038 0.1478 0.061* 0.50
H8B 0.5087 0.3175 0.0681 0.061* 0.50
N9 0.1551 (6) 0.3770 (4) 0.0749 (4) 0.0532 (15) 0.50
H9A 0.1265 0.4146 0.0308 0.064* 0.50
H9B 0.0785 0.3565 0.1035 0.064* 0.50
C10 0.181 (3) 0.5209 (10) 0.174 (2) 0.086 (7) 0.38 (3)
H10A 0.2265 0.5288 0.2274 0.130* 0.38 (3)
H10B 0.0836 0.5067 0.1822 0.130* 0.38 (3)
H10C 0.1915 0.5827 0.1422 0.130* 0.38 (3)
C11 0.445 (3) 0.023 (2) 0.1699 (11) 0.138 (15) 0.20
H11A 0.5445 0.0147 0.1636 0.207* 0.20
H11B 0.4024 −0.0415 0.1811 0.207* 0.20
H11C 0.4268 0.0690 0.2158 0.207* 0.20

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0430 (4) 0.0313 (3) 0.0547 (4) 0.000 0.0079 (3) 0.000
C1 0.054 (3) 0.038 (2) 0.060 (4) 0.000 0.017 (3) 0.000
N1 0.074 (4) 0.085 (4) 0.054 (3) 0.000 0.005 (3) 0.000
C2 0.073 (3) 0.041 (2) 0.068 (3) −0.0044 (18) 0.004 (2) −0.0087 (18)
N2 0.152 (5) 0.0341 (18) 0.106 (4) −0.005 (2) −0.001 (3) −0.0084 (19)
C3 0.040 (3) 0.061 (3) 0.065 (4) 0.000 0.012 (3) 0.000
N3 0.053 (3) 0.101 (4) 0.070 (4) 0.000 0.000 (3) 0.000
Ni2 0.0426 (4) 0.0279 (3) 0.0484 (4) 0.000 0.0071 (3) 0.000
C4 0.057 (3) 0.067 (4) 0.069 (4) 0.000 −0.006 (3) 0.000
C5 0.065 (4) 0.110 (5) 0.052 (3) 0.000 −0.002 (3) 0.000
C6 0.080 (4) 0.053 (3) 0.164 (6) 0.005 (2) −0.028 (4) 0.043 (3)
C7 0.103 (4) 0.066 (3) 0.094 (4) −0.021 (3) −0.016 (3) 0.041 (3)
C8 0.067 (6) 0.099 (7) 0.082 (6) −0.007 (5) −0.011 (6) −0.005 (5)
N4 0.052 (4) 0.041 (3) 0.060 (4) 0.000 (3) 0.009 (3) 0.009 (3)
N5 0.050 (3) 0.034 (3) 0.058 (4) 0.002 (2) 0.008 (3) 0.004 (3)
N6 0.052 (4) 0.032 (3) 0.071 (4) 0.001 (2) 0.008 (3) −0.003 (3)
N7 0.049 (3) 0.053 (3) 0.059 (4) 0.005 (3) 0.005 (3) 0.007 (3)
C9 0.108 (16) 0.044 (6) 0.066 (7) −0.002 (7) 0.019 (7) 0.018 (5)
N8 0.054 (3) 0.046 (3) 0.052 (4) −0.002 (3) 0.014 (3) −0.004 (3)
N9 0.055 (4) 0.036 (3) 0.068 (4) 0.001 (3) 0.017 (3) 0.000 (3)
C10 0.083 (12) 0.061 (8) 0.115 (15) 0.020 (8) 0.008 (13) −0.006 (8)
C11 0.11 (2) 0.20 (4) 0.10 (3) −0.07 (3) 0.032 (19) −0.08 (3)

Geometric parameters (Å, °)

Ni1—C1 1.852 (7) C7—C10i 1.457 (7)
Ni1—C2i 1.856 (4) C7—C9 1.457 (7)
Ni1—C2 1.856 (4) C7—N7 1.490 (3)
Ni1—C3 1.866 (7) C7—N9i 1.493 (3)
C1—N1 1.147 (7) C7—H7C 1.0000
C2—N2 1.139 (5) C7—H7D 1.0000
C3—N3 1.145 (8) C8—H8C 0.9800
Ni2—N7i 2.112 (6) C8—H8D 0.9800
Ni2—N7 2.112 (6) C8—H8E 0.9800
Ni2—N8 2.122 (6) N4—H4A 0.9200
Ni2—N8i 2.122 (6) N4—H4B 0.9200
Ni2—N9i 2.128 (6) N5—H5A 0.9200
Ni2—N9 2.128 (6) N5—H5B 0.9200
Ni2—N5i 2.135 (6) N6—H6A 0.9200
Ni2—N5 2.135 (6) N6—H6B 0.9200
Ni2—N4 2.137 (6) N7—H7A 0.9200
Ni2—N4i 2.137 (6) N7—H7B 0.9200
Ni2—N6i 2.139 (5) C9—H9C 0.9800
Ni2—N6 2.139 (5) C9—H9D 0.9800
C4—C8 1.480 (10) C9—H9E 0.9800
C4—N4 1.492 (3) N8—C6i 1.492 (3)
C4—C5 1.503 (6) N8—H8A 0.9200
C4—H4C 1.0000 N8—H8B 0.9200
C5—N5 1.494 (3) N9—C7i 1.493 (3)
C5—H5C 0.9900 N9—H9A 0.9200
C5—H5D 0.9900 N9—H9B 0.9200
C6—C11 1.457 (7) C10—C7i 1.457 (7)
C6—N6 1.495 (3) C10—H10A 0.9800
C6—C7 1.503 (6) C10—H10B 0.9800
C6—H6C 0.9900 C10—H10C 0.9800
C6—H6D 0.9900 C11—H11A 0.9800
C6—H6E 0.9900 C11—H11B 0.9800
C6—H6F 0.9900 C11—H11C 0.9800
C1—Ni1—C2i 89.46 (14) C9—C7—C6 103.9 (11)
C1—Ni1—C2 89.46 (14) N7—C7—C6 102.5 (4)
C2i—Ni1—C2 178.9 (3) N9i—C7—C6 107.5 (4)
C1—Ni1—C3 179.7 (2) C9—C7—H7C 109.7
C2i—Ni1—C3 90.54 (14) N7—C7—H7C 109.7
C2—Ni1—C3 90.54 (14) C6—C7—H7C 109.7
N1—C1—Ni1 178.2 (5) C10i—C7—H7D 113.2
N2—C2—Ni1 178.6 (5) C4—C8—H8C 109.5
N3—C3—Ni1 176.9 (5) C4—C8—H8D 109.5
N7—Ni2—N8 92.6 (2) H8C—C8—H8D 109.5
N7i—Ni2—N8i 92.6 (2) C4—C8—H8E 109.5
N7i—Ni2—N9i 90.7 (2) H8C—C8—H8E 109.5
N8i—Ni2—N9i 80.36 (19) H8D—C8—H8E 109.5
N7—Ni2—N9 90.7 (2) C4—N4—Ni2 108.0 (3)
N8—Ni2—N9 80.36 (19) C4—N4—H4A 110.1
N8i—Ni2—N5i 93.3 (2) Ni2—N4—H4A 110.1
N9i—Ni2—N5i 95.7 (2) C4—N4—H4B 110.1
N8—Ni2—N5 93.3 (2) Ni2—N4—H4B 110.1
N9—Ni2—N5 95.7 (2) H4A—N4—H4B 108.4
N7—Ni2—N4 94.3 (2) C5—N5—Ni2 104.8 (3)
N8—Ni2—N4 171.73 (19) C5—N5—H5A 110.8
N9—Ni2—N4 94.9 (2) Ni2—N5—H5A 110.8
N5—Ni2—N4 80.42 (19) C5—N5—H5B 110.8
N7i—Ni2—N4i 94.3 (2) Ni2—N5—H5B 110.8
N8i—Ni2—N4i 171.73 (19) H5A—N5—H5B 108.9
N9i—Ni2—N4i 94.9 (2) C6—N6—Ni2 105.7 (3)
N5i—Ni2—N4i 80.42 (19) C6—N6—H6A 110.6
N7i—Ni2—N6i 80.95 (19) Ni2—N6—H6A 110.6
N8i—Ni2—N6i 92.4 (2) C6—N6—H6B 110.6
N9i—Ni2—N6i 168.7 (2) Ni2—N6—H6B 110.6
N5i—Ni2—N6i 93.3 (2) H6F—N6—H6B 108.4
N4i—Ni2—N6i 93.3 (2) H6A—N6—H6B 108.7
N7—Ni2—N6 80.95 (19) C7—N7—Ni2 110.5 (4)
N8—Ni2—N6 92.4 (2) C7—N7—H7A 109.5
N9—Ni2—N6 168.7 (2) Ni2—N7—H7A 109.5
N5—Ni2—N6 93.3 (2) C7—N7—H7B 109.5
N4—Ni2—N6 93.3 (2) Ni2—N7—H7B 109.5
C8—C4—N4 113.6 (5) H7A—N7—H7B 108.1
C8—C4—C5 111.2 (5) C7—C9—H9C 109.5
N4—C4—C5 102.5 (4) C7—C9—H9D 109.5
C8—C4—H4C 109.8 C7—C9—H9E 109.5
N4—C4—H4C 109.8 C6i—N8—Ni2 106.6 (4)
C5—C4—H4C 109.8 C6i—N8—H8A 110.4
N5—C5—C4 106.2 (4) Ni2—N8—H8A 110.4
N5—C5—H5C 110.5 C6i—N8—H8B 110.4
C4—C5—H5C 110.5 Ni2—N8—H8B 110.4
N5—C5—H5D 110.5 H8A—N8—H8B 108.6
C4—C5—H5D 110.5 C7i—N9—Ni2 109.5 (3)
H5C—C5—H5D 108.7 C7i—N9—H9A 109.8
C11—C6—N6 155.9 (13) Ni2—N9—H9A 109.8
C11—C6—C7 91.4 (13) C7i—N9—H9B 109.8
N6—C6—C7 111.3 (4) Ni2—N9—H9B 109.8
N6—C6—H6C 109.4 H9A—N9—H9B 108.2
C7—C6—H6C 109.4 C7i—C10—H10A 109.5
N6—C6—H6D 109.4 C7i—C10—H10B 109.5
C7—C6—H6D 109.4 H10A—C10—H10B 109.5
H6C—C6—H6D 108.0 C7i—C10—H10C 109.5
C7—C6—H6E 108.1 H10A—C10—H10C 109.5
C7—C6—H6F 111.3 H10B—C10—H10C 109.5
H6E—C6—H6F 108.8 C6—C11—H11A 109.5
C9—C7—N7 120.5 (7) C6—C11—H11B 109.5
C10i—C7—N9i 117.6 (14) H6E—C11—H11B 108.6
C10i—C7—C6 127.2 (9) C6—C11—H11C 109.5

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4A···N2ii 0.92 2.24 3.140 (7) 167
N5—H5A···N2iii 0.92 2.17 3.083 (6) 169
N5—H5B···N3 0.92 2.30 3.180 (8) 159
N6—H6A···N2ii 0.92 2.23 3.073 (7) 152
N6—H6B···N3 0.92 2.54 3.349 (7) 147
N7—H7A···N1iv 0.92 2.42 3.295 (8) 158
N7—H7B···N1v 0.92 2.36 3.159 (7) 145
N8—H8A···N1iv 0.92 2.07 2.985 (8) 179
N9—H9A···N2iii 0.92 2.42 3.212 (8) 144

Symmetry codes: (ii) −x+1, −y, −z; (iii) −x+1, y+1/2, −z; (iv) x−1/2, y, −z+1/2; (v) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2155).

References

  1. Brandenburg, K. (2004). DIAMOND Release 3.1e. Crystal Impact GbR, Bonn, Germany.
  2. Bubanec, J., Černák, J., Potočňák, I., Drábik, M. & Lipkowski, J. (2004). Chem. Pap.58, 224–231.
  3. Černák, J., Orendáč, M., Potočňák, I., Chomič, J., Orendáčová, A., Skoršepa, J. & Feher, A. (2002). Coord. Chem. Rev.224, 51–66.
  4. Nardelli, M. (1983). Comput. Chem.7, 95–98.
  5. Paharová, J., Černák, J., Žák, Z. & Marek, J. (2007). J. Mol. Struct.842, 117–124.
  6. Potočňák, I., Vavra, M., Steinborn, D. & Wagner, C. (2008). Acta Cryst. E64, m235–m236. [DOI] [PMC free article] [PubMed]
  7. Rodriguez, V., Gutierrez-Zorrilla, J. M., Vitoria, P., Luque, A., Roman, P. & Martinez-Ripoll, M. (1999). Inorg. Chim. Acta, 290, 57–63.
  8. Saha, M. K., Dey, D. K., Samanta, B., Dey, S. K., Malik, K. M. A. & Mitra, S. (2005). Z. Naturforsch. Teil B, 60, 1043–1048.
  9. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  10. Siemens (1996). XPREP in SHELXTL Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  11. Smékal, Z., Císařová, I. & Mrozinski, J. (2001). Polyhedron, 20, 3301–3306.
  12. Stoe & Cie (1999). EXPOSE, CELL and INTEGRATE in IPDS Version 2.90. Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068420/bg2155sup1.cif

e-64-0m324-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068420/bg2155Isup2.hkl

e-64-0m324-Isup2.hkl (116.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES