Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 18;64(Pt 2):o464. doi: 10.1107/S1600536808000871

4-[3-(Trifluoro­meth­yl)phen­yl]-5,6,7,8-tetra­hydro­cinnolin-3(2H)-one

Xin Wang a, Xiao-Mao Zou a,*, You-Quan Zhu a, Xu-Hong Hu a, Hua-Zheng Yang a,*
PMCID: PMC2960356  PMID: 21201490

Abstract

The title compound, C15H13F3N2O, contains one benzene ring, one cyclo­hexane ring and a pyridazine ring. The dihedral angle formed by the pyridazine ring with the benzene ring is 61.5 (2)°. The crystal structure is stabilized by two inter­molecular hydrogen bonds (N—H⋯O and C—H⋯F). The cyclohexane ring adopts a screw-boat conformation. The CF3 group is disordered over two positions; the site occupancy factors are ca 0.6 and 0.4.

Related literature

For related literature, see: Heinisch & Kopelent (1992); Kolar & Tisler (1999).graphic file with name e-64-0o464-scheme1.jpg

Experimental

Crystal data

  • C15H13F3N2O

  • M r = 294.27

  • Monoclinic, Inline graphic

  • a = 8.929 (3) Å

  • b = 11.443 (4) Å

  • c = 27.448 (8) Å

  • β = 94.232 (6)°

  • V = 2796.6 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 294 (2) K

  • 0.22 × 0.20 × 0.16 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.975, T max = 0.982

  • 7053 measured reflections

  • 2485 independent reflections

  • 1098 reflections with I > 2σ(I)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.211

  • S = 1.02

  • 2485 reflections

  • 223 parameters

  • 85 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000871/at2529sup1.cif

e-64-0o464-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000871/at2529Isup2.hkl

e-64-0o464-Isup2.hkl (122.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.91 (4) 1.88 (4) 2.783 (5) 178 (5)
C12—H12⋯F3′ii 0.93 2.51 3.362 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Key Project for Basic Research (grant No. 20772067).

supplementary crystallographic information

Comment

Many pyridazine derivatives have been found to exhibit biological activities such as insecticidal, fungicidal, herbicidal, plant-growth regulatory activity, etc. (Heinisch & Kopelent, 1992). For example, pyridate, credazine and maleic hydrazide (Kolar & Tisler, 1999) have been commercialized as herbicides. In order to discover new biologically active pyridazine compounds, the title compound, (I), was synthesized and its structure is reported here.

In the molecule of (I) (Fig. 1), the central pyridazine ring (C1—C8/N1/N2) is approximately coplanar with the cyclohexane ring (C1—C6) [dihedral angle = 4.36 (29)°] and the largest deviation from the mean plane is 0.306 (6) Å for atom C4. The dihedral angle formed by the heterocycle and the benzene ring (C9—C14) is 61.50 (18)°. The molecule is further stabilized by intermolecular N—H···O and C—H···F hydrogen bonds(Table 1). Glide-related molecules are linked via C—H···F hydrogen-bonded chains along the c axis. Part of the chain structure is shown in Fig. 2.

Experimental

4-(3-(Trifluoromethyl)phenyl)-4,4a,5,6,7,8-hexahydrocinnolin-3(2H)-one (1.5 mmol), and 0.5 g anhydrous copper(II) chloride were mixed in acetonitrile (40 ml), refluxed for 2 h. Water (20 ml) were then added. The organic layer was washed successively with saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfateThe solvent was then evaporated in vacuo. The residue was purified via column chromatography. single crystals of (I) suitable for X-ray analysis were grown from ethyl acetate and petroleum ether at room temperature.

Refinement

The trifluoromethyl group shows positional disorder. At the final stage of the refinement, the occupancy factors of two possible sites, C15/F1/F2/F3 and C15/F1'/F2'/F3', were fixed at 0.429 and 0.571 respectively. All H atoms were positioned geometrically, with C—H = 0.93 and 0.97 A° and N—H = 0.91 (4) A°, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the title compound with 30% probability ellipsoid.

Fig. 2.

Fig. 2.

Intermolecular hydrogen-bonding interactions (dashed lines) in the structure of (I). H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C15H13F3N2O F000 = 1216
Mr = 294.27 Dx = 1.398 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1012 reflections
a = 8.929 (3) Å θ = 2.9–20.2º
b = 11.443 (4) Å µ = 0.12 mm1
c = 27.448 (8) Å T = 294 (2) K
β = 94.232 (6)º Prism, colourless
V = 2796.6 (15) Å3 0.22 × 0.20 × 0.16 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer 2485 independent reflections
Radiation source: fine-focus sealed tube 1098 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.061
T = 294(2) K θmax = 25.0º
φ and ω scans θmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.975, Tmax = 0.982 k = −13→8
7053 measured reflections l = −32→32

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.212   w = 1/[σ2(Fo2) + (0.0738P)2 + 4.8514P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
2485 reflections Δρmax = 0.32 e Å3
223 parameters Δρmin = −0.27 e Å3
85 restraints Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0029 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
F1 1.1701 (18) 0.1095 (16) 0.2649 (5) 0.144 (5) 0.429 (9)
F2 1.3627 (15) 0.1988 (12) 0.2422 (6) 0.167 (5) 0.429 (9)
F3 1.274 (2) 0.0347 (12) 0.2066 (5) 0.139 (5) 0.429 (9)
F1' 1.2515 (15) 0.1731 (11) 0.2699 (3) 0.152 (4) 0.571 (9)
F2' 1.3577 (10) 0.0982 (12) 0.2113 (4) 0.130 (4) 0.571 (9)
F3' 1.1498 (13) 0.0330 (10) 0.2327 (5) 0.170 (4) 0.571 (9)
O1 1.0587 (4) 0.0810 (3) 0.05160 (12) 0.0661 (10)
N1 0.6764 (5) 0.0930 (3) 0.00974 (15) 0.0601 (11)
N2 0.8244 (5) 0.0709 (4) 0.01511 (15) 0.0579 (11)
C1 0.6214 (5) 0.1615 (4) 0.04183 (19) 0.0547 (13)
C2 0.4543 (5) 0.1771 (5) 0.0370 (2) 0.0755 (16)
H2A 0.4236 0.1960 0.0033 0.091*
H2B 0.4074 0.1035 0.0446 0.091*
C3 0.3977 (7) 0.2691 (7) 0.0689 (3) 0.120 (3)
H3A 0.4001 0.3431 0.0518 0.144*
H3B 0.2935 0.2522 0.0739 0.144*
C4 0.4780 (7) 0.2826 (7) 0.1160 (3) 0.103 (2)
H4A 0.4599 0.2141 0.1356 0.124*
H4B 0.4373 0.3496 0.1322 0.124*
C5 0.6424 (6) 0.2986 (5) 0.11490 (19) 0.0708 (16)
H5A 0.6891 0.2872 0.1476 0.085*
H5B 0.6622 0.3784 0.1053 0.085*
C6 0.7142 (5) 0.2159 (4) 0.08030 (17) 0.0533 (13)
C7 0.8642 (5) 0.1920 (4) 0.08449 (15) 0.0480 (12)
C8 0.9248 (6) 0.1122 (4) 0.05062 (16) 0.0497 (12)
C9 0.9705 (5) 0.2428 (4) 0.12244 (17) 0.0539 (13)
C10 0.9951 (6) 0.3607 (5) 0.1261 (2) 0.0813 (18)
H10 0.9450 0.4107 0.1036 0.098*
C11 1.0930 (7) 0.4069 (6) 0.1624 (3) 0.111 (3)
H11 1.1075 0.4872 0.1647 0.133*
C12 1.1682 (7) 0.3337 (8) 0.1950 (3) 0.110 (3)
H12 1.2339 0.3643 0.2196 0.133*
C13 1.1474 (6) 0.2162 (7) 0.1915 (2) 0.083 (2)
C14 1.0497 (5) 0.1703 (5) 0.15529 (17) 0.0650 (15)
H14 1.0369 0.0898 0.1530 0.078*
C15 1.2323 (9) 0.1368 (8) 0.2247 (2) 0.114 (3)
H2 0.862 (5) 0.023 (4) −0.0072 (14) 0.081 (18)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.165 (9) 0.167 (9) 0.102 (7) 0.031 (7) 0.032 (7) 0.026 (7)
F2 0.139 (8) 0.198 (9) 0.157 (8) 0.018 (7) −0.044 (7) 0.025 (7)
F3 0.150 (9) 0.146 (8) 0.118 (7) 0.075 (7) −0.004 (7) 0.012 (6)
F1' 0.179 (8) 0.207 (8) 0.064 (4) −0.003 (7) −0.021 (5) 0.006 (5)
F2' 0.102 (5) 0.166 (8) 0.123 (6) 0.071 (5) 0.011 (5) 0.020 (6)
F3' 0.158 (7) 0.185 (7) 0.157 (7) 0.032 (6) −0.052 (6) 0.061 (6)
O1 0.057 (2) 0.068 (2) 0.071 (2) 0.0144 (17) −0.0021 (17) −0.0177 (19)
N1 0.059 (3) 0.052 (3) 0.068 (3) 0.002 (2) −0.004 (2) −0.001 (2)
N2 0.058 (3) 0.053 (3) 0.061 (3) 0.007 (2) −0.005 (2) −0.010 (2)
C1 0.053 (3) 0.045 (3) 0.065 (3) 0.000 (2) −0.004 (3) 0.004 (3)
C2 0.054 (3) 0.071 (4) 0.099 (4) 0.002 (3) −0.004 (3) 0.003 (4)
C3 0.059 (4) 0.150 (7) 0.147 (7) 0.020 (4) −0.005 (4) −0.044 (6)
C4 0.068 (4) 0.135 (6) 0.109 (5) 0.009 (4) 0.021 (4) −0.014 (5)
C5 0.065 (3) 0.078 (4) 0.070 (3) 0.018 (3) 0.002 (3) −0.009 (3)
C6 0.059 (3) 0.046 (3) 0.055 (3) 0.006 (2) 0.004 (2) 0.007 (2)
C7 0.056 (3) 0.041 (3) 0.047 (3) 0.006 (2) 0.001 (2) 0.002 (2)
C8 0.055 (3) 0.042 (3) 0.051 (3) 0.005 (2) 0.000 (3) −0.002 (2)
C9 0.056 (3) 0.056 (3) 0.049 (3) 0.013 (2) 0.000 (2) −0.009 (3)
C10 0.076 (4) 0.062 (4) 0.102 (5) 0.008 (3) −0.020 (3) −0.019 (3)
C11 0.091 (5) 0.085 (5) 0.152 (7) 0.013 (4) −0.026 (5) −0.055 (5)
C12 0.074 (4) 0.150 (7) 0.104 (5) 0.032 (5) −0.020 (4) −0.063 (6)
C13 0.064 (4) 0.131 (6) 0.051 (3) 0.039 (4) −0.009 (3) −0.017 (4)
C14 0.069 (3) 0.076 (4) 0.049 (3) 0.021 (3) 0.002 (3) −0.002 (3)
C15 0.102 (6) 0.155 (7) 0.080 (5) 0.016 (5) −0.025 (4) −0.003 (5)

Geometric parameters (Å, °)

F1—C15 1.310 (9) C4—H4A 0.9700
F2—C15 1.416 (9) C4—H4B 0.9700
F3—C15 1.333 (9) C5—C6 1.516 (7)
F1'—C15 1.308 (8) C5—H5A 0.9700
F2'—C15 1.282 (8) C5—H5B 0.9700
F3'—C15 1.423 (9) C6—C7 1.363 (6)
O1—C8 1.246 (5) C7—C8 1.437 (6)
N1—C1 1.302 (6) C7—C9 1.476 (6)
N1—N2 1.343 (5) C9—C10 1.370 (7)
N2—C8 1.360 (6) C9—C14 1.381 (6)
N2—H2 0.91 (4) C10—C11 1.382 (8)
C1—C6 1.435 (6) C10—H10 0.9300
C1—C2 1.499 (6) C11—C12 1.364 (9)
C2—C3 1.481 (8) C11—H11 0.9300
C2—H2A 0.9700 C12—C13 1.360 (9)
C2—H2B 0.9700 C12—H12 0.9300
C3—C4 1.441 (8) C13—C14 1.377 (7)
C3—H3A 0.9700 C13—C15 1.459 (9)
C3—H3B 0.9700 C14—H14 0.9300
C4—C5 1.482 (7)
C1—N1—N2 117.2 (4) C10—C9—C14 118.2 (5)
N1—N2—C8 127.2 (4) C10—C9—C7 122.0 (5)
N1—N2—H2 117 (3) C14—C9—C7 119.7 (5)
C8—N2—H2 116 (3) C9—C10—C11 121.2 (6)
N1—C1—C6 122.2 (4) C9—C10—H10 119.4
N1—C1—C2 115.8 (5) C11—C10—H10 119.4
C6—C1—C2 122.0 (5) C12—C11—C10 119.5 (7)
C3—C2—C1 114.4 (5) C12—C11—H11 120.2
C3—C2—H2A 108.7 C10—C11—H11 120.2
C1—C2—H2A 108.7 C13—C12—C11 120.2 (6)
C3—C2—H2B 108.7 C13—C12—H12 119.9
C1—C2—H2B 108.7 C11—C12—H12 119.9
H2A—C2—H2B 107.6 C12—C13—C14 120.2 (6)
C4—C3—C2 115.9 (6) C12—C13—C15 120.6 (7)
C4—C3—H3A 108.3 C14—C13—C15 119.1 (7)
C2—C3—H3A 108.3 C13—C14—C9 120.6 (6)
C4—C3—H3B 108.3 C13—C14—H14 119.7
C2—C3—H3B 108.3 C9—C14—H14 119.7
H3A—C3—H3B 107.4 F2'—C15—F1' 109.0 (9)
C3—C4—C5 115.0 (6) F2'—C15—F1 126.4 (9)
C3—C4—H4A 108.5 F1'—C15—F1 46.3 (8)
C5—C4—H4A 108.5 F2'—C15—F3 47.0 (8)
C3—C4—H4B 108.5 F1'—C15—F3 127.7 (10)
C5—C4—H4B 108.5 F1—C15—F3 104.7 (12)
H4A—C4—H4B 107.5 F2'—C15—F2 63.7 (8)
C4—C5—C6 113.7 (5) F1'—C15—F2 58.2 (8)
C4—C5—H5A 108.8 F1—C15—F2 102.9 (11)
C6—C5—H5A 108.8 F3—C15—F2 108.7 (12)
C4—C5—H5B 108.8 F2'—C15—F3' 103.3 (10)
C6—C5—H5B 108.8 F1'—C15—F3' 98.7 (10)
H5A—C5—H5B 107.7 F1—C15—F3' 54.2 (8)
C7—C6—C1 119.0 (4) F3—C15—F3' 59.2 (9)
C7—C6—C5 122.0 (4) F2—C15—F3' 142.0 (8)
C1—C6—C5 118.9 (4) F2'—C15—C13 117.3 (7)
C6—C7—C8 119.2 (4) F1'—C15—C13 114.9 (8)
C6—C7—C9 123.9 (4) F1—C15—C13 116.2 (9)
C8—C7—C9 116.9 (4) F3—C15—C13 117.3 (8)
O1—C8—N2 119.7 (4) F2—C15—C13 106.0 (8)
O1—C8—C7 125.1 (4) F3'—C15—C13 111.4 (7)
N2—C8—C7 115.2 (4)
C1—N1—N2—C8 0.0 (7) C8—C7—C9—C10 119.0 (5)
N2—N1—C1—C6 2.7 (6) C6—C7—C9—C14 119.2 (5)
N2—N1—C1—C2 −175.5 (4) C8—C7—C9—C14 −60.3 (6)
N1—C1—C2—C3 −170.9 (5) C14—C9—C10—C11 −1.9 (9)
C6—C1—C2—C3 10.9 (8) C7—C9—C10—C11 178.7 (5)
C1—C2—C3—C4 −34.6 (9) C9—C10—C11—C12 0.9 (10)
C2—C3—C4—C5 52.9 (10) C10—C11—C12—C13 0.3 (11)
C3—C4—C5—C6 −44.3 (8) C11—C12—C13—C14 −0.4 (10)
N1—C1—C6—C7 −2.3 (7) C11—C12—C13—C15 177.2 (7)
C2—C1—C6—C7 175.7 (4) C12—C13—C14—C9 −0.6 (8)
N1—C1—C6—C5 177.4 (4) C15—C13—C14—C9 −178.3 (5)
C2—C1—C6—C5 −4.5 (7) C10—C9—C14—C13 1.8 (8)
C4—C5—C6—C7 −159.9 (5) C7—C9—C14—C13 −178.9 (5)
C4—C5—C6—C1 20.4 (7) C12—C13—C15—F2' −90.7 (11)
C1—C6—C7—C8 −0.6 (6) C14—C13—C15—F2' 86.9 (12)
C5—C6—C7—C8 179.6 (4) C12—C13—C15—F1' 39.4 (13)
C1—C6—C7—C9 179.9 (4) C14—C13—C15—F1' −142.9 (10)
C5—C6—C7—C9 0.2 (7) C12—C13—C15—F1 91.1 (14)
N1—N2—C8—O1 177.9 (4) C14—C13—C15—F1 −91.3 (14)
N1—N2—C8—C7 −2.7 (7) C12—C13—C15—F3 −144.0 (13)
C6—C7—C8—O1 −177.8 (4) C14—C13—C15—F3 33.7 (15)
C9—C7—C8—O1 1.7 (7) C12—C13—C15—F2 −22.5 (12)
C6—C7—C8—N2 2.9 (6) C14—C13—C15—F2 155.2 (10)
C9—C7—C8—N2 −177.6 (4) C12—C13—C15—F3' 150.6 (10)
C6—C7—C9—C10 −61.5 (7) C14—C13—C15—F3' −31.8 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1i 0.91 (4) 1.88 (4) 2.783 (5) 178 (5)
C12—H12···F3'ii 0.93 2.51 3.362 152

Symmetry codes: (i) −x+2, −y, −z; (ii) −x+5/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2529).

References

  1. Bruker (1999). SMART (Version 5.618) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Heinisch, G. & Kopelent, H. (1992). Prog. Med. Chem.29, 141–183. [DOI] [PubMed]
  3. Kolar, P. & Tisler, M. (1999). Adv. Heterocycl. Chem.75, 167–241.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000871/at2529sup1.cif

e-64-0o464-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000871/at2529Isup2.hkl

e-64-0o464-Isup2.hkl (122.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES