Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 23;64(Pt 2):o496–o497. doi: 10.1107/S1600536808001426

1-Methyl-1-azonia-3,5-diaza-7-phospha­tricyclo­[3.3.1.1]decane 7-oxide triiodide

Alexander M Kirillov a, Piotr Smoleński a, M Fátima C Guedes da Silva a,b,*, Armando J L Pombeiro a
PMCID: PMC2960408  PMID: 21201518

Abstract

The title compound, C7H15N3OP+·I3 , is a derivative of the well known water-soluble amino­phosphine 1,3,5-triaza-7-phosphaadamantane (PTA). The crystal structure is composed of a cage-like 1-methyl-1-azonia-3,5-diaza-7-phospha­tricyclo­[3.3.1.1]decane 7-oxide cation and a triiodide anion. The N-methyl­ation of the PTA cage results in a slight elongation of the corresponding C—N bonds, while the oxidation of the P atom leads to a slight shortening of the C—P bonds in comparison with those of PTA. In general, most of the bonding parameters are comparable with those reported for related compounds bearing the PTA core. Two inter­molecular C—H⋯O hydrogen bonds between methyl­ene groups and the P=O group are responsible for the linkage of neighbouring cations into linear one-dimensional hydrogen-bonded chains.

Related literature

For a comprehensive review of PTA chemistry, see: Phillips et al. (2004). For general background, see: Kirillov et al. (2007); Smoleński & Pombeiro (2008). For synthesis of PTA and its N-methyl­ated derivative, see: Daigle et al. (1974); Daigle (1998). For related structures, see: Forward et al. (1996a ,b ); Otto et al. (2005); Frost et al. (2006); Marsh et al. (2002).graphic file with name e-64-0o496-scheme1.jpg

Experimental

Crystal data

  • C7H15N3OP+·I3

  • M r = 568.89

  • Monoclinic, Inline graphic

  • a = 7.1570 (8) Å

  • b = 8.2257 (8) Å

  • c = 25.903 (3) Å

  • β = 92.472 (7)°

  • V = 1523.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.24 mm−1

  • T = 150 (2) K

  • 0.13 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.497, T max = 0.574 (expected range = 0.464–0.536)

  • 11526 measured reflections

  • 2789 independent reflections

  • 2214 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.102

  • S = 1.12

  • 2789 reflections

  • 172 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.44 e Å−3

  • Δρmin = −1.03 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: WinGX (Version 1.70.01; Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808001426/kp2159sup1.cif

e-64-0o496-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001426/kp2159Isup2.hkl

e-64-0o496-Isup2.hkl (134.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

C1—N1 1.479 (8)
C1—P1 1.821 (8)
C2—N2 1.486 (8)
C2—P1 1.799 (7)
C3—N3 1.495 (9)
C3—P1 1.825 (8)
C4—N3 1.496 (9)
C12—N1 1.462 (9)
C12—N2 1.467 (10)
C23—N2 1.440 (9)
C23—N3 1.550 (9)
C31—N1 1.441 (9)
C31—N3 1.551 (9)
O1—P1 1.483 (5)
I1—I3 2.9067 (8)
I1—I2 2.9127 (7)
I3—I1—I2 172.41 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯O1i 0.99 (10) 2.26 (11) 3.161 (9) 150 (9)
C31—H31A⋯O1i 0.97 (10) 2.23 (10) 3.160 (9) 161 (8)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Foundation for Science and Technology (FCT), Portugal, and its POCI 2010 programme (FEDER funded).

supplementary crystallographic information

Comment

Within our ongoing research (Kirillov et al., 2007; Smoleński & Pombeiro, 2008) on the synthesis of transition metal complexes with PTA or derived ligands, we have attempted the reaction of a copper(II) salt with N-methyl-1,3,5-triaza-7-phospha-adamantane iodide, which resulted in the formation of the title compound, (I), as a by-product. Its crystal structure is reported herein.

The molecular structure of (I) (Fig. 1) bears a cage-like cation [C7H15N3OP]+ and a tri-iodide anion, with the shortest cation···anion separation of ca 4.0 Å. The N-methylation of the PTA cage results in a slight elongation of the C—N bonds around N3 atom [avg. 1.53 (1) Å] in comparison with the C—N bonds around N1 and N2 atoms [avg. 1.46 (1) Å] (Table 1). The oxidation of P1 atom also slightly affects the C—P bonds [avg. 1.82 (1) Å] which are somewhat shorter than those in PTA [avg. 1.86 (1) Å]. The tri-iodide anion with the I2—I1—I3 angle of 172.41 (2)° deviates from the linear geometry. In general, most of the bonding parameters of (I) agree within values reported for the related compound, [C7H15N3OP][BPh4] (Forward et al., 1996a,b), possessing similar cation, as well as for other N-alkylated (Otto et al., 2005; Forward et al., 1996a,b) or P-oxidized (Frost et al., 2006; Marsh et al., 2002) PTA derivatives.

In (I), the neighbouring cationic units are combined into the linear one-dimensional H-bonded chains (Fig. 2) by means of two intermolecular C—H···O hydrogen bonds [C23—H23A···O1i 1.00 (11) Å, 2.26 (11) Å, 3.161 (9) Å, 150 (9)°; C31—-H31A···O1i 0.97 (10) Å, 2.23 (10) Å, 3.160 (9) Å, 161 (8)°; symmetry code: 1 + x, y, z], which link the methylene groups (C23, C31) with the O1 atom of the P=O moiety.

Experimental

The aqueous solutions (5 ml each) of Cu(NO3)2.2.5 H2O (116 mg, 0.50 mmol) and N-methyl-1,3,5-triaza-7-phospha-adamantane iodide, [C7H15N3P]I (299 mg, 1.00 mmol) [for the synthesis of this compound, see: Daigle et al. (1974); Daigle (1998)], were combined and left stirring in air at ambient temperature for 1 h. The resulting white suspension containing mainly a CuI aminophosphine compound was filtered off. The colourless filtrate was left to evaporate in a beaker in air for two weeks, leading to the formation of a small crop of red X-ray quality crystals of compound (I) as a by-product (it is typically contaminated by a colourless crystalline material). FT–IR (KBr pellet), cm-1: 2967 w, 2939 w, 1449 m, 1384 s, 1304 m, 1279 w, 1246 w, 1195 s [ν(P=O)], 1108 w, 1091 w, 1066 w, 1019 m, 983 m, 934 m, 900 w, 876 w, 816 m, 792 w, 752 m, 544 w, 441 w, 408 w. FAB-MS+ (m-nitrobenzylicalcohol), m/z: 188 [C7H15N3OP]+.

Refinement

All hydrogen atoms were located except from H4A, H4B and H4C which were inserted in calculated positions.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as grey sticks. C, grey; N, blue; P, orange; O, red; I, purple.

Fig. 2.

Fig. 2.

Fragment of the crystal packing diagram of (I) showing the generation of a one-dimensional linear chain from the neighbouring cations via intermolecular C—H···O hydrogen bonds (dotted lines). Tri-iodide anions are omitted for clarity. C, grey; N, blue; P, orange; O, red; H, pale grey.

Crystal data

C7H15N3OP+·I3 F000 = 1040
Mr = 568.89 Dx = 2.480 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71069 Å
Hall symbol: -P2yn Cell parameters from 2835 reflections
a = 7.1570 (8) Å θ = 2.6–27.9º
b = 8.2257 (8) Å µ = 6.24 mm1
c = 25.903 (3) Å T = 150 (2) K
β = 92.472 (7)º Plate, red
V = 1523.5 (3) Å3 0.13 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2789 independent reflections
Radiation source: fine-focus sealed tube 2214 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.040
T = 150(2) K θmax = 25.4º
φ and ω scans θmin = 2.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.497, Tmax = 0.574 k = −9→9
11526 measured reflections l = −29→31

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102   w = 1/[σ2(Fo2) + (0.045P)2 + 6.2243P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.017
2789 reflections Δρmax = 2.44 e Å3
172 parameters Δρmin = −1.03 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5522 (9) 0.4541 (10) 0.1979 (3) 0.0186 (16)
C2 0.5510 (9) 0.1132 (8) 0.1974 (3) 0.0156 (15)
C3 0.5535 (10) 0.2823 (10) 0.1042 (3) 0.0188 (15)
C4 0.8586 (11) 0.2823 (11) 0.0631 (3) 0.0294 (18)
H4A 0.9942 0.2819 0.0701 0.044*
H4B 0.8230 0.3796 0.0432 0.044*
H4C 0.8222 0.1851 0.0432 0.044*
C12 0.8197 (10) 0.2815 (10) 0.2227 (3) 0.0192 (15)
C23 0.8255 (10) 0.1301 (8) 0.1442 (3) 0.0162 (15)
C31 0.8255 (10) 0.4347 (10) 0.1446 (3) 0.0192 (16)
N1 0.7565 (7) 0.4292 (7) 0.1960 (2) 0.0169 (13)
N2 0.7569 (7) 0.1334 (7) 0.1956 (2) 0.0141 (12)
N3 0.7614 (8) 0.2828 (7) 0.1131 (2) 0.0168 (12)
O1 0.2300 (7) 0.2825 (7) 0.1582 (2) 0.0268 (12)
P1 0.4367 (2) 0.2827 (2) 0.16547 (7) 0.0168 (4)
I1 0.42016 (7) 0.78153 (6) 0.088953 (18) 0.02270 (15)
I2 0.14227 (7) 0.78170 (6) 0.16786 (2) 0.02691 (16)
I3 0.73414 (8) 0.78543 (8) 0.02143 (2) 0.03606 (18)
H1A 0.517 (12) 0.452 (11) 0.232 (4) 0.043*
H1B 0.498 (12) 0.558 (11) 0.183 (3) 0.043*
H2A 0.501 (12) 0.108 (11) 0.232 (4) 0.043*
H2B 0.521 (12) 0.008 (12) 0.182 (3) 0.050*
H3A 0.512 (14) 0.190 (12) 0.084 (4) 0.060*
H3B 0.522 (14) 0.380 (13) 0.085 (4) 0.060*
H12A 0.948 (16) 0.286 (12) 0.225 (4) 0.060*
H12B 0.793 (14) 0.282 (11) 0.256 (4) 0.050*
H23A 0.964 (15) 0.135 (13) 0.147 (4) 0.060*
H23B 0.769 (13) 0.034 (13) 0.127 (4) 0.060*
H31A 0.959 (14) 0.414 (12) 0.147 (4) 0.060*
H31B 0.768 (13) 0.538 (13) 0.126 (4) 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.010 (3) 0.026 (5) 0.020 (4) 0.005 (3) 0.001 (3) −0.003 (3)
C2 0.014 (3) 0.011 (4) 0.022 (4) −0.002 (3) 0.006 (3) 0.000 (3)
C3 0.013 (3) 0.021 (4) 0.023 (4) 0.002 (3) −0.003 (3) 0.000 (3)
C4 0.027 (4) 0.041 (5) 0.022 (4) −0.001 (4) 0.017 (3) −0.007 (4)
C12 0.016 (4) 0.021 (4) 0.020 (4) −0.001 (3) −0.006 (3) 0.000 (3)
C23 0.018 (4) 0.006 (4) 0.026 (4) 0.004 (3) 0.005 (3) 0.002 (3)
C31 0.012 (4) 0.027 (5) 0.019 (4) 0.001 (3) 0.002 (3) 0.001 (3)
N1 0.011 (3) 0.020 (3) 0.019 (3) −0.001 (2) −0.002 (2) 0.000 (3)
N2 0.009 (3) 0.017 (3) 0.017 (3) 0.001 (2) 0.002 (2) 0.002 (2)
N3 0.014 (3) 0.020 (3) 0.016 (3) −0.005 (3) 0.002 (2) −0.004 (3)
O1 0.009 (2) 0.029 (3) 0.042 (3) 0.000 (2) −0.002 (2) 0.002 (3)
P1 0.0075 (8) 0.0187 (9) 0.0244 (10) 0.0007 (7) 0.0003 (7) −0.0004 (8)
I1 0.0282 (3) 0.0183 (3) 0.0215 (3) 0.0009 (2) −0.00114 (19) −0.0002 (2)
I2 0.0230 (3) 0.0207 (3) 0.0376 (3) 0.0000 (2) 0.0081 (2) 0.0000 (2)
I3 0.0341 (3) 0.0527 (4) 0.0218 (3) 0.0017 (3) 0.0054 (2) −0.0023 (3)

Geometric parameters (Å, °)

C1—N1 1.479 (8) C12—N1 1.462 (9)
C1—P1 1.821 (8) C12—N2 1.467 (10)
C1—H1A 0.94 (9) C12—H12A 0.92 (11)
C1—H1B 1.01 (9) C12—H12B 0.90 (11)
C2—N2 1.486 (8) C23—N2 1.440 (9)
C2—P1 1.799 (7) C23—N3 1.550 (9)
C2—H2A 0.98 (9) C23—H23A 0.99 (10)
C2—H2B 0.97 (10) C23—H23B 0.99 (10)
C3—N3 1.495 (9) C31—N1 1.441 (9)
C3—P1 1.825 (8) C31—N3 1.551 (9)
C3—H3A 0.96 (10) C31—H31A 0.97 (10)
C3—H3B 0.96 (11) C31—H31B 1.06 (10)
C4—N3 1.496 (9) O1—P1 1.483 (5)
C4—H4A 0.9800 I1—I3 2.9067 (8)
C4—H4B 0.9800 I1—I2 2.9127 (7)
C4—H4C 0.9800
N1—C1—P1 107.9 (5) N2—C23—H23A 108 (6)
N1—C1—H1A 109 (5) N3—C23—H23A 106 (6)
P1—C1—H1A 107 (6) N2—C23—H23B 107 (6)
N1—C1—H1B 118 (5) N3—C23—H23B 107 (6)
P1—C1—H1B 109 (5) H23A—C23—H23B 117 (8)
H1A—C1—H1B 105 (7) N1—C31—N3 110.8 (6)
N2—C2—P1 109.3 (5) N1—C31—H31A 109 (6)
N2—C2—H2A 116 (5) N3—C31—H31A 99 (6)
P1—C2—H2A 106 (5) N1—C31—H31B 108 (5)
N2—C2—H2B 107 (5) N3—C31—H31B 108 (5)
P1—C2—H2B 114 (5) H31A—C31—H31B 122 (8)
H2A—C2—H2B 104 (7) C31—N1—C12 110.7 (6)
N3—C3—P1 110.8 (5) C31—N1—C1 114.0 (5)
N3—C3—H3A 112 (6) C12—N1—C1 112.6 (6)
P1—C3—H3A 109 (6) C23—N2—C12 110.4 (6)
N3—C3—H3B 106 (6) C23—N2—C2 113.9 (5)
P1—C3—H3B 110 (6) C12—N2—C2 111.2 (6)
H3A—C3—H3B 109 (8) C4—N3—C3 111.3 (6)
N3—C4—H4A 109.5 C4—N3—C31 108.6 (5)
N3—C4—H4B 109.5 C3—N3—C31 110.7 (6)
H4A—C4—H4B 109.5 C4—N3—C23 108.0 (6)
N3—C4—H4C 109.5 C3—N3—C23 110.4 (6)
H4A—C4—H4C 109.5 C31—N3—C23 107.8 (5)
H4B—C4—H4C 109.5 O1—P1—C2 119.2 (3)
N1—C12—N2 112.4 (5) O1—P1—C1 119.3 (3)
N1—C12—H12A 107 (6) C2—P1—C1 101.5 (3)
N2—C12—H12A 111 (6) O1—P1—C3 112.4 (3)
N1—C12—H12B 112 (6) C2—P1—C3 100.5 (4)
N2—C12—H12B 113 (6) C1—P1—C3 100.8 (4)
H12A—C12—H12B 100 (9) I3—I1—I2 172.41 (2)
N2—C23—N3 111.1 (5)
N3—C31—N1—C12 57.7 (7) N1—C31—N3—C4 −172.0 (6)
N3—C31—N1—C1 −70.5 (8) N1—C31—N3—C3 65.6 (7)
N2—C12—N1—C31 −59.3 (8) N1—C31—N3—C23 −55.2 (7)
N2—C12—N1—C1 69.6 (8) N2—C23—N3—C4 172.4 (6)
P1—C1—N1—C31 65.5 (7) N2—C23—N3—C3 −65.7 (7)
P1—C1—N1—C12 −61.6 (7) N2—C23—N3—C31 55.3 (7)
N3—C23—N2—C12 −57.4 (7) N2—C2—P1—O1 174.7 (4)
N3—C23—N2—C2 68.6 (7) N2—C2—P1—C1 −52.0 (5)
N1—C12—N2—C23 59.1 (7) N2—C2—P1—C3 51.4 (5)
N1—C12—N2—C2 −68.4 (7) N1—C1—P1—O1 −175.4 (4)
P1—C2—N2—C23 −64.0 (7) N1—C1—P1—C2 51.3 (6)
P1—C2—N2—C12 61.6 (6) N1—C1—P1—C3 −51.8 (6)
P1—C3—N3—C4 179.9 (5) N3—C3—P1—O1 179.9 (5)
P1—C3—N3—C31 −59.2 (7) N3—C3—P1—C2 −52.2 (6)
P1—C3—N3—C23 60.0 (7) N3—C3—P1—C1 51.8 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C23—H23A···O1i 0.99 (10) 2.26 (11) 3.161 (9) 150 (9)
C31—H31A···O1i 0.97 (10) 2.23 (10) 3.160 (9) 161 (8)

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2159).

References

  1. Bruker (2004). APEX2, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Daigle, D. J. (1998). Inorg. Synth.32, 40–45.
  3. Daigle, D. J., Pepperman, A. B. Jr & Vail, S. L. (1974). J. Heterocycl. Chem.11, 407–408.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Forward, J. M., Staples, R. J. & Fackler, J. P. Jr (1996a). Z. Kristallogr.211, 129–130.
  6. Forward, J. M., Staples, R. J. & Fackler, J. P. Jr (1996b). Z. Kristallogr.211, 131–132.
  7. Frost, B. J., Mebi, C. A. & Gingrich, P. W. (2006). Eur. J. Inorg. Chem. pp. 1182–1189.
  8. Kirillov, A. M., Smoleński, P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2007). Eur. J. Inorg. Chem. pp. 2686–2692.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  10. Marsh, R. E., Kapon, M., Hu, S. & Herbstein, F. H. (2002). Acta Cryst. B58, 62–77. [DOI] [PubMed]
  11. Otto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem.690, 4337–4342.
  12. Phillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev.248, 955–993.
  13. Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Smoleński, P. & Pombeiro, A. J. L. (2008). Dalton Trans. pp. 87–91. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808001426/kp2159sup1.cif

e-64-0o496-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001426/kp2159Isup2.hkl

e-64-0o496-Isup2.hkl (134.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES