Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 23;64(Pt 2):o507. doi: 10.1107/S1600536807066469

Benzoyl­methyl 4-chloro­benzoate

Yi Jin a, Jian-Nan Guo a,*, Kan Lin a, Guo Tang a, Yu-Fen Zhao a
PMCID: PMC2960412  PMID: 21201527

Abstract

The asymmetric unit of the title compound, C15H11ClO3, contains three mol­ecules, A, B, and C. Mol­ecules A and B are aligned edge-to-face, whereas mol­ecules B and C are aligned almost parallel to each other. The crystal structure displays C—H⋯π and π–π [centroid–centroid distances of 3.960 (4), 3.971 (4) and 3.971 (4) for mol­ecules A, B and C, respectively] parallel-displaced inter­actions, and C—H⋯O hydrogen bonds.

Related literature

For background literature, see: Kelly & Howard (1932). For the synthesis, see Hendrickson & Kandall (1970). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-0o507-scheme1.jpg

Experimental

Crystal data

  • C15H11ClO3

  • M r = 274.69

  • Monoclinic, Inline graphic

  • a = 14.7634 (6) Å

  • b = 16.4509 (6) Å

  • c = 15.8214 (5) Å

  • β = 92.105 (4)°

  • V = 3840.0 (2) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 (2) K

  • 0.18 × 0.15 × 0.10 mm

Data collection

  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.948, T max = 0.971

  • 18809 measured reflections

  • 6647 independent reflections

  • 3093 reflections with I > 2σ(I)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.071

  • S = 0.79

  • 6647 reflections

  • 514 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066469/ng2408sup1.cif

e-64-0o507-sup1.cif (31.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066469/ng2408Isup2.hkl

e-64-0o507-Isup2.hkl (325.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8A—H8AB⋯O3B 0.97 2.55 3.322 (3) 137
C8C—H8CB⋯O3Ai 0.97 2.55 3.212 (3) 126
C11A—H11ACg1B 0.93 3.46 4.036 (4) 123
C11B—H11BCg1A 0.93 3.10 3.917 (4) 137

Symmetry code: (i) Inline graphic. Cg1A and Cg1B are the centroids of the C1A–C6A and C1B–C6B benzene rings, respectively.

Acknowledgments

The authors acknowledge financial support from the Key Foundation of Science & Technology Project of Fujian Province, China (Key grant No. 2002H011) and also thank Professor G. M. Blackburn and Mr Harry Adams of Sheffield University Chemistry Department for their helpful suggestions.

supplementary crystallographic information

Comment

An X-ray crystal structure determination of the molecule of the title compound, 2-oxo-2-phenylethyl 4-chlorobenzoate, (I) (Scheme. 1), was carried out to determine its conformation and the results are presented here. The bond lengths and angles are within their normal ranges (Allen et al., 1987).

The unit cell has four identical asymmetric units which contain three molecules of (I) each (Fig. 2). In each asymmetric unit, the benzene rings of molecules B and C stack in a parallel-displaced structure, while the benzene rings of molecules A and B form a displaced T-shaped structure (Fig. 1). The two benzene rings within molecule A make a dihedral angle of 61.68 (6)°, while the two benzene rings within molecules B and C make almost identical dihedral angles of 77.66 (6)° and 77.29 (6)° respectively.

Hydrogen bonds C—H···O which are found not only between molecules A and B in the asymmetric unit but also between molecule A and the symmetry- equivalent Ci in the next asymmetric unit (Fig. 3). These C—H···O interactions stabilize the formation of asymmetric units as well as of the whole unit cell (Table 2).

Meanwhile, π—π interactions in stacked, slipped benzene rings from two symmetry-equivalent molecules in adjacent asymmetric units also provide stability for the crystal structure. The distance between Cg1 A and Cg2 Aii is 3.960 (4) Å and the angles between the line through the centroids of these two benzene rings and the normal through Cg1 A is 26.6 (1)° and through Cg2 Aii is 25.0 (1)°. The corresponding values for benzene rings C1B/C6B and C10B/C15Biii are 3.971 (4) Å, 26.4 (1)° and 24.9 (1)°. For C1C/C6C and C10C/C15Ciii they are 3.971 (4) Å, 18.1 (1)° and 33.5 (1)°.Cg1X and Cg2X are the centroids of C1/C6 and C10/C15 benzene rings in molecule X (X=A, B, C) respectively [Symmetry code: (ii) x, -y - 1/2, z + 1/2; (iii) x, -y + 1/2, z - 1/2] (Fig. 2). The packing is further stabilized by weak C—H···π interactions(Table 1).The distances and angles correspond to their caculated ranges.

Experimental

Triethylamine (0.84 ml, 6 mmol) was slowly dropped into 2-bromo-1-phenylethanone (796 mg, 4 mmol) and 4-chlorobenzoic acid (630 mg, 4 mmol) dissolved in freshly distilled tetrahydrofuran (10 ml) at rt under nitrogen and stirred overnight. The precipitate was collected at the pump and washed with ethyl acetate. The filtrate and washings were combined and back-washed successively with 1/3 of the volume each of 10% citric acid, 10% sodium bicarbonate, and water and then dried. Solvent was distilled off in vacuo and the residue recrystallized repeatedly from ethyl acetate-petroleum ether giving 1.085 g (98%) as colourless needles, m.p.128°C. (Hendrickson & Kandall, 1970).

Refinement

The hydrogen atoms were generated geometrically (C—H = 0.93, 0.98, 0.97 or 0.96Å for phenyl, tertiary, methylene or methyl H atoms respectively, and N—H = 0.86 Å) and were included in the refinement in the riding model approximation. The displacement parameters of methyl H atoms were set to 1.5 times Ueq of the equivalent isotropic displacement parameters of their parent atoms, while those of other H atoms were set to 1.2 times.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), drawn with 50% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The unit cell of (I). The same subscript means the molecules form one asymmetric unit and the symmetry-equivalent molecules have the same color.

Fig. 3.

Fig. 3.

The asymmetric unit of molecule (I) which is formed by three molecules A, B, and Ci—symmetry-equivalent of C in the next asymmetric unit. Hydrogen bonds are indicated by dashed lines.

Crystal data

C15H11ClO3 F000 = 1704
Mr = 274.69 Dx = 1.425 Mg m3
Monoclinic, P21/c Melting point: 128 K
Hall symbol: -P 2ybc Mo Kα radiation λ = 0.71073 Å
a = 14.7634 (6) Å Cell parameters from 3122 reflections
b = 16.4509 (6) Å θ = 2.5–32.7º
c = 15.8214 (5) Å µ = 0.30 mm1
β = 92.105 (4)º T = 293 (2) K
V = 3840.0 (2) Å3 Needle, colorless
Z = 12 0.18 × 0.15 × 0.10 mm

Data collection

Bruker APEX area-detector diffractometer 6647 independent reflections
Radiation source: fine-focus sealed tube 3093 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.061
T = 293(2) K θmax = 25.0º
φ and ω scans θmin = 2.5º
Absorption correction: multi-scan(SADABS; Bruker, 2001) h = −17→17
Tmin = 0.948, Tmax = 0.971 k = −19→19
18809 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.071   w = 1/[σ2(Fo2) + (0.0229P)2] where P = (Fo2 + 2Fc2)/3
S = 0.79 (Δ/σ)max = 0.001
6647 reflections Δρmax = 0.16 e Å3
514 parameters Δρmin = −0.18 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1A 0.03772 (5) −0.08212 (4) 0.11747 (4) 0.0556 (2)
Cl1B 0.26822 (6) 0.11374 (5) 1.12967 (4) 0.0633 (2)
Cl1C 0.61726 (6) 0.10917 (5) 1.00742 (4) 0.0683 (3)
O2A 0.03489 (12) −0.10047 (10) 0.53569 (9) 0.0424 (5)
O1B 0.19554 (12) 0.18589 (10) 0.65265 (10) 0.0436 (5)
O2B 0.32721 (12) 0.09438 (10) 0.71717 (9) 0.0402 (5)
O1C 0.50058 (12) 0.18749 (10) 0.51078 (10) 0.0450 (5)
O3A 0.16842 (13) −0.03651 (11) 0.52509 (10) 0.0499 (5)
O3B 0.21291 (13) 0.00485 (11) 0.72245 (10) 0.0488 (5)
O2C 0.63757 (12) 0.11032 (11) 0.59116 (10) 0.0447 (5)
O1A 0.14699 (14) −0.20470 (10) 0.62048 (10) 0.0561 (6)
C8A 0.04329 (18) −0.09541 (15) 0.62601 (13) 0.0385 (7)
H8AA −0.0167 −0.0971 0.6491 0.046*
H8AB 0.0707 −0.0437 0.6417 0.046*
C7C 0.55633 (18) 0.15783 (14) 0.46475 (15) 0.0323 (6)
C1C 0.55205 (18) 0.17052 (14) 0.37173 (14) 0.0311 (6)
C10A 0.08523 (17) −0.07507 (14) 0.39938 (15) 0.0309 (6)
C7B 0.24177 (18) 0.15393 (14) 0.60005 (14) 0.0308 (6)
C1A 0.09642 (18) −0.17310 (14) 0.75762 (14) 0.0324 (6)
O3C 0.53403 (16) 0.01186 (11) 0.60006 (11) 0.0650 (6)
C8B 0.31582 (17) 0.09562 (15) 0.62639 (13) 0.0373 (7)
H8BA 0.3006 0.0415 0.6060 0.045*
H8BB 0.3721 0.1120 0.6016 0.045*
C10B 0.27073 (18) 0.06419 (14) 0.85060 (14) 0.0309 (6)
C3C 0.6090 (2) 0.15411 (15) 0.23220 (16) 0.0403 (7)
H3CA 0.6525 0.1340 0.1967 0.048*
C10C 0.59559 (18) 0.07204 (15) 0.72688 (14) 0.0318 (6)
C7A 0.09950 (18) −0.16285 (15) 0.66412 (15) 0.0366 (7)
C12A 0.13340 (19) −0.04395 (15) 0.25981 (16) 0.0415 (7)
H12A 0.1753 −0.0213 0.2242 0.050*
C3B 0.2621 (2) 0.15140 (16) 0.36190 (16) 0.0459 (8)
H3BA 0.2972 0.1270 0.3214 0.055*
C2C 0.61796 (18) 0.14046 (14) 0.31906 (15) 0.0357 (7)
H2CA 0.6673 0.1116 0.3416 0.043*
C1B 0.22630 (17) 0.17034 (14) 0.50769 (14) 0.0282 (6)
C9B 0.26507 (19) 0.04978 (16) 0.75790 (15) 0.0357 (7)
C13B 0.2710 (2) 0.09279 (16) 1.02189 (15) 0.0417 (7)
C4A 0.1008 (2) −0.19577 (16) 0.93128 (17) 0.0508 (8)
H4AA 0.1021 −0.2034 0.9896 0.061*
C12B 0.2066 (2) 0.04234 (16) 0.98578 (16) 0.0470 (8)
H12B 0.1633 0.0183 1.0189 0.056*
C6A 0.16530 (19) −0.21753 (15) 0.79763 (16) 0.0424 (7)
H6AA 0.2105 −0.2402 0.7657 0.051*
C12C 0.5516 (2) 0.03615 (17) 0.86616 (17) 0.0470 (8)
H12C 0.5170 0.0049 0.9018 0.056*
C11A 0.14801 (18) −0.04141 (14) 0.34670 (15) 0.0385 (7)
H11A 0.2001 −0.0170 0.3697 0.046*
C3A 0.0322 (2) −0.15192 (16) 0.89305 (17) 0.0503 (8)
H3AA −0.0130 −0.1297 0.9254 0.060*
C2B 0.27901 (18) 0.13470 (14) 0.44678 (14) 0.0390 (7)
H2BA 0.3258 0.0996 0.4631 0.047*
C9C 0.5839 (2) 0.05997 (17) 0.63423 (16) 0.0391 (7)
C6B 0.15735 (18) 0.22224 (15) 0.48194 (16) 0.0404 (7)
H6BA 0.1213 0.2461 0.5221 0.048*
C9A 0.1030 (2) −0.06842 (16) 0.49227 (16) 0.0374 (7)
C11B 0.20653 (18) 0.02740 (15) 0.89963 (15) 0.0412 (7)
H11B 0.1635 −0.0072 0.8747 0.049*
C5C 0.4711 (2) 0.22617 (15) 0.25039 (16) 0.0481 (8)
H5CA 0.4218 0.2549 0.2275 0.058*
C5B 0.1412 (2) 0.23927 (16) 0.39721 (16) 0.0514 (8)
H5BA 0.0948 0.2748 0.3806 0.062*
C2A 0.02969 (19) −0.14037 (15) 0.80593 (15) 0.0425 (7)
H2AA −0.0171 −0.1105 0.7802 0.051*
C13A 0.05596 (19) −0.08045 (15) 0.22680 (14) 0.0379 (7)
C13C 0.61072 (19) 0.09358 (16) 0.89888 (15) 0.0395 (7)
C6C 0.47918 (19) 0.21258 (15) 0.33635 (16) 0.0401 (7)
H6CA 0.4347 0.2321 0.3712 0.048*
C15B 0.33538 (18) 0.11417 (15) 0.88873 (14) 0.0371 (7)
H15A 0.3791 0.1383 0.8561 0.045*
C8C 0.63088 (19) 0.10529 (17) 0.50074 (14) 0.0498 (8)
H8CA 0.6197 0.0493 0.4841 0.060*
H8CB 0.6879 0.1220 0.4777 0.060*
C14C 0.66371 (19) 0.13928 (15) 0.84783 (15) 0.0408 (7)
H14A 0.7046 0.1769 0.8709 0.049*
C14A −0.00688 (18) −0.11492 (14) 0.27799 (14) 0.0375 (7)
H14B −0.0586 −0.1397 0.2547 0.045*
C15A 0.00808 (17) −0.11202 (14) 0.36445 (14) 0.0351 (6)
H15B −0.0339 −0.1351 0.3997 0.042*
C4C 0.5369 (2) 0.19671 (15) 0.19875 (16) 0.0481 (8)
H4CA 0.5321 0.2060 0.1408 0.058*
C4B 0.1938 (2) 0.20361 (16) 0.33722 (17) 0.0507 (8)
H4BA 0.1830 0.2150 0.2802 0.061*
C15C 0.65510 (19) 0.12822 (15) 0.76153 (15) 0.0381 (7)
H15C 0.6902 0.1593 0.7261 0.046*
C14B 0.33586 (19) 0.12884 (15) 0.97478 (14) 0.0405 (7)
H14C 0.3794 0.1626 1.0002 0.049*
C11C 0.54441 (19) 0.02561 (15) 0.77951 (16) 0.0436 (7)
H11C 0.5047 −0.0131 0.7566 0.052*
C5A 0.1678 (2) −0.22867 (16) 0.88403 (16) 0.0498 (8)
H5AA 0.2146 −0.2583 0.9102 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1A 0.0629 (5) 0.0707 (5) 0.0334 (4) −0.0070 (4) 0.0027 (4) −0.0032 (4)
Cl1B 0.0917 (7) 0.0693 (5) 0.0292 (3) 0.0110 (5) 0.0060 (4) −0.0045 (4)
Cl1C 0.0927 (7) 0.0810 (6) 0.0312 (3) 0.0232 (5) 0.0041 (4) −0.0038 (4)
O2A 0.0411 (12) 0.0550 (12) 0.0309 (9) −0.0050 (10) −0.0012 (9) 0.0031 (8)
O1B 0.0521 (12) 0.0455 (11) 0.0337 (9) 0.0056 (10) 0.0100 (10) −0.0054 (9)
O2B 0.0402 (11) 0.0540 (12) 0.0264 (9) −0.0049 (10) −0.0011 (8) 0.0029 (8)
O1C 0.0497 (13) 0.0514 (12) 0.0344 (10) 0.0079 (10) 0.0094 (10) −0.0046 (9)
O3A 0.0404 (12) 0.0647 (13) 0.0440 (11) −0.0114 (11) −0.0084 (10) −0.0061 (10)
O3B 0.0611 (14) 0.0502 (12) 0.0344 (10) −0.0144 (11) −0.0086 (10) −0.0042 (9)
O2C 0.0411 (12) 0.0656 (12) 0.0269 (9) 0.0029 (10) −0.0038 (9) 0.0029 (9)
O1A 0.0757 (15) 0.0533 (12) 0.0391 (10) 0.0234 (11) 0.0011 (11) −0.0099 (9)
C8A 0.0394 (17) 0.0472 (17) 0.0287 (13) 0.0009 (15) −0.0038 (13) −0.0007 (13)
C7C 0.0325 (17) 0.0310 (15) 0.0336 (14) −0.0046 (13) 0.0040 (14) −0.0043 (12)
C1C 0.0373 (17) 0.0277 (15) 0.0287 (14) −0.0042 (13) 0.0053 (14) −0.0016 (12)
C10A 0.0257 (15) 0.0293 (14) 0.0375 (14) 0.0051 (13) −0.0024 (13) 0.0016 (12)
C7B 0.0334 (16) 0.0278 (14) 0.0314 (14) −0.0074 (13) 0.0030 (13) −0.0004 (12)
C1A 0.0377 (17) 0.0267 (14) 0.0326 (14) 0.0002 (13) −0.0017 (14) 0.0009 (12)
O3C 0.0987 (18) 0.0496 (13) 0.0450 (12) −0.0208 (13) −0.0213 (12) −0.0034 (10)
C8B 0.0364 (16) 0.0540 (18) 0.0214 (13) −0.0004 (15) 0.0004 (12) 0.0017 (12)
C10B 0.0350 (16) 0.0291 (15) 0.0283 (13) 0.0026 (13) −0.0020 (13) 0.0025 (12)
C3C 0.054 (2) 0.0368 (16) 0.0307 (15) −0.0088 (15) 0.0095 (15) −0.0034 (13)
C10C 0.0322 (16) 0.0310 (15) 0.0321 (14) 0.0005 (13) −0.0004 (13) 0.0004 (12)
C7A 0.0409 (18) 0.0323 (16) 0.0363 (15) 0.0005 (14) −0.0044 (14) −0.0045 (13)
C12A 0.0369 (18) 0.0436 (17) 0.0443 (17) −0.0007 (14) 0.0064 (15) 0.0054 (14)
C3B 0.059 (2) 0.0492 (18) 0.0297 (15) −0.0075 (17) 0.0031 (15) −0.0003 (13)
C2C 0.0390 (17) 0.0309 (16) 0.0373 (15) −0.0013 (13) 0.0019 (14) 0.0006 (12)
C1B 0.0305 (15) 0.0269 (14) 0.0275 (13) −0.0050 (13) 0.0020 (13) 0.0022 (11)
C9B 0.0392 (18) 0.0354 (17) 0.0323 (15) 0.0047 (14) −0.0011 (15) 0.0024 (13)
C13B 0.058 (2) 0.0411 (17) 0.0256 (13) 0.0114 (16) 0.0024 (15) 0.0006 (13)
C4A 0.076 (2) 0.0398 (18) 0.0366 (16) −0.0080 (17) 0.0003 (18) 0.0053 (14)
C12B 0.051 (2) 0.0533 (19) 0.0371 (16) −0.0015 (16) 0.0096 (15) 0.0073 (14)
C6A 0.0469 (19) 0.0384 (16) 0.0419 (16) 0.0031 (15) 0.0005 (15) 0.0017 (13)
C12C 0.0436 (19) 0.0537 (19) 0.0441 (17) −0.0007 (16) 0.0084 (15) 0.0184 (15)
C11A 0.0258 (16) 0.0411 (16) 0.0481 (16) −0.0021 (13) −0.0058 (13) 0.0046 (14)
C3A 0.063 (2) 0.0428 (18) 0.0457 (17) 0.0089 (17) 0.0123 (17) 0.0036 (14)
C2B 0.0449 (18) 0.0398 (17) 0.0326 (14) −0.0033 (14) 0.0066 (14) 0.0011 (12)
C9C 0.0426 (19) 0.0356 (17) 0.0384 (16) 0.0087 (15) −0.0075 (15) 0.0016 (14)
C6B 0.0382 (17) 0.0396 (17) 0.0434 (16) 0.0024 (14) 0.0040 (14) 0.0064 (13)
C9A 0.0322 (17) 0.0385 (17) 0.0414 (16) 0.0012 (15) −0.0026 (15) −0.0008 (13)
C11B 0.0400 (18) 0.0454 (17) 0.0381 (15) −0.0085 (15) 0.0006 (14) 0.0010 (13)
C5C 0.055 (2) 0.0457 (18) 0.0425 (16) 0.0073 (16) −0.0039 (16) 0.0080 (14)
C5B 0.054 (2) 0.0512 (19) 0.0484 (17) −0.0018 (16) −0.0063 (16) 0.0168 (15)
C2A 0.0457 (19) 0.0434 (17) 0.0384 (15) 0.0069 (15) 0.0015 (14) 0.0049 (13)
C13A 0.0427 (18) 0.0385 (16) 0.0324 (14) 0.0063 (15) 0.0007 (14) −0.0045 (13)
C13C 0.0446 (18) 0.0431 (18) 0.0309 (14) 0.0148 (15) 0.0026 (14) 0.0005 (13)
C6C 0.0440 (19) 0.0391 (16) 0.0373 (16) 0.0023 (14) 0.0027 (14) 0.0036 (13)
C15B 0.0392 (17) 0.0418 (16) 0.0305 (14) 0.0018 (15) 0.0032 (13) 0.0033 (13)
C8C 0.051 (2) 0.073 (2) 0.0256 (14) 0.0195 (17) 0.0028 (14) 0.0040 (14)
C14C 0.0473 (19) 0.0351 (17) 0.0395 (16) 0.0008 (14) −0.0072 (15) −0.0062 (13)
C14A 0.0362 (17) 0.0408 (16) 0.0357 (14) −0.0067 (14) 0.0025 (13) −0.0046 (13)
C15A 0.0331 (16) 0.0378 (15) 0.0343 (14) −0.0023 (14) 0.0022 (13) 0.0013 (12)
C4C 0.070 (2) 0.0449 (18) 0.0295 (15) −0.0065 (17) 0.0021 (17) 0.0055 (14)
C4B 0.069 (2) 0.0494 (19) 0.0327 (15) −0.0193 (17) −0.0060 (16) 0.0113 (14)
C15C 0.0439 (18) 0.0345 (16) 0.0361 (15) −0.0050 (14) 0.0037 (14) 0.0005 (13)
C14B 0.0472 (19) 0.0392 (17) 0.0345 (15) 0.0007 (15) −0.0062 (14) −0.0011 (13)
C11C 0.0432 (19) 0.0444 (17) 0.0427 (16) −0.0075 (15) −0.0070 (14) 0.0061 (14)
C5A 0.057 (2) 0.0438 (18) 0.0473 (17) 0.0044 (16) −0.0130 (16) 0.0116 (14)

Geometric parameters (Å, °)

Cl1A—C13A 1.741 (2) C5C—C6C 1.379 (3)
O1A—C7A 1.216 (2) C6A—H6AA 0.9300
C1A—C2A 1.378 (3) C6B—H6BA 0.9300
C1A—C6A 1.386 (3) C6C—H6CA 0.9300
C1A—C7A 1.491 (3) C7A—C8A 1.499 (3)
Cl1B—C13B 1.742 (2) C7B—C8B 1.502 (3)
O1B—C7B 1.215 (2) C7C—C8C 1.495 (4)
C1B—C2B 1.390 (3) C8A—H8AA 0.9700
C1B—C6B 1.379 (3) C8A—H8AB 0.9700
C1B—C7B 1.495 (3) C8B—H8BA 0.9700
Cl1C—C13C 1.736 (2) C8B—H8BB 0.9700
O1C—C7C 1.221 (2) C8C—H8CA 0.9700
C1C—C2C 1.395 (3) C8C—H8CB 0.9700
C1C—C6C 1.380 (3) C9A—C10A 1.487 (3)
C1C—C7C 1.486 (3) C9B—C10B 1.485 (3)
O2A—C8A 1.432 (3) C9C—C10C 1.483 (3)
O2A—C9A 1.346 (3) C10A—C11A 1.385 (3)
C2A—H2AA 0.9300 C10A—C15A 1.388 (3)
C2A—C3A 1.391 (3) C10B—C11B 1.386 (3)
O2B—C8B 1.440 (3) C10B—C15B 1.382 (3)
O2B—C9B 1.356 (3) C10C—C11C 1.376 (3)
C2B—H2BA 0.9300 C10C—C15C 1.375 (3)
C2B—C3B 1.384 (3) C11A—H11A 0.9300
O2C—C8C 1.433 (3) C11A—C12A 1.384 (3)
O2C—C9C 1.349 (3) C11B—H11B 0.9300
C2C—H2CA 0.9300 C11B—C12B 1.385 (3)
C2C—C3C 1.394 (3) C11C—H11C 0.9300
O3A—C9A 1.200 (3) C11C—C12C 1.382 (3)
C3A—H3AA 0.9300 C12A—H12A 0.9300
C3A—C4A 1.366 (4) C12A—C13A 1.377 (4)
O3B—C9B 1.193 (3) C12B—H12B 0.9300
C3B—H3BA 0.9300 C12B—C13B 1.370 (4)
C3B—C4B 1.370 (4) C12C—H12C 0.9300
O3C—C9C 1.196 (3) C12C—C13C 1.375 (4)
C3C—H3CA 0.9300 C13A—C14A 1.376 (3)
C3C—C4C 1.364 (4) C13B—C14B 1.370 (3)
C4A—H4AA 0.9300 C13C—C14C 1.370 (3)
C4A—C5A 1.373 (3) C14A—H14B 0.9300
C4B—H4BA 0.9300 C14A—C15A 1.378 (3)
C4B—C5B 1.379 (3) C14B—H14C 0.9300
C4C—H4CA 0.9300 C14B—C15B 1.382 (3)
C4C—C5C 1.381 (3) C14C—H14A 0.9300
C5A—H5AA 0.9300 C14C—C15C 1.379 (3)
C5A—C6A 1.378 (3) C15A—H15B 0.9300
C5B—H5BA 0.9300 C15B—H15A 0.9300
C5B—C6B 1.382 (3) C15C—H15C 0.9300
C5C—H5CA 0.9300
Cl1A—C13A—C14A 119.7 (2) C4C—C5C—C6C 119.3 (3)
Cl1A—C13A—C12A 118.7 (2) C5A—C4A—H4AA 119.8
O1A—C7A—C1A 122.6 (2) C5A—C6A—H6AA 119.5
O1A—C7A—C8A 120.9 (2) C5B—C4B—H4BA 120.1
C1A—C2A—H2AA 119.9 C5B—C6B—H6BA 119.6
C1A—C2A—C3A 120.2 (3) C5C—C4C—H4CA 119.8
C1A—C6A—H6AA 119.5 C5C—C6C—H6CA 119.4
C1A—C6A—C5A 121.0 (3) C6A—C1A—C7A 117.7 (2)
C1A—C7A—C8A 116.5 (2) C6A—C5A—H5AA 120.2
Cl1B—C13B—C14B 119.3 (2) C6B—C1B—C7B 119.0 (2)
Cl1B—C13B—C12B 119.2 (2) C6B—C5B—H5BA 120.0
O1B—C7B—C1B 121.4 (2) C6C—C1C—C7C 118.5 (2)
O1B—C7B—C8B 120.5 (2) C6C—C5C—H5CA 120.4
C1B—C2B—H2BA 119.9 C7A—C8A—H8AA 109.1
C1B—C2B—C3B 120.2 (3) C7A—C8A—H8AB 109.1
C1B—C6B—H6BA 119.6 C7B—C8B—H8BA 109.7
C1B—C6B—C5B 120.8 (2) C7B—C8B—H8BB 109.7
C1B—C7B—C8B 118.0 (2) C7C—C8C—H8CA 109.3
Cl1C—C13C—C14C 119.4 (2) C7C—C8C—H8CB 109.3
Cl1C—C13C—C12C 119.1 (2) C8A—O2A—C9A 116.6 (2)
O1C—C7C—C1C 122.0 (2) H8AA—C8A—H8AB 107.8
O1C—C7C—C8C 120.5 (2) C8B—O2B—C9B 115.2 (2)
C1C—C2C—H2CA 120.4 H8BA—C8B—H8BB 108.2
C1C—C2C—C3C 119.3 (3) C8C—O2C—C9C 116.7 (2)
C1C—C6C—H6CA 119.4 H8CA—C8C—H8CB 107.9
C1C—C6C—C5C 121.3 (2) C9A—C10A—C11A 117.9 (3)
C1C—C7C—C8C 117.5 (2) C9A—C10A—C15A 122.6 (2)
O2A—C8A—H8AA 109.1 C9B—C10B—C11B 117.9 (3)
O2A—C8A—H8AB 109.1 C9B—C10B—C15B 122.6 (2)
O2A—C8A—C7A 112.62 (19) C9C—C10C—C11C 118.5 (3)
O2A—C9A—O3A 123.7 (2) C9C—C10C—C15C 122.3 (2)
O2A—C9A—C10A 111.5 (3) C10A—C11A—H11A 119.9
C2A—C1A—C6A 118.7 (2) C10A—C11A—C12A 120.2 (3)
C2A—C1A—C7A 123.7 (3) C10A—C15A—H15B 119.7
C2A—C3A—H3AA 119.9 C10A—C15A—C14A 120.6 (2)
C2A—C3A—C4A 120.2 (3) C10B—C11B—H11B 120.1
O2B—C8B—H8BA 109.7 C10B—C11B—C12B 119.8 (3)
O2B—C8B—H8BB 109.7 C10B—C15B—H15A 119.6
O2B—C8B—C7B 110.05 (18) C10B—C15B—C14B 120.8 (2)
O2B—C9B—O3B 123.3 (2) C10C—C11C—H11C 119.8
O2B—C9B—C10B 111.6 (2) C10C—C11C—C12C 120.4 (3)
C2B—C1B—C6B 118.8 (2) C10C—C15C—H15C 119.4
C2B—C1B—C7B 122.1 (2) C10C—C15C—C14C 121.2 (2)
C2B—C3B—H3BA 119.8 C11A—C10A—C15A 119.5 (2)
C2B—C3B—C4B 120.4 (3) C11A—C12A—H12A 120.4
O2C—C8C—H8CA 109.3 C11A—C12A—C13A 119.1 (2)
O2C—C8C—H8CB 109.3 C11B—C10B—C15B 119.4 (2)
O2C—C8C—C7C 111.7 (2) C11B—C12B—H12B 120.2
O2C—C9C—O3C 122.8 (2) C11B—C12B—C13B 119.6 (2)
O2C—C9C—C10C 111.6 (3) C11C—C10C—C15C 119.3 (2)
C2C—C1C—C6C 119.1 (2) C11C—C12C—H12C 120.5
C2C—C1C—C7C 122.5 (3) C11C—C12C—C13C 119.0 (2)
C2C—C3C—H3CA 119.7 C12A—C11A—H11A 119.9
C2C—C3C—C4C 120.6 (3) C12A—C13A—C14A 121.6 (2)
O3A—C9A—C10A 124.7 (2) C12B—C11B—H11B 120.1
C3A—C2A—H2AA 119.9 C12B—C13B—C14B 121.6 (2)
C3A—C4A—H4AA 119.8 C12C—C11C—H11C 119.8
C3A—C4A—C5A 120.3 (3) C12C—C13C—C14C 121.6 (2)
O3B—C9B—C10B 125.1 (2) C13A—C12A—H12A 120.4
C3B—C2B—H2BA 119.9 C13A—C14A—H14B 120.6
C3B—C4B—H4BA 120.1 C13A—C14A—C15A 118.9 (3)
C3B—C4B—C5B 119.8 (3) C13B—C12B—H12B 120.2
O3C—C9C—C10C 125.7 (3) C13B—C14B—H14C 120.6
C3C—C2C—H2CA 120.4 C13B—C14B—C15B 118.8 (3)
C3C—C4C—H4CA 119.8 C13C—C12C—H12C 120.5
C3C—C4C—C5C 120.5 (2) C13C—C14C—H14A 120.7
C4A—C3A—H3AA 119.9 C13C—C14C—C15C 118.5 (3)
C4A—C5A—H5AA 120.2 C14A—C15A—H15B 119.7
C4A—C5A—C6A 119.6 (3) C14B—C15B—H15A 119.6
C4B—C3B—H3BA 119.8 C14C—C15C—H15C 119.4
C4B—C5B—H5BA 120.0 C15A—C14A—H14B 120.6
C4B—C5B—C6B 120.0 (3) C15B—C14B—H14C 120.6
C4C—C3C—H3CA 119.7 C15C—C14C—H14A 120.7
C4C—C5C—H5CA 120.4
Cl1A—C13A—C12A—C11A 179.21 (19) O3B—C9B—C10B—C15B 176.9 (3)
Cl1A—C13A—C14A—C15A −179.1 (2) C3B—C2B—C1B—C6B −0.0 (4)
O1A—C7A—C8A—O2A 14.7 (3) C3B—C2B—C1B—C7B 179.8 (2)
O1A—C7A—C1A—C2A −164.7 (2) C3B—C4B—C5B—C6B −0.1 (4)
O1A—C7A—C1A—C6A 15.9 (4) C8C—O2C—C9C—O3C 1.5 (4)
C1A—C2A—C3A—C4A −0.0 (4) O3C—C9C—C10C—C11C −1.2 (4)
C1A—C6A—C5A—C4A 0.5 (4) O3C—C9C—C10C—C15C 179.3 (3)
C1A—C7A—C8A—O2A −167.6 (2) C3C—C2C—C1C—C6C 0.5 (4)
Cl1B—C13B—C12B—C11B 177.9 (2) C3C—C2C—C1C—C7C 179.4 (2)
Cl1B—C13B—C14B—C15B −177.6 (2) C3C—C4C—C5C—C6C 0.5 (4)
O1B—C7B—C8B—O2B −7.1 (3) C5A—C6A—C1A—C7A 179.1 (2)
O1B—C7B—C1B—C2B 179.5 (2) C5B—C6B—C1B—C7B 179.7 (2)
O1B—C7B—C1B—C6B −0.7 (4) C5C—C6C—C1C—C7C −179.8 (2)
C1B—C2B—C3B—C4B 0.5 (4) C6A—C1A—C7A—C8A −161.8 (2)
C1B—C6B—C5B—C4B 0.6 (4) C6B—C1B—C7B—C8B 178.5 (2)
C1B—C7B—C8B—O2B 173.7 (2) C6C—C1C—C7C—C8C 174.2 (2)
Cl1C—C13C—C12C—C11C 178.0 (2) C7A—C8A—O2A—C9A −83.8 (3)
Cl1C—C13C—C14C—C15C −177.6 (2) C7B—C8B—O2B—C9B 78.7 (2)
O1C—C7C—C8C—O2C −12.2 (4) C7C—C8C—O2C—C9C 86.1 (3)
O1C—C7C—C1C—C2C 176.6 (2) C8A—O2A—C9A—C10A −178.2 (2)
O1C—C7C—C1C—C6C −4.5 (4) C8B—O2B—C9B—C10B −169.2 (2)
C1C—C2C—C3C—C4C 0.3 (4) C8C—O2C—C9C—C10C −178.8 (2)
C1C—C6C—C5C—C4C 0.4 (4) C9A—C10A—C11A—C12A −178.2 (2)
C1C—C7C—C8C—O2C 169.1 (2) C9A—C10A—C15A—C14A 178.2 (2)
O2A—C9A—C10A—C11A 177.32 (19) C9B—C10B—C11B—C12B −176.9 (2)
O2A—C9A—C10A—C15A −1.5 (3) C9B—C10B—C15B—C14B 177.1 (2)
C2A—C1A—C6A—C5A −0.4 (4) C9C—C10C—C11C—C12C −178.5 (3)
C2A—C1A—C7A—C8A 17.6 (4) C9C—C10C—C15C—C14C 178.9 (3)
C2A—C3A—C4A—C5A −0.1 (4) C10A—C11A—C12A—C13A 0.2 (4)
O2B—C9B—C10B—C11B 175.1 (2) C10A—C15A—C14A—C13A 0.1 (4)
O2B—C9B—C10B—C15B −3.1 (3) C10B—C11B—C12B—C13B −0.7 (4)
C2B—C1B—C6B—C5B −0.6 (4) C10B—C15B—C14B—C13B 0.1 (4)
C2B—C1B—C7B—C8B −1.2 (3) C10C—C11C—C12C—C13C 0.1 (4)
C2B—C3B—C4B—C5B −0.5 (4) C10C—C15C—C14C—C13C −0.8 (4)
O2C—C9C—C10C—C11C 179.2 (2) C11A—C10A—C15A—C14A −0.5 (4)
O2C—C9C—C10C—C15C −0.3 (4) C11A—C12A—C13A—C14A −0.4 (4)
C2C—C1C—C6C—C5C −0.8 (4) C11B—C10B—C15B—C14B −1.0 (4)
C2C—C1C—C7C—C8C −4.8 (4) C11B—C12B—C13B—C14B 0.2 (4)
C2C—C3C—C4C—C5C −0.8 (4) C11C—C10C—C15C—C14C −0.6 (4)
O3A—C9A—O2A—C8A 0.2 (4) C11C—C12C—C13C—C14C −1.3 (4)
O3A—C9A—C10A—C11A −0.7 (4) C12A—C11A—C10A—C15A 0.6 (4)
O3A—C9A—C10A—C15A −179.5 (2) C12A—C13A—C14A—C15A 0.6 (4)
C3A—C2A—C1A—C6A 0.1 (4) C12B—C11B—C10B—C15B 1.3 (4)
C3A—C2A—C1A—C7A −179.3 (3) C12B—C13B—C14B—C15B 0.6 (4)
C3A—C4A—C5A—C6A −0.3 (4) C12C—C11C—C10C—C15C 1.0 (4)
O3B—C9B—O2B—C8B 10.9 (3) C12C—C13C—C14C—C15C 1.7 (4)
O3B—C9B—C10B—C11B −4.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8A—H8AB···O3B 0.97 2.55 3.322 (3) 137
C8C—H8CB···O3Ai 0.97 2.55 3.212 (3) 126
C11A—H11A···Cg1B 0.93 3.46 4.036 (4) 123
C11B—H11B···Cg1A 0.93 3.10 3.917 (4) 137

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2408).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2001). SAINT (Version 6.22), SMART (Version 5.625) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Hendrickson, J. B. & Kandall, C. (1970). Tetrahedron Lett.5, 343–344.
  5. Kelly, T. L. & Howard, H. W. (1932). J. Am. Chem. Soc.54, 4383–4385.
  6. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066469/ng2408sup1.cif

e-64-0o507-sup1.cif (31.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066469/ng2408Isup2.hkl

e-64-0o507-Isup2.hkl (325.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES