Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 9;64(Pt 2):o402. doi: 10.1107/S1600536807068833

6,7,8,9,10,11,12,13-Octa­hydro-5H-1,3-dithiole[4,5-b][1,4]dithia­cyclo­tridecine-2-thione

Felora Heshmatpour a, Fatemeh Darviche a,*, Zeynab Emdadi a, Bernhard Neumueller b
PMCID: PMC2960369  PMID: 21201430

Abstract

In the crystal structure of the title compound, C12H18S5, no significant inter­molecular π–π inter­actions are found. Weak inter­molecular C—S⋯π [S⋯centroid = 3.787 (1) Å] inter­actions and van der Waals forces may be effective in the stabilization of the structure.

Related literature

For general background, see: Ferraris et al. (1973); Williams et al. (1992); Bechgaard et al. (1975); Engler et al. (1977); Kini et al. (1999); Li et al. (2000); Svenstrup & Becher (1995). For related literature, see: Kumar et al. (1998). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-0o402-scheme1.jpg

Experimental

Crystal data

  • C12H18S5

  • M r = 322.56

  • Monoclinic, Inline graphic

  • a = 5.588 (1) Å

  • b = 13.067 (1) Å

  • c = 20.446 (2) Å

  • β = 97.07 (1)°

  • V = 1481.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 173 (2) K

  • 0.2 × 0.18 × 0.07 mm

Data collection

  • Stoe IPDS-II diffractometer

  • Absorption correction: numerical (shape of crystal determined optically; X-RED32 and X-SHAPE; Stoe & Cie, 2005) T min = 0.856, T max = 0.948

  • 20411 measured reflections

  • 2866 independent reflections

  • 1423 reflections with I > 2σ(I)

  • R int = 0.107

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.046

  • S = 0.90

  • 2866 reflections

  • 155 parameters

  • H-atom paramteres constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068833/hk2410sup1.cif

e-64-0o402-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068833/hk2410Isup2.hkl

e-64-0o402-Isup2.hkl (137.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge K. N. Toosi University of Technology for financial support.

supplementary crystallographic information

Comment

Since the discovery of the first organic metal TTF-TCNQ (TTF: tetrathiafulvalene TCNQ: 7,7,8,8-tetracyanoquinodimethane) (Ferraris et al., 1973) organic electron donors with a TTF backbone have been widely investigated in terms of synthetic and structural as well as physical aspects (Williams et al., 1992). The most conventional route to these electron donors is based on the coupling of 1,3-thiole-2-thione (one) derivatives promoted by trialkyl phosphite (Bechgaard et al., 1975; Engler et al., 1977; Kini et al., 1999; Li et al., 2000). Thus, the key precursors to these TTF-based electron donors are 1,3-thiole-2-thione (one) derivatives. Among them, 4,5-bisalkylthio-1,3-dithiole-2-thione can be routinely prepared by the reaction between a zinc complex of 1,3-dithiole-2 -thione-4,5-dithiolate or the anion 1,3-dithiole-2-thione-4,5-dithiolate generated in situ and suitable electrophilic reagents (Svenstrup & Becher, 1995). Thus the interest in the synthesis of various 1,3-dithiole-2-chalcogenone is evident and promoted us to take up this project. In continuation of our work in this field, we report herein the crystal structure of title ligand, (I).

In the molecule of (I) (Fig. 1), the bond lengths are within normal ranges (Allen et al., 1987).

In the crystal structure, no significant intermolecular π–π interactions are observed. Weak intermolecular C—S···π interactions, with S1···Cg1 = 3.787 (1) Å [Cg1 denotes centroid of cyclotridecine ring; (S1/S4/C1/C2/C12), symmetry code: -1 + x, y, z] and van der Waals forces stabilize the crystal structure.

Experimental

The synthesis of (I) was carried out via the coupling of 1,9-dibromooctane (1 mmol) with the zinc complex of 1,3-dithiole-2-thione-4,5-dithiolate (0.5 mmol) in acetone (5 ml) at 293 K. The color of the mixture was turned from red to yellow. The pure compound was obtained in 32% yield by washing of the crude product with chloroform, in which it is highly soluble (Kumar et al., 1998).

Refinement

H atoms were positioned geometrically, with C—H = 0.99 Å for methylene H, and constrained to ride on their parent atoms, with Uiso(H) = 0.050 (2) Å2.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C12H18S5 F000 = 680
Mr = 322.56 Dx = 1.446 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 10000 reflections
a = 5.588 (1) Å θ = 1.9–25.9º
b = 13.067 (1) Å µ = 0.76 mm1
c = 20.446 (2) Å T = 173 (2) K
β = 97.07 (1)º Plates, yellow
V = 1481.6 (3) Å3 0.2 × 0.18 × 0.07 mm
Z = 4

Data collection

Stoe IPDS-II diffractometer Rint = 0.107
φ scans θmax = 25.9º
Absorption correction: numerical(shape of crystal determined optically; X-RED32 and X-SHAPE; Stoe & Cie, 2005) θmin = 1.9º
Tmin = 0.856, Tmax = 0.948 h = −6→6
20411 measured reflections k = −15→16
2866 independent reflections l = −25→25
1423 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.046   w = 1/[σ2(Fo2) + (0.011P)2P] where P = (Fo2 + 2Fc2)/3
S = 0.90 (Δ/σ)max = 0.002
2866 reflections Δρmax = 0.20 e Å3
155 parameters Δρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.15648 (13) 0.36424 (6) 0.20855 (4) 0.0339 (2)
S2 0.60599 (13) 0.38230 (7) 0.30580 (4) 0.0359 (2)
S3 0.55751 (13) 0.13199 (7) 0.32641 (4) 0.0384 (2)
S4 0.11036 (13) 0.14671 (6) 0.22596 (4) 0.0356 (2)
S5 −0.26751 (12) 0.25565 (8) 0.13696 (3) 0.03771 (19)
C1 −0.0162 (4) 0.2563 (3) 0.18733 (11) 0.0301 (6)
C2 0.3700 (5) 0.3076 (2) 0.26703 (13) 0.0292 (7)
C3 0.4388 (5) 0.4824 (2) 0.34333 (15) 0.0403 (8)
H31 0.5563 0.5299 0.3675 0.050 (2)*
H32 0.3447 0.5219 0.3077 0.050 (2)*
C4 0.2663 (6) 0.4446 (3) 0.39077 (15) 0.0405 (8)
H41 0.1872 0.5045 0.4086 0.050 (2)*
H42 0.1390 0.4023 0.3659 0.050 (2)*
C5 0.3895 (5) 0.3822 (3) 0.44765 (14) 0.0438 (8)
H51 0.5312 0.4206 0.4687 0.050 (2)*
H52 0.4486 0.3175 0.4303 0.050 (2)*
C6 0.2221 (5) 0.3571 (3) 0.50025 (14) 0.0458 (9)
H61 0.3242 0.3340 0.5406 0.050 (2)*
H62 0.1424 0.4214 0.5114 0.050 (2)*
C7 0.0271 (5) 0.2770 (2) 0.48280 (14) 0.0434 (9)
H71 −0.0170 0.2769 0.4344 0.050 (2)*
H72 −0.1179 0.2972 0.5030 0.050 (2)*
C8 0.0975 (6) 0.1682 (3) 0.50494 (14) 0.0470 (9)
H81 0.1614 0.1704 0.5523 0.050 (2)*
H82 −0.0507 0.1260 0.5008 0.050 (2)*
C9 0.2818 (6) 0.1145 (3) 0.46824 (14) 0.0446 (9)
H91 0.3430 0.0533 0.4936 0.050 (2)*
H92 0.4199 0.1611 0.4653 0.050 (2)*
C10 0.1780 (5) 0.0816 (2) 0.39871 (14) 0.0405 (8)
H101 0.0509 0.0298 0.4021 0.050 (2)*
H102 0.1009 0.1417 0.3753 0.050 (2)*
C11 0.3638 (5) 0.0371 (2) 0.35761 (15) 0.0376 (8)
H111 0.2777 −0.0008 0.3199 0.050 (2)*
H112 0.4656 −0.0126 0.3850 0.050 (2)*
C12 0.3500 (5) 0.2060 (2) 0.27516 (13) 0.0292 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0339 (4) 0.0324 (5) 0.0350 (4) −0.0027 (4) 0.0022 (3) 0.0027 (4)
S2 0.0295 (4) 0.0386 (5) 0.0396 (4) −0.0053 (4) 0.0042 (4) −0.0042 (4)
S3 0.0312 (4) 0.0394 (5) 0.0437 (5) 0.0050 (4) 0.0013 (4) 0.0023 (4)
S4 0.0350 (5) 0.0306 (5) 0.0399 (4) −0.0020 (4) −0.0002 (4) −0.0017 (4)
S5 0.0349 (4) 0.0417 (5) 0.0353 (4) −0.0011 (4) −0.0006 (3) −0.0007 (4)
C1 0.0328 (15) 0.0328 (17) 0.0268 (15) −0.0002 (15) 0.0126 (11) −0.0026 (15)
C2 0.0277 (18) 0.034 (2) 0.0275 (16) 0.0014 (13) 0.0094 (14) −0.0018 (14)
C3 0.0429 (18) 0.035 (2) 0.0437 (19) −0.0040 (15) 0.0080 (15) −0.0085 (15)
C4 0.0424 (19) 0.039 (2) 0.0399 (18) 0.0058 (15) 0.0050 (15) −0.0045 (16)
C5 0.0462 (18) 0.043 (2) 0.0419 (18) −0.0003 (16) 0.0042 (14) −0.0029 (16)
C6 0.055 (2) 0.050 (2) 0.0326 (17) 0.0093 (19) 0.0065 (15) −0.0035 (17)
C7 0.0426 (17) 0.054 (3) 0.0351 (17) 0.0132 (16) 0.0122 (14) 0.0030 (16)
C8 0.054 (2) 0.051 (2) 0.0371 (18) 0.0110 (17) 0.0114 (15) 0.0080 (15)
C9 0.050 (2) 0.043 (2) 0.0398 (18) 0.0173 (17) 0.0005 (15) 0.0056 (16)
C10 0.0394 (18) 0.046 (2) 0.0360 (18) −0.0001 (15) 0.0055 (14) 0.0061 (15)
C11 0.0439 (19) 0.0284 (19) 0.0400 (19) 0.0005 (15) 0.0027 (15) 0.0029 (14)
C12 0.0252 (17) 0.039 (2) 0.0244 (15) 0.0002 (14) 0.0058 (13) −0.0016 (14)

Geometric parameters (Å, °)

S1—C1 1.734 (3) C5—H52 0.9900
S1—C2 1.746 (3) C6—C7 1.521 (4)
S2—C2 1.750 (3) C6—H61 0.9900
S2—C3 1.830 (3) C6—H62 0.9900
S3—C12 1.754 (3) C7—C8 1.528 (4)
S3—C11 1.813 (3) C7—H71 0.9900
S4—C1 1.743 (3) C7—H72 0.9900
S4—C12 1.753 (3) C8—C9 1.519 (4)
S5—C1 1.636 (2) C8—H81 0.9900
C2—C12 1.345 (3) C8—H82 0.9900
C3—C4 1.531 (4) C9—C10 1.529 (4)
C3—H31 0.9900 C9—H91 0.9900
C3—H32 0.9900 C9—H92 0.9900
C4—C5 1.515 (4) C10—C11 1.529 (4)
C4—H41 0.9900 C10—H101 0.9900
C4—H42 0.9900 C10—H102 0.9900
C5—C6 1.545 (4) C11—H111 0.9900
C5—H51 0.9900 C11—H112 0.9900
C1—S1—C2 97.99 (14) C6—C7—C8 114.8 (3)
C2—S2—C3 101.15 (14) C6—C7—H71 108.6
C12—S3—C11 101.98 (14) C8—C7—H71 108.6
C1—S4—C12 97.81 (14) C6—C7—H72 108.6
S5—C1—S1 124.7 (2) C8—C7—H72 108.6
S5—C1—S4 123.4 (2) H71—C7—H72 107.5
S1—C1—S4 111.88 (12) C9—C8—C7 116.7 (2)
C12—C2—S1 116.3 (2) C9—C8—H81 108.1
C12—C2—S2 124.3 (2) C7—C8—H81 108.1
S1—C2—S2 119.16 (18) C9—C8—H82 108.1
C4—C3—S2 115.4 (2) C7—C8—H82 108.1
C4—C3—H31 108.4 H81—C8—H82 107.3
S2—C3—H31 108.4 C8—C9—C10 112.7 (3)
C4—C3—H32 108.4 C8—C9—H91 109.0
S2—C3—H32 108.4 C10—C9—H91 109.0
H31—C3—H32 107.5 C8—C9—H92 109.0
C5—C4—C3 113.5 (3) C10—C9—H92 109.0
C5—C4—H41 108.9 H91—C9—H92 107.8
C3—C4—H41 108.9 C11—C10—C9 114.4 (2)
C5—C4—H42 108.9 C11—C10—H101 108.7
C3—C4—H42 108.9 C9—C10—H101 108.7
H41—C4—H42 107.7 C11—C10—H102 108.7
C4—C5—C6 113.1 (2) C9—C10—H102 108.7
C4—C5—H51 109.0 H101—C10—H102 107.6
C6—C5—H51 109.0 C10—C11—S3 114.1 (2)
C4—C5—H52 109.0 C10—C11—H111 108.7
C6—C5—H52 109.0 S3—C11—H111 108.7
H51—C5—H52 107.8 C10—C11—H112 108.7
C7—C6—C5 117.4 (2) S3—C11—H112 108.7
C7—C6—H61 107.9 H111—C11—H112 107.6
C5—C6—H61 107.9 C2—C12—S4 115.8 (2)
C7—C6—H62 107.9 C2—C12—S3 124.0 (2)
C5—C6—H62 107.9 S4—C12—S3 120.10 (19)
H61—C6—H62 107.2

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2410).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bechgaard, K., Cowan, D. O., Bloch, A. N. & Henriksen, L. (1975). J. Org. Chem.40, 746–749.
  3. Engler, E. M., Scott, B. A., Etemad, S., Penney, T. & Patel, V. V. (1977). J. Am. Chem. Soc.99, 5909–5916.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Ferraris, J., Walatka, V., Perlstein, J. H. & Cowan, D. O. (1973). J. Am. Chem. Soc.95, 948–949.
  7. Kini, A. M., Parakka, J. P., Geiser, U., Wang, H.-H., Rivas, F., DiNino, E., Thomas, S., Dudek, J. D. & Williams, J. M. (1999). J. Mater. Chem.9, 883–892.
  8. Kumar, E. V. K. S., Singh, J. D., Singh, H. B., Das, K., Yakhmi, J. V. & Butcher, R. J. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1769–1777.
  9. Li, H.-X., Zhang, D.-Q., Zhang, B., Yao, Y.-X., Xu, W., Zhu, D.-B. & Wang, Z.-M. (2000). J. Mater. Chem.10, 2063–2067.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Stoe & Cie (2005). X-AREA (Version 1.31), X-RED32 (Version 1.28b) and X-SHAPE (Version 2.05). Stoe & Cie, Darmstadt, Germany.
  12. Svenstrup, N. & Becher, J. (1995). Synthesis, pp. 215–235.
  13. Williams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M. & Whangbo, M.-H. (1992). Organic Superconductors (including Fullerenes) Englewood Cliffs, New Jersey: Prentice Hall.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068833/hk2410sup1.cif

e-64-0o402-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068833/hk2410Isup2.hkl

e-64-0o402-Isup2.hkl (137.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES