Abstract
In the search for cancer chemopreventive agents, we have studied the Diels–Alder reaction of trans-communic acid with tetracyanoethylene in the presence of SiO2 as catalyst. The title cycloadduct, C26H30N4O2, was obtained in 75% yield. The molecules are arranged in pairs through O—H⋯O hydrogen bonds, forming an R 2 2(8) ring motif. Both the fused cyclohexyl rings adopt a chair conformation, whereas the nonfused ring adopts a half-chair conformation.
Related literature
For literature on anti-tumour activity, see: Bouhal et al. (1988 ▶); Iwamoto et al. (2001 ▶). For structural analyses, see: Etter et al. (1990 ▶); Bernstein et al. (1995 ▶); Cremer & Pople (1975 ▶). For the treatment of disordered solvent, see: Spek (2003 ▶).
Experimental
Crystal data
C26H30N4O2
M r = 430.54
Monoclinic,
a = 30.664 (4) Å
b = 11.8233 (19) Å
c = 7.1857 (10) Å
β = 93.260 (12)°
V = 2600.9 (6) Å3
Z = 4
Mo Kα radiation
μ = 0.07 mm−1
T = 180 (2) K
0.52 × 0.08 × 0.07 mm
Data collection
Oxford Diffraction Xcalibur Sapphire-I diffractometer
Absorption correction: none
5114 measured reflections
2615 independent reflections
1302 reflections with I > 2σ(I)
R int = 0.037
Refinement
R[F 2 > 2σ(F 2)] = 0.037
wR(F 2) = 0.085
S = 0.82
2615 reflections
293 parameters
1 restraint
H-atom parameters constrained
Δρmax = 0.13 e Å−3
Δρmin = −0.12 e Å−3
Data collection: CrysAlis CCD (Oxford Diffraction, 2006 ▶); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 ▶); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 ▶) and ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808001086/er2042sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001086/er2042Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O9—H9⋯O9′i | 0.84 | 1.79 | 2.631 (3) | 178 |
Symmetry code: (i)
.
supplementary crystallographic information
Comment
Juniperus oxycedrus has been used in traditional folk medicine for the treatment of chronic eczema and other several skin diseases (Bouhal et al., 1988). Trans communic acid 1 is one of the compounds which were isolated from Juniperusoxycedrus and known by its moderate anti-tumor activity (Iwamoto et al., 2001). In the search for cancer chemo preventive agents with strong activity, we have studied the Diels-Alder reaction of trans communic acid 1 with tetracyanoethylene 2 in the presence of SiO2 as catalyst (Fig.1). One cycloadduct 3 was obtained in 75% yield.
Its structure was identified as 1,4a-Dimethyl-6-methylene-5-(5,5,6,6-tetracyano-2-methylcyclohex-2-\ enylmethyl)-decahydronaphthalene-1-carboxylic acid using spectral methods including 1H and 13C NMR and confirmed by an X-ray crystallographic analysis. The 1H NMR spectrum of 3 exhibits three methyl singlets at 1.96, 1.29 and 0.69 p.p.m., a triplet (J=3 Hz, at 5.57ppm) due to proton H-3' and two singlets (at 4.50 and 5.08 p.p.m.) assigned to methylenic protons at 13 position. The 13C NMR spectra reveals twenty six signals including specially a carbonyl group at 183.36 p.p.m. and four cyano group signals at 109.19; 110.07; 110.94 and 111.54ppm.
The molecule is build up by two fused six cyclohexyl rings linked linked through a CH2 spacer to a tetracyano-2-methylcyclohexyl ring (Fig. 2). The fused cyclohexyl rings, C1 to C8a and C4A to C8A, adopt a chair conformation as indicated by the puckering parameters [Q= 0.533 (6)°, 0.576 (6)° and θ= 0. 0(6)°, 0.4 (6)°, Cremer & Pople, (1975)]. The non fused cyclohexyl ring adopt a half-chair conformation[Q= 0.510 (6)° and θ= 50.7 (5)°]. The occurrence of O—H···O hydrogen bonds form pairs of molecules through a R22(8) ring motif (Etter et al., 1990; Bernstein et al., 1995) (Fig. 3).
Experimental
To a solution of Compound 1(1 g, 2.5 mmol) in 20 ml of dichloromethane, was added tetracyanoethylene (TCNE)(0.32 g, 2.5 mmol). The mixture was refluxed for 72 h. After cooling, the solvent was removed by evaporation under reduced pressure. The obtained residue was purified by chromatography on silica gel column (eluent: hexane/ethyl acetate 90/10), then the isolated product was recrystallized from ethyl acetate to give compound 3(750 mg, 75%).
Colourless crystal, mp=208–210°C (ethyl acetate). 1H NMR (300 MHz, CDCl3)δ (p.p.m.): 5.57 (t, 1H, J=4.45 Hz); 5.08 (s, 1H); 4.50 (s,1H); 3.28 (br d,1H, J=11.5 Hz); 3.00 (m, 2H); 2.48 (br d, 1H, J=11.5 Hz); 2.29–1.96 (m, 5H); 1.92 (s, 3H); 1.81 (m, 3H); 1.62 (m, 1H); 1.45 (dd, 1H, J=12.21 and 2.60); 1.29 (s, 3H); 1.26 (m, 2H); 1.15 (m, 1H); 0.69 (s, 3H). 13C NMR δ (p.p.m.) CDCl3: 12.64 C11, 19.85 C3, 21.78 C7, 25.59 C8, 26.13 C4, 29.01 C9, 31.75 C12, 37.70 C2, 38.07 C4', 38.58 C7, 39.56 C4a, 41.37 C6', 41.74 C1', 43.41 C5', 44.29 C1, 51.63 C5, 56.47 C8a, 107.59 C13, 109.19 C8', 110.07 C9', 110.94 C10', 111.54 C11', 116.37 C3', 135.27 C6, 147.14 C2', 183.36 C10
Refinement
All H atoms attached to C atoms and 0 atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.99 Å (methylene), 0.98(methyl), 1.0Å (methine) and O—H = 0.84Å with Uiso(H) = 1.2Ueq(aromatic, methine, methylene) and Uiso(H) = 1.5Ueq(methyl & hydroxyl). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed. Some residual electron density were difficult to modelize and therefore, the SQUEEZE function of PLATON (Spek, 2003) was used to eliminate the contribution of the electron density in the solvent region from the intensity data, and the solvent-free model was employed for the final refinement. There are two cavities of 158 Å3 per unit cell. PLATON estimated that each cavity contains about 11 electrons. Owing to the solvent used for crystallization, one may estimate that the voids contain 0.25 ethyl acetate molecule.
Figures
Fig. 1.
Scheme showing the synthetic pathway for the title compound.
Fig. 2.
Molecular view of compound 3 with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 3.
Partial packing view showing pair of molecules connected by O—H···O hydrogen bonds and forming a R22(8) ring motif. Hydrogen bonds are shown as dashed lines. Hydrogen not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) 1 - x, y, 1 - z].
Crystal data
| C26H30N4O2 | F000 = 920 |
| Mr = 430.54 | Dx = 1.099 Mg m−3 |
| Monoclinic, C2 | Mo Kα radiation λ = 0.71073 Å |
| Hall symbol: C 2y | Cell parameters from 907 reflections |
| a = 30.664 (4) Å | θ = 3.1–26.4º |
| b = 11.8233 (19) Å | µ = 0.07 mm−1 |
| c = 7.1857 (10) Å | T = 180 (2) K |
| β = 93.260 (12)º | Needle, colorless |
| V = 2600.9 (6) Å3 | 0.52 × 0.08 × 0.07 mm |
| Z = 4 |
Data collection
| Oxford-Diffraction Xcalibur Sapphire-I diffractometer | 2615 independent reflections |
| Radiation source: fine-focus sealed tube | 1302 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.037 |
| Detector resolution: 8.2632 pixels mm-1 | θmax = 26.4º |
| T = 180(2) K | θmin = 3.1º |
| ω and φ scans | h = −23→38 |
| Absorption correction: none | k = −11→14 |
| 5114 measured reflections | l = −7→8 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
| wR(F2) = 0.085 | w = 1/[σ2(Fo2) + (0.0416P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 0.82 | (Δ/σ)max = 0.003 |
| 2615 reflections | Δρmax = 0.13 e Å−3 |
| 293 parameters | Δρmin = −0.12 e Å−3 |
| 1 restraint | Extinction correction: none |
| Primary atom site location: structure-invariant direct methods |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.59538 (10) | 0.4362 (3) | 0.2817 (5) | 0.0536 (10) | |
| C1' | 0.64958 (9) | −0.0975 (3) | 0.2534 (4) | 0.0364 (9) | |
| H1' | 0.6284 | −0.1263 | 0.1537 | 0.044* | |
| C2' | 0.65560 (10) | −0.1895 (3) | 0.3989 (4) | 0.0398 (9) | |
| C2 | 0.63385 (10) | 0.4539 (3) | 0.4201 (6) | 0.0623 (11) | |
| H2A | 0.6608 | 0.4605 | 0.3509 | 0.075* | |
| H2B | 0.6298 | 0.5262 | 0.4864 | 0.075* | |
| C3' | 0.69097 (10) | −0.2504 (3) | 0.4250 (4) | 0.0507 (10) | |
| H3' | 0.6914 | −0.3052 | 0.5217 | 0.061* | |
| C3 | 0.63991 (10) | 0.3605 (3) | 0.5617 (5) | 0.0592 (11) | |
| H3A | 0.6147 | 0.3597 | 0.6416 | 0.071* | |
| H3B | 0.6665 | 0.3757 | 0.6424 | 0.071* | |
| C4 | 0.64403 (10) | 0.2457 (3) | 0.4706 (5) | 0.0495 (10) | |
| H4A | 0.6458 | 0.1869 | 0.5689 | 0.059* | |
| H4B | 0.6716 | 0.2433 | 0.4055 | 0.059* | |
| C4' | 0.73066 (10) | −0.2407 (3) | 0.3154 (5) | 0.0529 (10) | |
| H4'A | 0.7427 | −0.3170 | 0.2938 | 0.063* | |
| H4'B | 0.7532 | −0.1960 | 0.3865 | 0.063* | |
| C4A | 0.60575 (9) | 0.2174 (3) | 0.3301 (4) | 0.0361 (9) | |
| C5 | 0.61843 (9) | 0.1098 (3) | 0.2159 (4) | 0.0351 (8) | |
| H5 | 0.6457 | 0.1294 | 0.1529 | 0.042* | |
| C5' | 0.71920 (10) | −0.1833 (3) | 0.1284 (5) | 0.0481 (10) | |
| C6 | 0.58379 (11) | 0.0870 (4) | 0.0639 (5) | 0.0494 (10) | |
| C6' | 0.69273 (9) | −0.0707 (3) | 0.1609 (5) | 0.0417 (9) | |
| C7' | 0.61661 (10) | −0.2127 (3) | 0.5115 (5) | 0.0564 (11) | |
| H7'A | 0.6219 | −0.2811 | 0.5866 | 0.085* | |
| H7'B | 0.5907 | −0.2239 | 0.4272 | 0.085* | |
| H7'C | 0.6118 | −0.1484 | 0.5939 | 0.085* | |
| C7 | 0.57720 (12) | 0.1836 (4) | −0.0693 (5) | 0.0692 (13) | |
| H7A | 0.5535 | 0.1652 | −0.1636 | 0.083* | |
| H7B | 0.6043 | 0.1966 | −0.1350 | 0.083* | |
| C8' | 0.69222 (12) | −0.2582 (4) | 0.0066 (6) | 0.0508 (10) | |
| C8 | 0.56546 (11) | 0.2901 (3) | 0.0358 (5) | 0.0593 (12) | |
| H8A | 0.5366 | 0.2797 | 0.0887 | 0.071* | |
| H8B | 0.5631 | 0.3545 | −0.0523 | 0.071* | |
| C8A | 0.59952 (10) | 0.3178 (3) | 0.1931 (5) | 0.0472 (10) | |
| H8 | 0.6277 | 0.3213 | 0.1297 | 0.057* | |
| C9 | 0.55363 (10) | 0.4563 (3) | 0.3803 (6) | 0.0470 (10) | |
| C9' | 0.75865 (11) | −0.1575 (4) | 0.0316 (5) | 0.0602 (11) | |
| C10' | 0.72097 (11) | 0.0021 (3) | 0.2844 (6) | 0.0548 (11) | |
| C10 | 0.59748 (14) | 0.5294 (3) | 0.1310 (6) | 0.0858 (16) | |
| H10A | 0.5710 | 0.5266 | 0.0482 | 0.129* | |
| H10B | 0.6231 | 0.5170 | 0.0581 | 0.129* | |
| H10C | 0.5997 | 0.6037 | 0.1913 | 0.129* | |
| C11 | 0.56460 (9) | 0.1932 (3) | 0.4331 (4) | 0.0438 (9) | |
| H11A | 0.5700 | 0.1298 | 0.5190 | 0.066* | |
| H11B | 0.5406 | 0.1739 | 0.3428 | 0.066* | |
| H11C | 0.5567 | 0.2605 | 0.5035 | 0.066* | |
| C11' | 0.68511 (11) | −0.0140 (3) | −0.0200 (6) | 0.0486 (10) | |
| C12 | 0.62924 (10) | 0.0071 (3) | 0.3388 (4) | 0.0403 (9) | |
| H12A | 0.6019 | −0.0172 | 0.3937 | 0.048* | |
| H12B | 0.6493 | 0.0326 | 0.4431 | 0.048* | |
| C13 | 0.55899 (11) | −0.0039 (4) | 0.0508 (5) | 0.0696 (13) | |
| H13A | 0.5364 | −0.0090 | −0.0448 | 0.084* | |
| H13B | 0.5637 | −0.0642 | 0.1368 | 0.084* | |
| N8' | 0.67137 (11) | −0.3154 (3) | −0.0892 (5) | 0.0749 (11) | |
| N9' | 0.78989 (10) | −0.1379 (4) | −0.0408 (5) | 0.0974 (14) | |
| N10' | 0.74280 (11) | 0.0563 (3) | 0.3805 (5) | 0.0864 (13) | |
| N11' | 0.68067 (11) | 0.0254 (3) | −0.1637 (5) | 0.0767 (11) | |
| O9 | 0.51784 (7) | 0.4467 (2) | 0.2691 (3) | 0.0616 (8) | |
| H9 | 0.4958 | 0.4589 | 0.3303 | 0.092* | |
| O9' | 0.55236 (7) | 0.4807 (2) | 0.5443 (4) | 0.0569 (7) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.042 (2) | 0.056 (3) | 0.065 (3) | 0.0049 (18) | 0.023 (2) | 0.014 (2) |
| C1' | 0.0289 (17) | 0.047 (2) | 0.034 (2) | −0.0031 (15) | 0.0035 (16) | −0.0048 (18) |
| C2' | 0.043 (2) | 0.044 (2) | 0.032 (2) | −0.0001 (17) | 0.0037 (15) | −0.0009 (19) |
| C2 | 0.0362 (19) | 0.046 (3) | 0.106 (3) | −0.0033 (18) | 0.020 (2) | −0.002 (3) |
| C3' | 0.057 (2) | 0.060 (3) | 0.035 (2) | 0.008 (2) | 0.0042 (18) | 0.008 (2) |
| C3 | 0.041 (2) | 0.056 (3) | 0.079 (3) | −0.0013 (19) | −0.0142 (19) | −0.016 (3) |
| C4 | 0.0387 (19) | 0.058 (3) | 0.051 (2) | 0.0003 (18) | −0.0047 (16) | −0.001 (2) |
| C4' | 0.047 (2) | 0.071 (3) | 0.041 (2) | 0.0157 (19) | −0.0008 (17) | 0.009 (2) |
| C4A | 0.0301 (17) | 0.046 (2) | 0.033 (2) | 0.0065 (15) | 0.0034 (15) | 0.0118 (18) |
| C5 | 0.0336 (18) | 0.045 (2) | 0.027 (2) | 0.0009 (15) | 0.0025 (15) | 0.0057 (19) |
| C5' | 0.0338 (19) | 0.065 (3) | 0.046 (2) | 0.0010 (19) | 0.0073 (17) | 0.000 (2) |
| C6 | 0.042 (2) | 0.071 (3) | 0.035 (2) | 0.011 (2) | 0.0020 (18) | −0.005 (2) |
| C6' | 0.0365 (18) | 0.049 (2) | 0.040 (2) | −0.0049 (17) | 0.0040 (16) | 0.002 (2) |
| C7' | 0.053 (2) | 0.071 (3) | 0.046 (2) | 0.0026 (18) | 0.0139 (17) | 0.016 (2) |
| C7 | 0.074 (3) | 0.105 (4) | 0.029 (2) | 0.036 (2) | 0.0067 (18) | 0.007 (3) |
| C8' | 0.053 (3) | 0.057 (3) | 0.043 (3) | 0.005 (2) | 0.013 (2) | 0.009 (2) |
| C8 | 0.064 (2) | 0.086 (3) | 0.028 (2) | 0.033 (2) | 0.0061 (18) | 0.014 (2) |
| C8A | 0.0355 (18) | 0.065 (3) | 0.043 (2) | 0.0142 (17) | 0.0170 (16) | 0.009 (2) |
| C9 | 0.039 (2) | 0.043 (2) | 0.059 (3) | 0.0040 (16) | 0.006 (2) | 0.020 (2) |
| C9' | 0.049 (2) | 0.082 (3) | 0.050 (3) | 0.006 (2) | 0.0087 (19) | −0.001 (2) |
| C10' | 0.039 (2) | 0.060 (3) | 0.067 (3) | −0.0105 (19) | 0.013 (2) | −0.007 (2) |
| C10 | 0.100 (3) | 0.060 (3) | 0.104 (4) | 0.018 (2) | 0.059 (3) | 0.047 (3) |
| C11 | 0.042 (2) | 0.060 (3) | 0.030 (2) | −0.0030 (17) | 0.0069 (16) | −0.001 (2) |
| C11' | 0.052 (2) | 0.046 (3) | 0.049 (3) | 0.0067 (18) | 0.017 (2) | 0.010 (2) |
| C12 | 0.0415 (18) | 0.048 (2) | 0.031 (2) | −0.0010 (16) | 0.0030 (15) | 0.0012 (18) |
| C13 | 0.046 (2) | 0.099 (4) | 0.062 (3) | 0.011 (3) | −0.015 (2) | −0.004 (3) |
| N8' | 0.089 (3) | 0.084 (3) | 0.053 (2) | −0.013 (2) | 0.016 (2) | −0.005 (2) |
| N9' | 0.057 (2) | 0.143 (4) | 0.095 (3) | 0.001 (2) | 0.032 (2) | 0.004 (3) |
| N10' | 0.063 (2) | 0.101 (3) | 0.095 (3) | −0.031 (2) | 0.008 (2) | −0.042 (3) |
| N11' | 0.094 (3) | 0.088 (3) | 0.051 (2) | 0.023 (2) | 0.028 (2) | 0.019 (2) |
| O9 | 0.0462 (14) | 0.092 (2) | 0.0471 (15) | 0.0210 (14) | 0.0064 (12) | 0.0007 (16) |
| O9' | 0.0444 (13) | 0.075 (2) | 0.0519 (16) | −0.0021 (12) | 0.0105 (13) | −0.0057 (16) |
Geometric parameters (Å, °)
| C1—C2 | 1.513 (5) | C5'—C6' | 1.584 (5) |
| C1—C9 | 1.517 (5) | C6—C13 | 1.316 (5) |
| C1—C8A | 1.546 (5) | C6—C7 | 1.497 (5) |
| C1—C10 | 1.549 (5) | C6'—C11' | 1.470 (5) |
| C1'—C2' | 1.513 (4) | C6'—C10' | 1.480 (5) |
| C1'—C12 | 1.529 (4) | C7'—H7'A | 0.9800 |
| C1'—C6' | 1.547 (4) | C7'—H7'B | 0.9800 |
| C1'—H1' | 1.0000 | C7'—H7'C | 0.9800 |
| C2'—C3' | 1.306 (4) | C7—C8 | 1.521 (5) |
| C2'—C7' | 1.506 (4) | C7—H7A | 0.9900 |
| C2—C3 | 1.506 (5) | C7—H7B | 0.9900 |
| C2—H2A | 0.9900 | C8'—N8' | 1.136 (5) |
| C2—H2B | 0.9900 | C8—C8A | 1.530 (5) |
| C3'—C4' | 1.491 (4) | C8—H8A | 0.9900 |
| C3'—H3' | 0.9500 | C8—H8B | 0.9900 |
| C3—C4 | 1.516 (5) | C8A—H8 | 1.0000 |
| C3—H3A | 0.9900 | C9—O9' | 1.216 (4) |
| C3—H3B | 0.9900 | C9—O9 | 1.325 (4) |
| C4—C4A | 1.541 (4) | C9'—N9' | 1.139 (4) |
| C4—H4A | 0.9900 | C10'—N10' | 1.133 (4) |
| C4—H4B | 0.9900 | C10—H10A | 0.9800 |
| C4'—C5' | 1.528 (5) | C10—H10B | 0.9800 |
| C4'—H4'A | 0.9900 | C10—H10C | 0.9800 |
| C4'—H4'B | 0.9900 | C11—H11A | 0.9800 |
| C4A—C11 | 1.526 (4) | C11—H11B | 0.9800 |
| C4A—C8A | 1.547 (4) | C11—H11C | 0.9800 |
| C4A—C5 | 1.574 (4) | C11'—N11' | 1.134 (4) |
| C5—C6 | 1.504 (4) | C12—H12A | 0.9900 |
| C5—C12 | 1.527 (4) | C12—H12B | 0.9900 |
| C5—H5 | 1.0000 | C13—H13A | 0.9500 |
| C5'—C9' | 1.462 (5) | C13—H13B | 0.9500 |
| C5'—C8' | 1.466 (5) | O9—H9 | 0.8400 |
| C2—C1—C9 | 108.6 (3) | C13—C6—C5 | 125.4 (4) |
| C2—C1—C8A | 108.5 (3) | C7—C6—C5 | 113.1 (3) |
| C9—C1—C8A | 115.2 (3) | C11'—C6'—C10' | 108.8 (3) |
| C2—C1—C10 | 107.4 (3) | C11'—C6'—C1' | 112.1 (3) |
| C9—C1—C10 | 106.5 (3) | C10'—C6'—C1' | 110.3 (3) |
| C8A—C1—C10 | 110.4 (3) | C11'—C6'—C5' | 108.0 (3) |
| C2'—C1'—C12 | 109.9 (2) | C10'—C6'—C5' | 106.9 (3) |
| C2'—C1'—C6' | 111.7 (2) | C1'—C6'—C5' | 110.5 (3) |
| C12—C1'—C6' | 112.7 (3) | C2'—C7'—H7'A | 109.5 |
| C2'—C1'—H1' | 107.4 | C2'—C7'—H7'B | 109.5 |
| C12—C1'—H1' | 107.4 | H7'A—C7'—H7'B | 109.5 |
| C6'—C1'—H1' | 107.4 | C2'—C7'—H7'C | 109.5 |
| C3'—C2'—C7' | 120.0 (3) | H7'A—C7'—H7'C | 109.5 |
| C3'—C2'—C1' | 124.3 (3) | H7'B—C7'—H7'C | 109.5 |
| C7'—C2'—C1' | 115.7 (3) | C6—C7—C8 | 110.0 (3) |
| C3—C2—C1 | 113.8 (3) | C6—C7—H7A | 109.7 |
| C3—C2—H2A | 108.8 | C8—C7—H7A | 109.7 |
| C1—C2—H2A | 108.8 | C6—C7—H7B | 109.7 |
| C3—C2—H2B | 108.8 | C8—C7—H7B | 109.7 |
| C1—C2—H2B | 108.8 | H7A—C7—H7B | 108.2 |
| H2A—C2—H2B | 107.7 | N8'—C8'—C5' | 179.3 (4) |
| C2'—C3'—C4' | 125.3 (3) | C7—C8—C8A | 111.9 (3) |
| C2'—C3'—H3' | 117.3 | C7—C8—H8A | 109.2 |
| C4'—C3'—H3' | 117.3 | C8A—C8—H8A | 109.2 |
| C2—C3—C4 | 112.0 (3) | C7—C8—H8B | 109.2 |
| C2—C3—H3A | 109.2 | C8A—C8—H8B | 109.2 |
| C4—C3—H3A | 109.2 | H8A—C8—H8B | 107.9 |
| C2—C3—H3B | 109.2 | C8—C8A—C4A | 111.1 (3) |
| C4—C3—H3B | 109.2 | C8—C8A—C1 | 115.4 (3) |
| H3A—C3—H3B | 107.9 | C4A—C8A—C1 | 116.3 (3) |
| C3—C4—C4A | 113.5 (3) | C8—C8A—H8 | 104.1 |
| C3—C4—H4A | 108.9 | C4A—C8A—H8 | 104.1 |
| C4A—C4—H4A | 108.9 | C1—C8A—H8 | 104.1 |
| C3—C4—H4B | 108.9 | O9'—C9—O9 | 122.3 (3) |
| C4A—C4—H4B | 108.9 | O9'—C9—C1 | 124.4 (3) |
| H4A—C4—H4B | 107.7 | O9—C9—C1 | 113.4 (3) |
| C3'—C4'—C5' | 110.2 (3) | N9'—C9'—C5' | 178.7 (4) |
| C3'—C4'—H4'A | 109.6 | N10'—C10'—C6' | 178.9 (5) |
| C5'—C4'—H4'A | 109.6 | C1—C10—H10A | 109.5 |
| C3'—C4'—H4'B | 109.6 | C1—C10—H10B | 109.5 |
| C5'—C4'—H4'B | 109.6 | H10A—C10—H10B | 109.5 |
| H4'A—C4'—H4'B | 108.1 | C1—C10—H10C | 109.5 |
| C11—C4A—C4 | 110.1 (3) | H10A—C10—H10C | 109.5 |
| C11—C4A—C8A | 112.1 (2) | H10B—C10—H10C | 109.5 |
| C4—C4A—C8A | 108.2 (3) | C4A—C11—H11A | 109.5 |
| C11—C4A—C5 | 109.7 (3) | C4A—C11—H11B | 109.5 |
| C4—C4A—C5 | 108.4 (2) | H11A—C11—H11B | 109.5 |
| C8A—C4A—C5 | 108.3 (2) | C4A—C11—H11C | 109.5 |
| C6—C5—C12 | 113.5 (3) | H11A—C11—H11C | 109.5 |
| C6—C5—C4A | 109.8 (3) | H11B—C11—H11C | 109.5 |
| C12—C5—C4A | 113.2 (2) | N11'—C11'—C6' | 176.2 (4) |
| C6—C5—H5 | 106.6 | C5—C12—C1' | 119.4 (2) |
| C12—C5—H5 | 106.6 | C5—C12—H12A | 107.5 |
| C4A—C5—H5 | 106.6 | C1'—C12—H12A | 107.5 |
| C9'—C5'—C8' | 107.2 (3) | C5—C12—H12B | 107.5 |
| C9'—C5'—C4' | 110.8 (3) | C1'—C12—H12B | 107.5 |
| C8'—C5'—C4' | 110.5 (3) | H12A—C12—H12B | 107.0 |
| C9'—C5'—C6' | 109.9 (3) | C6—C13—H13A | 120.0 |
| C8'—C5'—C6' | 108.6 (3) | C6—C13—H13B | 120.0 |
| C4'—C5'—C6' | 109.7 (3) | H13A—C13—H13B | 120.0 |
| C13—C6—C7 | 121.4 (4) | C9—O9—H9 | 109.5 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O9—H9···O9'i | 0.84 | 1.79 | 2.631 (3) | 178 |
Symmetry codes: (i) −x+1, y, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2042).
References
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
- Bouhal, K., Meynadier, J. M., Peyron, J. L., Peyron, L., Marion, J. P., Bonetti, G. & Meynadier, J. (1988). Le Cade en Dermatologie, Parfums, Cosmétiques et Aromes, 83, 73–82.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Iwamoto, M., Ohtsu, H., Tokuda, H., Nishino, H., Matasunaga, S. & Tanaka, R. (2001). Bioorg. Med. Chem.9, 1911–1921. [DOI] [PubMed]
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Versions 1.171.31.5. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808001086/er2042sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001086/er2042Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



