Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 9;64(Pt 2):o380. doi: 10.1107/S1600536807068419

N-(2,6-Dimethyl­phen­yl)-2-methyl­acetamide

B Thimme Gowda a,*, Sabine Foro b, Hartmut Fuess b
PMCID: PMC2960394  PMID: 21201410

Abstract

The structure of the title compound (26DMPMA), C11H15NO, is closely related to the side-chain unsubstituted N-(2,6-dimethyl­phen­yl)acetamide and side-chain substituted N-(2,6-dimethyl­phen­yl)-2,2,2-trimethyl­acetamide and 2-chloro-N-(2,6-dimethyl­phen­yl)acetamide, with slightly different bond parameters. The mol­ecules in 26DMPMA are linked into chains through N—H⋯O hydrogen bonding.

Related literature

For related literature, see: Gowda et al. (2004, 2008); Gowda, Foro & Fuess (2007); Gowda, Svoboda & Fuess (2007).graphic file with name e-64-0o380-scheme1.jpg

Experimental

Crystal data

  • C11H15NO

  • M r = 177.24

  • Monoclinic, Inline graphic

  • a = 4.7915 (7) Å

  • b = 11.593 (2) Å

  • c = 17.966 (3) Å

  • β = 96.11 (2)°

  • V = 992.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 (2) K

  • 0.50 × 0.14 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)T min = 0.951, T max = 0.989

  • 7811 measured reflections

  • 2005 independent reflections

  • 1262 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.080

  • S = 0.95

  • 2005 reflections

  • 164 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068419/dn2305sup1.cif

e-64-0o380-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068419/dn2305Isup2.hkl

e-64-0o380-Isup2.hkl (98.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.889 (14) 2.065 (14) 2.9352 (15) 165.9 (12)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of 2-methyl-N-(2,6-dimethylphenyl)- acetamide (26DMPMA) (Fig. 1) has been determined as part of a study of the effect of ring and side chain substitutions on the solid state geometry of biologically significant compounds such as acetanilides (Gowda, Foro & Fuess, 2007); Gowda, Svoboda & Fuess, 2007); Gowda et al., 2008). The structure of 26DMPMA is closely related to the side chain unsubstituted N-(2,6-dimethylphenyl)-acetamide (26DMPA) (Gowda, Foro & Fuess, 2007) and side chain substituted, 2,2,2-trimethyl-N-(2,6-dimethylphenyl)-acetamide (26DMPTMA) (Gowda, Svoboda & Fuess, 2007) and 2-chloro-N-(2,6-dimethylphenyl)- cetamide (26DMPCA) (Gowda et al., 2008). The bond parameters in 26DMPMA are similar to those in 26DMPA, 26DMPTMA, 26DMPCA and other acetanilides (Gowda, Foro & Fuess, 2007; Gowda, Svoboda & Fuess, 2007; Gowda et al., 2008). The molecules in 26DMPMA are linked into infinite chains through N—H···O hydrogen bonding (Table 1 and Fig.2).

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2004). The purity of the compound was checked by determining its melting point. The compound was further characterized by recording its infrared and NMR spectra (Gowda et al., 2004). Single crystals of the title compound were obtained from a slow evaporation of an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The H atoms were located in difference map, and their positional parameters were refined freely with N—H = 0.89 (1) %A and C—H = 0.96 (1)–1.02 (2) Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing view showing the formation of a chain. Hydrogen bonds are represented as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.

Crystal data

C11H15NO F000 = 384
Mr = 177.24 Dx = 1.186 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1603 reflections
a = 4.7915 (7) Å θ = 2.1–24.9º
b = 11.593 (2) Å µ = 0.08 mm1
c = 17.966 (3) Å T = 100 (2) K
β = 96.11 (2)º Needle, colourless
V = 992.3 (3) Å3 0.50 × 0.14 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector 2005 independent reflections
Radiation source: fine-focus sealed tube 1262 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.036
T = 100(2) K θmax = 26.4º
Rotation method data acquisition using ω and φ scans θmin = 2.9º
Absorption correction: multi-scan[CrysAlis RED (Oxford Diffraction, 2007); empirical (using intensity measurements) absorption correction using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm] h = −5→5
Tmin = 0.951, Tmax = 0.989 k = −13→14
7811 measured reflections l = −22→21

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full Only H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.033   w = 1/[σ2(Fo2) + (0.043P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080 (Δ/σ)max = 0.001
S = 0.95 Δρmax = 0.17 e Å3
2005 reflections Δρmin = −0.16 e Å3
164 parameters Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.016 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.65780 (18) 0.08126 (8) 0.39277 (5) 0.0262 (3)
N1 0.2247 (2) 0.15987 (9) 0.36988 (6) 0.0189 (3)
H1N 0.044 (3) 0.1485 (11) 0.3751 (7) 0.023*
C1 0.3212 (2) 0.27503 (11) 0.36006 (6) 0.0176 (3)
C2 0.2508 (3) 0.36018 (11) 0.41017 (7) 0.0190 (3)
C3 0.3532 (3) 0.47138 (12) 0.40192 (7) 0.0227 (3)
H3 0.310 (3) 0.5309 (11) 0.4368 (7) 0.027*
C4 0.5195 (3) 0.49761 (13) 0.34589 (7) 0.0240 (3)
H4 0.592 (3) 0.5742 (12) 0.3436 (7) 0.029*
C5 0.5822 (3) 0.41284 (12) 0.29609 (7) 0.0230 (3)
H5 0.699 (3) 0.4338 (10) 0.2572 (7) 0.028*
C6 0.4831 (3) 0.30035 (11) 0.30172 (7) 0.0196 (3)
C7 0.4008 (3) 0.07132 (11) 0.38927 (7) 0.0191 (3)
C8 0.2643 (3) −0.04089 (12) 0.40805 (8) 0.0226 (3)
H8A 0.233 (3) −0.0348 (11) 0.4619 (8) 0.027*
H8B 0.078 (3) −0.0457 (11) 0.3814 (7) 0.027*
C9 0.4399 (3) −0.14537 (14) 0.39496 (10) 0.0340 (4)
H9A 0.633 (4) −0.1371 (13) 0.4197 (8) 0.051*
H9B 0.362 (3) −0.2172 (13) 0.4137 (8) 0.051*
H9C 0.457 (3) −0.1568 (12) 0.3394 (9) 0.051*
C10 0.0701 (3) 0.33281 (14) 0.47103 (8) 0.0247 (4)
H10A −0.132 (3) 0.3315 (11) 0.4530 (8) 0.037*
H10B 0.109 (3) 0.2566 (14) 0.4935 (7) 0.037*
H10C 0.096 (3) 0.3906 (12) 0.5110 (8) 0.037*
C11 0.5511 (3) 0.21070 (14) 0.24562 (8) 0.0257 (4)
H11A 0.408 (3) 0.1505 (12) 0.2393 (7) 0.039*
H11B 0.586 (3) 0.2484 (12) 0.1971 (8) 0.039*
H11C 0.726 (3) 0.1670 (11) 0.2640 (7) 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0137 (5) 0.0268 (6) 0.0384 (6) 0.0012 (4) 0.0041 (4) 0.0058 (4)
N1 0.0109 (6) 0.0207 (7) 0.0258 (6) −0.0004 (5) 0.0047 (5) 0.0015 (5)
C1 0.0123 (7) 0.0189 (8) 0.0213 (7) 0.0010 (6) −0.0006 (5) 0.0026 (6)
C2 0.0144 (7) 0.0225 (8) 0.0200 (7) 0.0055 (6) 0.0009 (5) 0.0025 (6)
C3 0.0219 (7) 0.0218 (9) 0.0243 (7) 0.0049 (7) 0.0022 (6) −0.0031 (6)
C4 0.0232 (8) 0.0203 (8) 0.0285 (8) −0.0022 (7) 0.0024 (7) 0.0029 (7)
C5 0.0211 (7) 0.0272 (9) 0.0214 (7) −0.0004 (7) 0.0048 (6) 0.0040 (6)
C6 0.0154 (7) 0.0230 (8) 0.0199 (7) 0.0016 (6) −0.0001 (6) 0.0006 (6)
C7 0.0163 (7) 0.0220 (8) 0.0193 (7) 0.0017 (6) 0.0030 (5) −0.0013 (6)
C8 0.0174 (7) 0.0227 (8) 0.0281 (8) −0.0003 (7) 0.0051 (6) 0.0015 (6)
C9 0.0236 (8) 0.0234 (9) 0.0556 (11) 0.0020 (7) 0.0068 (8) 0.0068 (8)
C10 0.0226 (8) 0.0282 (9) 0.0243 (8) 0.0021 (7) 0.0072 (6) −0.0002 (6)
C11 0.0270 (8) 0.0284 (9) 0.0224 (7) −0.0009 (7) 0.0065 (6) −0.0030 (6)

Geometric parameters (Å, °)

O1—C7 1.2317 (15) C6—C11 1.5073 (18)
N1—C7 1.3509 (16) C7—C8 1.5101 (18)
N1—C1 1.4299 (16) C8—C9 1.508 (2)
N1—H1N 0.889 (14) C8—H8A 0.998 (14)
C1—C6 1.4000 (17) C8—H8B 0.968 (13)
C1—C2 1.4012 (17) C9—H9A 0.988 (16)
C2—C3 1.3928 (18) C9—H9B 0.987 (15)
C2—C10 1.4994 (19) C9—H9C 1.020 (17)
C3—C4 1.3828 (18) C10—H10A 0.986 (15)
C3—H3 0.969 (13) C10—H10B 0.982 (15)
C4—C5 1.3834 (19) C10—H10C 0.981 (14)
C4—H4 0.957 (13) C11—H11A 0.978 (15)
C5—C6 1.3952 (18) C11—H11B 1.005 (14)
C5—H5 0.973 (13) C11—H11C 1.003 (15)
C7—N1—C1 122.69 (11) C9—C8—C7 113.27 (12)
C7—N1—H1N 116.6 (8) C9—C8—H8A 110.7 (7)
C1—N1—H1N 118.8 (8) C7—C8—H8A 105.7 (7)
C6—C1—C2 121.59 (12) C9—C8—H8B 112.1 (8)
C6—C1—N1 120.03 (11) C7—C8—H8B 109.7 (8)
C2—C1—N1 118.38 (11) H8A—C8—H8B 104.9 (11)
C3—C2—C1 118.17 (12) C8—C9—H9A 111.4 (9)
C3—C2—C10 120.71 (12) C8—C9—H9B 112.7 (9)
C1—C2—C10 121.11 (12) H9A—C9—H9B 107.5 (12)
C4—C3—C2 121.19 (13) C8—C9—H9C 111.2 (8)
C4—C3—H3 119.6 (8) H9A—C9—H9C 106.5 (13)
C2—C3—H3 119.2 (8) H9B—C9—H9C 107.3 (12)
C3—C4—C5 119.76 (13) C2—C10—H10A 112.7 (8)
C3—C4—H4 118.4 (8) C2—C10—H10B 113.0 (8)
C5—C4—H4 121.8 (8) H10A—C10—H10B 105.1 (12)
C4—C5—C6 121.20 (13) C2—C10—H10C 110.5 (8)
C4—C5—H5 118.0 (7) H10A—C10—H10C 107.2 (12)
C6—C5—H5 120.8 (7) H10B—C10—H10C 108.0 (11)
C5—C6—C1 118.05 (12) C6—C11—H11A 111.7 (9)
C5—C6—C11 119.78 (12) C6—C11—H11B 110.3 (8)
C1—C6—C11 122.17 (12) H11A—C11—H11B 112.9 (11)
O1—C7—N1 122.39 (13) C6—C11—H11C 111.1 (8)
O1—C7—C8 121.57 (12) H11A—C11—H11C 103.2 (11)
N1—C7—C8 116.02 (11) H11B—C11—H11C 107.3 (11)
C7—N1—C1—C6 65.81 (15) C4—C5—C6—C1 −0.93 (19)
C7—N1—C1—C2 −113.86 (13) C4—C5—C6—C11 178.87 (12)
C6—C1—C2—C3 −1.77 (18) C2—C1—C6—C5 2.20 (17)
N1—C1—C2—C3 177.88 (11) N1—C1—C6—C5 −177.45 (11)
C6—C1—C2—C10 178.15 (12) C2—C1—C6—C11 −177.59 (12)
N1—C1—C2—C10 −2.20 (17) N1—C1—C6—C11 2.75 (17)
C1—C2—C3—C4 0.06 (18) C1—N1—C7—O1 −7.20 (19)
C10—C2—C3—C4 −179.86 (12) C1—N1—C7—C8 171.64 (11)
C2—C3—C4—C5 1.17 (19) O1—C7—C8—C9 −27.34 (19)
C3—C4—C5—C6 −0.7 (2) N1—C7—C8—C9 153.81 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.889 (14) 2.065 (14) 2.9352 (15) 165.9 (12)

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2305).

References

  1. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3154.
  2. Gowda, B. T., Foro, S., Svoboda, I., Paulus, H. & Fuess, H. (2008). Acta Cryst. E64, o286. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3324.
  4. Gowda, B. T., Usha, K. M. & Jyothi, K. (2004). Z. Naturforsch. Teil A, 59, 69–76.
  5. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Versions 1.171.32.5. Oxford Diffraction Ltd, Köln, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068419/dn2305sup1.cif

e-64-0o380-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068419/dn2305Isup2.hkl

e-64-0o380-Isup2.hkl (98.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES