Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 4;64(Pt 2):o358. doi: 10.1107/S1600536807067888

1-Benzhydryl-4-(4-chloro­phenyl­sulfonyl)piperazine

H R Girisha a, S Naveen b, K Vinaya a, M A Sridhar b, J Shashidhara Prasad b, K S Rangappa a,*
PMCID: PMC2960354  PMID: 21201390

Abstract

The title compound, C23H23ClN2O2S, was synthesized by the nucleophilic substitution of 1-benzhydrylpiperazine with 4-chloro­phenyl­sulfonyl chloride. The piperazine ring is in a chair conformation. The geometry around the S atom is that of a distorted tetra­hedron. There is a large range of bond angles around the piperazine N atoms. The dihedral angle between the least-squares plane (p1) defined by the four coplanar C atoms of the piperazine ring and the benzene ring is 81.6 (1)°. The dihedral angles between p1 and the phenyl rings are 76.2 (1) and 72.9 (2)°. The two phenyl rings make a dihedral angle of 65.9 (1)°. Intramolecular C—H⋯O hydrogen bonds are present.

Related literature

For related literature, see: Bassindale (1984); Berkheij et al. (2005); Campbell et al. (1973); Cremer & Pople (1975); Dinsmore & Beshore (2002); Humle & Cherrier (1999); Katzung (1995).graphic file with name e-64-0o358-scheme1.jpg

Experimental

Crystal data

  • C23H23ClN2O2S

  • M r = 426.94

  • Monoclinic, Inline graphic

  • a = 9.392 (7) Å

  • b = 13.114 (10) Å

  • c = 19.225 (11) Å

  • β = 113.645 (3)°

  • V = 2169 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 295 (2) K

  • 0.25 × 0.20 × 0.20 mm

Data collection

  • MacScience DIPLabo 32001 diffractometer

  • Absorption correction: none

  • 7255 measured reflections

  • 3818 independent reflections

  • 2917 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.147

  • S = 1.08

  • 3818 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067888/hg2365sup1.cif

e-64-0o358-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067888/hg2365Isup2.hkl

e-64-0o358-Isup2.hkl (187.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O8 0.97 2.49 2.890 (3) 105
C6—H6B⋯O9 0.97 2.56 2.965 (3) 105
C11—H11⋯O9 0.93 2.53 2.905 (3) 104

Acknowledgments

The authors are grateful to DST/CSIR, New Delhi, for financial support under the projects SP/I2/FOO/93 and 01(1904)/03/EMR-II 2004. The authors also acknowledge DST-FIST and UGC-SAP (phase I) for support with the collection of CHNS and IR data.

supplementary crystallographic information

Comment

Piperazines are among the most important building blocks in today's drug discovery. The piperazine nucleus is capable of binding to multiple receptors with high affinity and therefore piperazine has been classified as a privileged structure (Dinsmore et al., 2002). They are found in biologically active compounds across a number of different therapeutic areas (Berkheij et al., 2005) such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (Humle & Cherrier, 1999). 1-Benzylpiperazine was originally synthesized as a potential antihelminthic (Campbell et al., 1973) and these derivatives were found to possess excellent pharmacological activities such as vasodilator, hypotensive, antiviral activity and cerebral blood flow increasing actions, broad pharmacological action on central nerves system (CNS), especially on dopaminergic neurotransmission. Sulfonamides are among the most widely used antibacterial agents (Katzung et al., 1995). Piperazine sulfonamides exhibit diverse therapeutic activity such as antibacterial activity, MMP-3 inhibition and carbonic anhydrase inhibition. Encouraged by the above information, the title compound was synthesized and herein we report its crystal structure.

A perspective view of the title compound is shown in Fig. 1. A study of torsion angles, asymmetry parameters and least-squares plane calculations reveal that the piperazine ring in the structure is in a chair conformation. This has been confirmed by the puckering paramaters q2=0.0291 (24) Å, q3=0.5969 (26) Å, QT=0.5977 (26) Å, θ=3.07 (23)° and φ=198 (5)° (Cremer & Pople, 1975). The conformation of the attachment of the diphenylmethyl and the sulfonyl groups to the piperazine ring are best described by the torsion angle values of 166.6 (2)° and -177.4 (2)° for S7—N1—C2—C3 and C17—N4—C5—C6, respectively; i.e. they adopt +antiperiplanar and -antiperiplanar conformations, respectively. The bonds N1—S7 and N4—C17 connecting the sulfonyl and the diphenyl groups make angles of 86.00 (11)° and 72.92 (14)°, respectively, with the Cremer and Pople plane of the piperazine ring and thus are in the equatorial plane of the piperazine ring.

The bond angles about the S atom shows significant deviation from that of a regular tetrahedron, with the largest deviations being observed for O9—S7—O8 [119.92 (12)°] and 09—S7—C10 [107.88 (12)°]. The widening of O8—S7—O9 is due to the repulsive interactions between the S?O bonds and the non-bonded interactions involving the two S?O bonds and the varied steric hindrance of the substituents. The structure thus has less steric interference. The reduction of the N1—S7—C10 angle from the ideal tetrahedral value is attributed to the Thorpe-Ingold effect (Bassindale, 1984). The sulfonyl O atoms, O8 and O9, are oriented in -synclinal and +synclinal conformations, respectively, as indicated by the torsion angle values of -42.1 (2)° and 53.96 (19)° for C2—N1—S7—O8 and C6—N1—S7—O9, respectively.

Experimental

A solution of 1-benzhydryl-piperazine (0.5 g, 1.98 mmol) in dry dichloromethane was taken, and cooled to 0–5° C in an ice bath. Then triethylamine (0.601 g, 5.94 mmol) was added to the cold reaction mixture and stirred for 10 minutes. Then 4-chloro-benzenesulfonyl chloride (0.417 g, 1.98 mmol) was added. The reaction mixture was stirred at room temperature for 5 hrs. The reaction mixture was monitored by TLC. On completion of the reaction, the solvent was removed under reduced pressure and the residue was taken in water and extracted with ethyl acetate. Finally water wash was given to organic layer and dried with anhydrous sodium sulfate. The solvent was evaporated to get crude product, which was purified by column chromatography over silica gel using hexane: ethyl acetate (8:2) as an eluent. Pure white crystals were obtained due to the slow evaporation of the solvent with a yield of 90%. M.p. 428.1 K.

1HNMR (DMSO, 400 MHz): δ 7.7–7.8 (m, 4H, Ar—H), 7.4 (d, 4H, Ar—H), 7.25(t, 4H, Ar—H), 7.16 (t, 2H, Ar—H), 4.32 (s, 1H, –CH), 3.32 (dd, 4H, –CH2), 2.41 (dd, 4H, –CH2).

MS (ESI + ion): m/z = 427.9

IR (KBr, cm1): 2961, 2889, 1350, 1279, 707.

Anal. Calcd.for C23H23ClN2O2S (in %): C-59.87, H-4.81, N-6.07, S-6.95. Found C-59.82, H-4.78, N-6.04, S-6.90%.

Refinement

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C—H distances in the range 0.92–0.97 Å and O—H = 0.82 Å; Uiso(H) values were set equal to 1.2Ueq(carrier atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure, with atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.

Crystal data

C23H23ClN2O2S F000 = 896
Mr = 426.94 Dx = 1.307 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2 ybc Cell parameters from 7255 reflections
a = 9.392 (7) Å θ = 2.3–25.0º
b = 13.114 (10) Å µ = 0.29 mm1
c = 19.225 (11) Å T = 295 (2) K
β = 113.645 (3)º Block, white
V = 2169 (3) Å3 0.25 × 0.20 × 0.20 mm
Z = 4

Data collection

MacScience DIPLabo 32001 diffractometer 3818 independent reflections
Radiation source: fine-focus sealed tube 2917 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.024
Detector resolution: 10.0 pixels mm-1 θmax = 25.0º
T = 295(2) K θmin = 2.3º
ω scans h = −11→11
Absorption correction: none k = −15→15
7255 measured reflections l = −22→22

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051   w = 1/[σ2(Fo2) + (0.0781P)2 + 0.4503P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.147 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.33 e Å3
3818 reflections Δρmin = −0.27 e Å3
263 parameters Extinction correction: SHELXL97 (Sheldrick, 1997), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.065 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The observed criterion of F^2 > σ(F^2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl16 0.45997 (9) 0.44356 (6) 0.31602 (5) 0.0932 (3)
S7 0.02536 (7) 0.06459 (5) 0.20336 (3) 0.0673 (2)
O8 −0.12416 (19) 0.08971 (15) 0.20131 (11) 0.0815 (7)
O9 0.0391 (2) 0.02536 (16) 0.13714 (9) 0.0878 (7)
N1 0.1012 (2) −0.02030 (15) 0.27063 (10) 0.0592 (6)
N4 0.28463 (19) −0.12983 (14) 0.40601 (10) 0.0540 (6)
C2 0.0814 (3) −0.00363 (19) 0.34202 (13) 0.0639 (8)
C3 0.1236 (3) −0.09986 (19) 0.38885 (13) 0.0602 (8)
C5 0.2974 (3) −0.14861 (19) 0.33344 (12) 0.0611 (8)
C6 0.2608 (3) −0.05271 (19) 0.28593 (13) 0.0631 (8)
C10 0.1441 (3) 0.17362 (19) 0.23278 (12) 0.0601 (8)
C11 0.2522 (3) 0.1935 (2) 0.20299 (16) 0.0773 (10)
C12 0.3485 (4) 0.2768 (2) 0.22841 (18) 0.0847 (12)
C13 0.3378 (3) 0.3395 (2) 0.28381 (14) 0.0670 (8)
C14 0.2302 (3) 0.3203 (2) 0.31371 (13) 0.0652 (8)
C15 0.1327 (3) 0.23722 (19) 0.28775 (13) 0.0631 (8)
C17 0.3273 (2) −0.22232 (17) 0.45406 (12) 0.0563 (7)
C18 0.3073 (3) −0.20476 (18) 0.52750 (12) 0.0569 (7)
C19 0.3666 (3) −0.1188 (2) 0.57137 (15) 0.0762 (10)
C20 0.3439 (4) −0.1023 (3) 0.63736 (15) 0.0896 (11)
C21 0.2629 (3) −0.1724 (3) 0.66053 (16) 0.0884 (13)
C22 0.2052 (3) −0.2577 (3) 0.61814 (18) 0.0877 (11)
C23 0.2268 (3) −0.2744 (2) 0.55178 (16) 0.0725 (9)
C24 0.4921 (2) −0.25730 (17) 0.46936 (12) 0.0556 (7)
C25 0.5204 (3) −0.3596 (2) 0.46298 (15) 0.0710 (9)
C26 0.6693 (4) −0.3932 (2) 0.47724 (17) 0.0849 (11)
C27 0.7892 (3) −0.3270 (3) 0.49653 (15) 0.0819 (13)
C28 0.7633 (3) −0.2248 (3) 0.50267 (15) 0.0785 (10)
C29 0.6157 (3) −0.1903 (2) 0.48981 (14) 0.0700 (8)
H2A −0.02550 0.01470 0.33090 0.0770*
H2B 0.14780 0.05190 0.37020 0.0770*
H3A 0.11070 −0.08900 0.43590 0.0720*
H3B 0.05410 −0.15440 0.36130 0.0720*
H5A 0.22580 −0.20230 0.30600 0.0730*
H5B 0.40200 −0.17110 0.34290 0.0730*
H6A 0.33330 0.00080 0.31280 0.0760*
H6B 0.27090 −0.06560 0.23850 0.0760*
H11 0.26010 0.15100 0.16600 0.0930*
H12 0.42120 0.29090 0.20820 0.1020*
H14 0.22290 0.36260 0.35100 0.0780*
H15 0.05880 0.22390 0.30740 0.0760*
H17 0.25590 −0.27700 0.42630 0.0680*
H19 0.42240 −0.07150 0.55640 0.0910*
H20 0.38330 −0.04380 0.66600 0.1080*
H21 0.24770 −0.16160 0.70490 0.1060*
H22 0.15070 −0.30520 0.63380 0.1050*
H23 0.18670 −0.33290 0.52340 0.0870*
H25 0.43890 −0.40610 0.44900 0.0850*
H26 0.68700 −0.46240 0.47350 0.1020*
H27 0.88860 −0.35040 0.50560 0.0980*
H28 0.84530 −0.17880 0.51550 0.0940*
H29 0.59950 −0.12130 0.49500 0.0840*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl16 0.0815 (5) 0.0828 (5) 0.1088 (6) −0.0121 (4) 0.0313 (4) 0.0117 (4)
S7 0.0656 (4) 0.0731 (4) 0.0505 (4) 0.0021 (3) 0.0100 (3) 0.0025 (3)
O8 0.0547 (10) 0.0906 (13) 0.0809 (12) 0.0060 (9) 0.0079 (8) 0.0115 (10)
O9 0.1093 (14) 0.0931 (13) 0.0481 (9) 0.0001 (12) 0.0181 (9) −0.0040 (10)
N1 0.0570 (11) 0.0656 (11) 0.0507 (10) 0.0035 (9) 0.0170 (8) 0.0024 (9)
N4 0.0527 (10) 0.0602 (11) 0.0488 (9) 0.0038 (8) 0.0199 (8) 0.0002 (8)
C2 0.0625 (13) 0.0731 (15) 0.0598 (13) 0.0111 (11) 0.0283 (11) 0.0045 (12)
C3 0.0561 (13) 0.0687 (14) 0.0586 (13) 0.0073 (11) 0.0258 (10) 0.0003 (12)
C5 0.0633 (14) 0.0705 (14) 0.0511 (12) 0.0099 (11) 0.0247 (10) −0.0015 (11)
C6 0.0602 (14) 0.0752 (16) 0.0552 (13) 0.0064 (11) 0.0246 (10) 0.0004 (12)
C10 0.0624 (13) 0.0664 (14) 0.0488 (12) 0.0087 (11) 0.0196 (10) 0.0103 (11)
C11 0.0962 (19) 0.0804 (18) 0.0711 (16) 0.0040 (15) 0.0502 (15) 0.0042 (15)
C12 0.091 (2) 0.089 (2) 0.096 (2) −0.0023 (16) 0.0603 (17) 0.0113 (18)
C13 0.0623 (14) 0.0679 (15) 0.0674 (15) 0.0039 (12) 0.0226 (12) 0.0163 (13)
C14 0.0719 (15) 0.0680 (15) 0.0563 (13) 0.0042 (12) 0.0264 (11) 0.0023 (12)
C15 0.0621 (14) 0.0718 (15) 0.0606 (13) 0.0049 (12) 0.0299 (11) 0.0057 (12)
C17 0.0547 (12) 0.0559 (12) 0.0539 (12) −0.0037 (10) 0.0171 (9) −0.0030 (10)
C18 0.0503 (12) 0.0650 (14) 0.0533 (12) 0.0016 (10) 0.0186 (9) 0.0083 (11)
C19 0.0865 (18) 0.0880 (18) 0.0602 (14) −0.0231 (15) 0.0359 (13) −0.0095 (14)
C20 0.093 (2) 0.118 (2) 0.0596 (15) −0.0119 (18) 0.0325 (14) −0.0179 (17)
C21 0.0703 (17) 0.139 (3) 0.0609 (15) 0.0153 (18) 0.0315 (13) 0.0205 (19)
C22 0.0742 (18) 0.112 (2) 0.090 (2) 0.0156 (17) 0.0467 (16) 0.040 (2)
C23 0.0617 (14) 0.0716 (16) 0.0852 (18) 0.0061 (12) 0.0305 (13) 0.0190 (14)
C24 0.0558 (12) 0.0585 (13) 0.0482 (11) 0.0026 (10) 0.0164 (9) 0.0009 (10)
C25 0.0751 (16) 0.0623 (14) 0.0759 (16) 0.0023 (12) 0.0306 (13) −0.0057 (13)
C26 0.087 (2) 0.0782 (18) 0.090 (2) 0.0235 (16) 0.0360 (16) −0.0004 (16)
C27 0.0639 (16) 0.113 (3) 0.0660 (16) 0.0199 (16) 0.0230 (13) −0.0014 (16)
C28 0.0571 (15) 0.101 (2) 0.0690 (16) −0.0054 (14) 0.0166 (12) −0.0045 (15)
C29 0.0605 (14) 0.0712 (15) 0.0726 (15) −0.0041 (12) 0.0207 (12) −0.0055 (13)

Geometric parameters (Å, °)

Cl16—C13 1.730 (3) C25—C26 1.385 (5)
S7—O8 1.427 (2) C26—C27 1.351 (5)
S7—O9 1.4261 (18) C27—C28 1.376 (6)
S7—N1 1.637 (2) C28—C29 1.383 (4)
S7—C10 1.761 (3) C2—H2A 0.9692
N1—C2 1.473 (3) C2—H2B 0.9704
N1—C6 1.470 (4) C3—H3A 0.9701
N4—C3 1.466 (4) C3—H3B 0.9700
N4—C5 1.468 (3) C5—H5A 0.9704
N4—C17 1.479 (3) C5—H5B 0.9705
C2—C3 1.508 (3) C6—H6A 0.9699
C5—C6 1.511 (3) C6—H6B 0.9687
C10—C11 1.376 (4) C11—H11 0.9296
C10—C15 1.384 (3) C12—H12 0.9296
C11—C12 1.377 (4) C14—H14 0.9305
C12—C13 1.381 (4) C15—H15 0.9302
C13—C14 1.372 (4) C17—H17 0.9806
C14—C15 1.381 (4) C19—H19 0.9291
C17—C18 1.515 (3) C20—H20 0.9302
C17—C24 1.526 (3) C21—H21 0.9305
C18—C19 1.384 (4) C22—H22 0.9297
C18—C23 1.381 (4) C23—H23 0.9291
C19—C20 1.385 (4) C25—H25 0.9300
C20—C21 1.376 (5) C26—H26 0.9306
C21—C22 1.362 (5) C27—H27 0.9303
C22—C23 1.387 (4) C28—H28 0.9303
C24—C25 1.383 (3) C29—H29 0.9296
C24—C29 1.381 (4)
Cl16···C26i 3.629 (3) H2B···H6A 2.4989
Cl16···H6Bii 3.1028 H2B···H15 2.5367
Cl16···H20iii 2.9831 H3A···C18 2.4914
O8···H2A 2.4862 H3A···C19 2.7733
O8···H15 2.7200 H3B···H5A 2.3453
O8···H5Aiv 2.8746 H3B···H17 2.4164
O8···H17iv 2.8583 H3B···C10x 3.0203
O8···H21v 2.6767 H3B···C15x 3.0457
O9···H6B 2.5606 H5A···H3B 2.3453
O9···H11 2.5312 H5A···H17 2.4216
N1···N4 2.865 (3) H5A···O8x 2.8746
N4···N1 2.865 (3) H5B···C24 2.5009
N4···H19 2.7600 H5B···C29 2.7426
N4···H29 2.7616 H5B···H12ix 2.2977
C2···C15 3.421 (4) H6A···C10 2.9100
C3···C19 3.341 (4) H6A···H2B 2.4989
C5···C29 3.326 (4) H6A···C20vii 3.0905
C6···C11 3.588 (4) H6A···H20vii 2.5882
C11···C6 3.588 (4) H6B···O9 2.5606
C15···C2 3.421 (4) H6B···Cl16ix 3.1028
C19···C29 3.428 (4) H6B···H22xi 2.5247
C19···C3 3.341 (4) H11···O9 2.5312
C26···Cl16vi 3.629 (3) H11···C27ii 2.9834
C29···C19 3.428 (4) H12···H5Bii 2.2977
C29···C5 3.326 (4) H14···C26vii 3.0673
C2···H15 3.0460 H14···C27vii 3.0150
C10···H2B 3.0749 H15···O8 2.7200
C10···H6A 2.9100 H15···C2 3.0460
C10···H3Biv 3.0203 H15···H2B 2.5367
C15···H3Biv 3.0457 H17···H3B 2.4164
C15···H2B 2.8738 H17···H5A 2.4216
C18···H3A 2.4914 H17···H23 2.3276
C19···H29 3.0851 H17···H25 2.3258
C19···H3A 2.7733 H17···O8x 2.8583
C20···H6Avii 3.0905 H19···N4 2.7600
C21···H2Av 3.0936 H19···C29 3.0375
C23···H27viii 3.0998 H19···H29 2.4822
C24···H5B 2.5009 H20···H6Avii 2.5882
C26···H14vii 3.0673 H20···Cl16xii 2.9831
C27···H14vii 3.0150 H21···O8v 2.6767
C27···H11ix 2.9834 H22···H6Bxiii 2.5247
C29···H5B 2.7426 H23···H17 2.3276
C29···H19 3.0375 H25···H17 2.3258
H2A···O8 2.4862 H27···C23xiv 3.0998
H2A···C21v 3.0936 H29···N4 2.7616
H2B···C10 3.0749 H29···C19 3.0851
H2B···C15 2.8738 H29···H19 2.4822
O8—S7—O9 119.92 (12) C3—C2—H2B 109.79
O8—S7—N1 106.87 (11) H2A—C2—H2B 108.30
O8—S7—C10 108.10 (13) N4—C3—H3A 109.44
O9—S7—N1 107.06 (11) N4—C3—H3B 109.43
O9—S7—C10 107.89 (12) C2—C3—H3A 109.43
N1—S7—C10 106.23 (11) C2—C3—H3B 109.45
S7—N1—C2 117.23 (16) H3A—C3—H3B 108.00
S7—N1—C6 116.13 (16) N4—C5—H5A 109.60
C2—N1—C6 110.86 (18) N4—C5—H5B 109.59
C3—N4—C5 107.52 (18) C6—C5—H5A 109.59
C3—N4—C17 110.91 (18) C6—C5—H5B 109.52
C5—N4—C17 110.54 (17) H5A—C5—H5B 108.06
N1—C2—C3 109.3 (2) N1—C6—H6A 109.82
N4—C3—C2 111.0 (2) N1—C6—H6B 109.82
N4—C5—C6 110.4 (2) C5—C6—H6A 109.84
N1—C6—C5 109.2 (2) C5—C6—H6B 109.84
S7—C10—C11 119.87 (19) H6A—C6—H6B 108.34
S7—C10—C15 120.1 (2) C10—C11—H11 120.23
C11—C10—C15 120.0 (2) C12—C11—H11 120.31
C10—C11—C12 119.5 (3) C11—C12—H12 119.84
C11—C12—C13 120.4 (3) C13—C12—H12 119.79
Cl16—C13—C12 120.2 (2) C13—C14—H14 120.52
Cl16—C13—C14 119.3 (2) C15—C14—H14 120.37
C12—C13—C14 120.5 (3) C10—C15—H15 119.73
C13—C14—C15 119.1 (2) C14—C15—H15 119.73
C10—C15—C14 120.5 (3) N4—C17—H17 107.75
N4—C17—C18 110.71 (18) C18—C17—H17 107.76
N4—C17—C24 111.52 (17) C24—C17—H17 107.73
C18—C17—C24 111.19 (18) C18—C19—H19 119.61
C17—C18—C19 121.5 (2) C20—C19—H19 119.51
C17—C18—C23 120.3 (2) C19—C20—H20 120.01
C19—C18—C23 118.3 (2) C21—C20—H20 119.98
C18—C19—C20 120.9 (3) C20—C21—H21 120.20
C19—C20—C21 120.0 (3) C22—C21—H21 120.20
C20—C21—C22 119.6 (3) C21—C22—H22 119.68
C21—C22—C23 120.7 (3) C23—C22—H22 119.65
C18—C23—C22 120.6 (3) C18—C23—H23 119.71
C17—C24—C25 119.4 (2) C22—C23—H23 119.74
C17—C24—C29 122.4 (2) C24—C25—H25 119.78
C25—C24—C29 118.2 (2) C26—C25—H25 119.83
C24—C25—C26 120.4 (2) C25—C26—H26 119.51
C25—C26—C27 121.0 (3) C27—C26—H26 119.53
C26—C27—C28 119.5 (3) C26—C27—H27 120.19
C27—C28—C29 120.2 (3) C28—C27—H27 120.26
C24—C29—C28 120.7 (3) C27—C28—H28 119.90
N1—C2—H2A 109.75 C29—C28—H28 119.94
N1—C2—H2B 109.78 C24—C29—H29 119.65
C3—C2—H2A 109.89 C28—C29—H29 119.65
O8—S7—N1—C2 −42.1 (2) C10—C11—C12—C13 0.5 (4)
O9—S7—N1—C2 −171.75 (18) C11—C12—C13—C14 −0.7 (4)
C10—S7—N1—C2 73.2 (2) C11—C12—C13—Cl16 179.6 (2)
O8—S7—N1—C6 −176.37 (16) Cl16—C13—C14—C15 179.9 (2)
O9—S7—N1—C6 53.96 (19) C12—C13—C14—C15 0.1 (4)
C10—S7—N1—C6 −61.13 (19) C13—C14—C15—C10 0.5 (4)
O9—S7—C10—C11 −13.5 (2) N4—C17—C18—C19 −48.4 (3)
N1—S7—C10—C11 101.0 (2) C24—C17—C18—C23 −104.7 (3)
O8—S7—C10—C15 37.7 (2) N4—C17—C24—C25 −135.1 (2)
O9—S7—C10—C15 168.8 (2) N4—C17—C24—C29 45.2 (3)
N1—S7—C10—C15 −76.7 (2) C18—C17—C24—C25 100.8 (2)
O8—S7—C10—C11 −144.6 (2) C18—C17—C24—C29 −78.9 (3)
S7—N1—C2—C3 166.58 (18) N4—C17—C18—C23 130.7 (2)
C6—N1—C2—C3 −56.9 (3) C24—C17—C18—C19 76.1 (3)
C2—N1—C6—C5 57.6 (2) C19—C18—C23—C22 0.6 (4)
S7—N1—C6—C5 −165.36 (15) C17—C18—C23—C22 −178.6 (3)
C3—N4—C5—C6 61.4 (3) C17—C18—C19—C20 178.2 (3)
C17—N4—C3—C2 178.14 (18) C23—C18—C19—C20 −0.9 (4)
C5—N4—C3—C2 −60.9 (2) C18—C19—C20—C21 0.7 (5)
C3—N4—C17—C24 177.36 (17) C19—C20—C21—C22 −0.1 (5)
C17—N4—C5—C6 −177.4 (2) C20—C21—C22—C23 −0.2 (5)
C3—N4—C17—C18 −58.3 (2) C21—C22—C23—C18 0.0 (5)
C5—N4—C17—C18 −177.4 (2) C17—C24—C25—C26 −179.4 (2)
C5—N4—C17—C24 58.2 (2) C25—C24—C29—C28 0.7 (4)
N1—C2—C3—N4 59.0 (3) C29—C24—C25—C26 0.3 (4)
N4—C5—C6—N1 −60.3 (3) C17—C24—C29—C28 −179.5 (2)
S7—C10—C11—C12 −177.6 (2) C24—C25—C26—C27 −1.0 (4)
C15—C10—C11—C12 0.1 (4) C25—C26—C27—C28 0.5 (4)
S7—C10—C15—C14 177.0 (2) C26—C27—C28—C29 0.6 (4)
C11—C10—C15—C14 −0.6 (4) C27—C28—C29—C24 −1.2 (4)

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z+1/2; (iii) x, −y+1/2, z−1/2; (iv) −x, y+1/2, −z+1/2; (v) −x, −y, −z+1; (vi) x, y−1, z; (vii) −x+1, −y, −z+1; (viii) x−1, y, z; (ix) −x+1, y−1/2, −z+1/2; (x) −x, y−1/2, −z+1/2; (xi) x, −y−1/2, z−1/2; (xii) x, −y+1/2, z+1/2; (xiii) x, −y−1/2, z+1/2; (xiv) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O8 0.97 2.49 2.890 (3) 105
C6—H6B···O9 0.97 2.56 2.965 (3) 105
C11—H11···O9 0.93 2.53 2.905 (3) 104

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2365).

References

  1. Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley & Sons.
  2. Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Heimstra, H., Bakker, W. I. I., van den Hoogen Band, A. & van Maarseveen, J. H. (2005). Tetrahedron, 46, 2369–2371.
  3. Campbell, H., Cline, W., Evans, M., Lloyd, J. & Peck, A. W. (1973). Eur. J. Clin. Pharmacol.6, 170–176. [DOI] [PubMed]
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  5. Dinsmore, C. J. & Beshore, D. C. (2002). Tetrahedron, 58, 3297–3312.
  6. Humle, C. & Cherrier, M. P. (1999). Tetrahedron Lett.40, 5295–5299.
  7. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  8. Katzung, B. G. (1995). Basic and Clinical Pharmacology, 6th ed. San Francisco: University of California.
  9. MacScience (2002). XPRESS MacScience Co. Ltd, Yokohama, Japan.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067888/hg2365sup1.cif

e-64-0o358-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067888/hg2365Isup2.hkl

e-64-0o358-Isup2.hkl (187.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES