Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 4;64(Pt 2):m265. doi: 10.1107/S1600536807067384

1-(2,4-Dinitro­phen­yl)-5-ferrocenyl-3-methyl-1H-pyrazole

V Stalin Elanchezhian a, M Kandaswamy a, M N Ponnuswamy b,*
PMCID: PMC2960418  PMID: 21201250

Abstract

In the title compound, [Fe(C5H5)(C15H11N4O4)], the dinitro­phenyl and cyclo­penta­dienyl rings make dihedral angles of 53.61 (6) and 23.11 (9)°, respectively, with the pyrazole unit. The two cyclo­penta­dienyl rings are in an eclipsed conformation. The crystal structure is stabilized by inter­molecular C—H⋯O inter­actions, which link mol­ecules into chains parallel to the b axis.

Related literature

For related literature, see: Beer et al. (1998); Erasmus et al. (1996); Fabbrizzi & Poggi (1995); Gilchrist (1997); Basurto et al. (2007); Shi et al. (2005).graphic file with name e-64-0m265-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C15H11N4O4)]

  • M r = 432.22

  • Triclinic, Inline graphic

  • a = 7.1073 (2) Å

  • b = 11.5339 (3) Å

  • c = 11.7575 (3) Å

  • α = 103.822 (1)°

  • β = 93.061 (1)°

  • γ = 98.822 (2)°

  • V = 920.76 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 293 (2) K

  • 0.25 × 0.15 × 0.15 mm

Data collection

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.815, T max = 0.882

  • 24588 measured reflections

  • 6096 independent reflections

  • 4741 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.107

  • S = 1.01

  • 6096 reflections

  • 263 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067384/gk2122sup1.cif

e-64-0m265-sup1.cif (30.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067384/gk2122Isup2.hkl

e-64-0m265-Isup2.hkl (292.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O4i 0.93 2.46 3.380 (3) 170

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the CSIR, India, for financial support.

supplementary crystallographic information

Comment

The design of molecular receptors having the ability to selectively bind and sense cationic, anionic or even neutral guests via a macroscopic physical response is an area of intense activity (Fabbrizzi et al., 1995). Chemical sensors bearing ferrocene nuclei as part of the sensing unit have been widely studied (Basurto et al., 2007). Ferrocene has largely proved to be a simple and remarkably robust building block for the construction of redox-responsive receptors (Beer et al., 1998). To build a sensor molecule with dual response (redox &optical), the title compound has been synthesized and studied to understand the above said properties.

The pyrazole ring has delocalized bonds (Gilchrist,1997; Shi et al., 2005). The substitued cyclopentadienyl rings are parallel to each other. The cyclopentadienyl rings are oriented at angles of 23.11 (9)° and 23.45 (7)° with respect to the planar pyrazole ring. Furthermore, the pyrazole and dinitrophenyl rings make a dihedral angle of 53.61 (6) °. The nitro groups are planar and oriented at angles of 26.61 (12)° and 9.53 (10)° to the phenyl ring. The two cyclopentadienyl rings of the ferrocenyl group are in a nearly eclipsed conformation (Erasmus et al., 1996).

The molecules in crystal are connected via intermolecular C—H···O interaction into a chain extended along the [010] direction.

Experimental

2,4-Dinitrophenylhydrazine (1 g, 5 mmol) was added to a solution of ferrocenoylacetone (1.35 g, 5 mmol) and a catalytic amount of p-toluenesulfonic acid in 50 ml of toluene. Tthe mixture was refluxed with a Dean-Stark apparatus for 14 h. The solvent was evaporated under vacuum, and the resulting black residue was chromatographed on a silica-gel column using petroleum ether-ethylacetate (9:1) mixture as eluent. The red band was collected which offered dark-red crystal. (62% yield, m.p. 433–435 K).

Refinement

H atoms were geometrically positioned (C—H = 0.93 - 0.98 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The cyclopentadienyl group C15—C19 was refined as a rigid group.

Figures

Fig. 1.

Fig. 1.

ORTEP plot of the title molecule with displecement ellipsoids drawn at 20% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed down the c axis.

Crystal data

[Fe(C5H5)(C15H11N4O4)] Z = 2
Mr = 432.22 F000 = 444
Triclinic, P1 Dx = 1.559 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.1073 (2) Å Cell parameters from 2637 reflections
b = 11.5339 (3) Å θ = 2.2–25º
c = 11.7575 (3) Å µ = 0.86 mm1
α = 103.822 (1)º T = 293 (2) K
β = 93.061 (1)º Prism, black
γ = 98.822 (2)º 0.25 × 0.15 × 0.15 mm
V = 920.76 (4) Å3

Data collection

Bruker APEXII Kappa diffractometer 6096 independent reflections
Radiation source: fine-focus sealed tube 4741 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.027
T = 293(2) K θmax = 31.5º
ω and φ scans θmin = 2.2º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.815, Tmax = 0.882 k = −16→16
24588 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.107   w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1435P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
6096 reflections Δρmax = 0.38 e Å3
263 parameters Δρmin = −0.25 e Å3
10 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. Spectral data: LC Mass:[M]+:432(m/e);1H NMR (CDCl3, 400 MHz, \d in p.p.m.): 2.34 (3H, s, CH~3~), 4.24(7H, s, Fc), 4.13 (2H, s, Fc), 7.56 (1H, d, Ar, J~0~=8.6 MHz), 8.40 (1H, d, Ar, J~0~=8.6 MHz),8.72 (1H, s, Ar).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5094 (2) 0.03689 (14) 0.34324 (13) 0.0422 (3)
C2 0.5263 (3) −0.08426 (16) 0.31250 (14) 0.0498 (4)
H2 0.6393 −0.1081 0.2870 0.060*
C3 0.3723 (3) −0.16830 (14) 0.32047 (14) 0.0512 (4)
C4 0.2039 (3) −0.13645 (15) 0.35988 (15) 0.0529 (4)
H4 0.1039 −0.1949 0.3688 0.063*
C5 0.1875 (3) −0.01628 (15) 0.38571 (14) 0.0470 (3)
H5 0.0731 0.0063 0.4102 0.056*
C6 0.3372 (2) 0.07273 (13) 0.37625 (12) 0.0384 (3)
C7 0.2340 (3) 0.35505 (15) 0.50396 (14) 0.0467 (3)
C8 0.2893 (3) 0.37968 (14) 0.39813 (14) 0.0464 (3)
H8 0.2952 0.4530 0.3775 0.056*
C9 0.3328 (2) 0.27444 (13) 0.33134 (12) 0.0386 (3)
C10 0.3901 (2) 0.24686 (13) 0.21167 (12) 0.0391 (3)
C11 0.3667 (3) 0.13264 (15) 0.12710 (14) 0.0483 (4)
H11 0.3100 0.0540 0.1392 0.058*
C12 0.4404 (3) 0.1534 (2) 0.02226 (15) 0.0589 (5)
H12 0.4423 0.0914 −0.0508 0.071*
C13 0.5071 (3) 0.2775 (2) 0.04050 (17) 0.0611 (5)
H13 0.5632 0.3171 −0.0178 0.073*
C14 0.4769 (2) 0.33690 (18) 0.15634 (15) 0.0507 (4)
H14 0.5094 0.4242 0.1923 0.061*
C15 −0.0579 (3) 0.1718 (2) 0.0393 (2) 0.0712 (5)
H15 −0.1129 0.0953 0.0564 0.085*
C16 −0.0325 (3) 0.2853 (2) 0.1168 (2) 0.0706 (5)
H16 −0.0665 0.3020 0.1981 0.085*
C17 0.0510 (4) 0.3715 (2) 0.0615 (3) 0.0817 (6)
H17 0.0835 0.4591 0.0960 0.098*
C18 0.0794 (4) 0.3085 (3) −0.0561 (2) 0.0858 (6)
H18 0.1335 0.3446 −0.1172 0.103*
C19 0.0095 (3) 0.1847 (3) −0.0667 (2) 0.0784 (5)
H19 0.0095 0.1186 −0.1369 0.094*
C20 0.1706 (3) 0.44028 (19) 0.60557 (17) 0.0650 (5)
H20A 0.0387 0.4452 0.5892 0.098*
H20B 0.2472 0.5192 0.6178 0.098*
H20C 0.1852 0.4113 0.6750 0.098*
Fe1 0.22444 (3) 0.247896 (19) 0.064950 (18) 0.03941 (8)
N1 0.6829 (2) 0.12430 (16) 0.34359 (15) 0.0571 (4)
N2 0.3891 (4) −0.29740 (15) 0.28358 (15) 0.0726 (5)
N3 0.2412 (2) 0.24113 (13) 0.50543 (11) 0.0473 (3)
N4 0.3046 (2) 0.19276 (11) 0.39851 (11) 0.0410 (3)
O1 0.7007 (2) 0.22452 (14) 0.40943 (16) 0.0728 (4)
O2 0.8042 (3) 0.08766 (19) 0.28032 (19) 0.0951 (6)
O3 0.5291 (3) −0.32384 (15) 0.23593 (15) 0.0900 (6)
O4 0.2588 (4) −0.37005 (15) 0.3009 (2) 0.1185 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0503 (8) 0.0398 (7) 0.0421 (7) 0.0131 (6) 0.0009 (6) 0.0189 (6)
C2 0.0665 (10) 0.0494 (9) 0.0442 (8) 0.0288 (8) 0.0083 (7) 0.0198 (7)
C3 0.0860 (13) 0.0318 (7) 0.0396 (7) 0.0181 (8) −0.0010 (7) 0.0129 (6)
C4 0.0735 (12) 0.0377 (8) 0.0477 (8) 0.0022 (8) 0.0003 (8) 0.0169 (6)
C5 0.0546 (9) 0.0441 (8) 0.0456 (8) 0.0109 (7) 0.0064 (7) 0.0156 (6)
C6 0.0527 (8) 0.0322 (6) 0.0334 (6) 0.0123 (6) 0.0002 (5) 0.0119 (5)
C7 0.0562 (9) 0.0412 (8) 0.0423 (7) 0.0166 (7) 0.0008 (6) 0.0055 (6)
C8 0.0620 (10) 0.0333 (7) 0.0458 (8) 0.0162 (7) 0.0000 (7) 0.0094 (6)
C9 0.0474 (8) 0.0330 (6) 0.0374 (6) 0.0113 (6) −0.0019 (5) 0.0113 (5)
C10 0.0429 (7) 0.0403 (7) 0.0376 (6) 0.0151 (6) −0.0008 (5) 0.0127 (5)
C11 0.0639 (10) 0.0451 (8) 0.0408 (7) 0.0264 (7) −0.0015 (7) 0.0108 (6)
C12 0.0645 (11) 0.0810 (13) 0.0396 (8) 0.0435 (10) 0.0051 (7) 0.0120 (8)
C13 0.0450 (9) 0.0962 (16) 0.0514 (9) 0.0185 (9) 0.0093 (7) 0.0315 (10)
C14 0.0434 (8) 0.0590 (10) 0.0516 (9) 0.0024 (7) −0.0028 (7) 0.0232 (8)
C15 0.0454 (10) 0.0815 (10) 0.0814 (11) 0.0065 (9) −0.0104 (9) 0.0163 (9)
C16 0.0478 (10) 0.0945 (13) 0.0715 (10) 0.0339 (10) 0.0015 (8) 0.0117 (8)
C17 0.0743 (14) 0.0694 (10) 0.1093 (14) 0.0405 (10) −0.0153 (11) 0.0251 (9)
C18 0.0756 (14) 0.1228 (15) 0.0822 (11) 0.0391 (12) −0.0092 (10) 0.0602 (12)
C19 0.0677 (13) 0.1053 (12) 0.0567 (8) 0.0298 (11) −0.0220 (8) 0.0065 (9)
C20 0.0869 (14) 0.0567 (11) 0.0522 (10) 0.0314 (10) 0.0096 (9) 0.0020 (8)
Fe1 0.03942 (12) 0.04333 (13) 0.03942 (12) 0.01542 (9) −0.00190 (8) 0.01395 (9)
N1 0.0497 (8) 0.0612 (10) 0.0707 (10) 0.0128 (7) 0.0001 (7) 0.0357 (8)
N2 0.1285 (18) 0.0403 (8) 0.0541 (9) 0.0290 (10) −0.0004 (10) 0.0142 (7)
N3 0.0641 (9) 0.0435 (7) 0.0376 (6) 0.0190 (6) 0.0080 (6) 0.0094 (5)
N4 0.0573 (8) 0.0325 (6) 0.0365 (6) 0.0155 (5) 0.0044 (5) 0.0102 (5)
O1 0.0628 (9) 0.0566 (8) 0.0960 (11) −0.0018 (7) −0.0147 (8) 0.0257 (8)
O2 0.0702 (10) 0.1045 (14) 0.1224 (16) 0.0192 (10) 0.0402 (11) 0.0418 (12)
O3 0.1459 (17) 0.0619 (10) 0.0723 (10) 0.0583 (11) 0.0112 (10) 0.0105 (8)
O4 0.177 (2) 0.0373 (8) 0.147 (2) 0.0134 (11) 0.0416 (17) 0.0319 (10)

Geometric parameters (Å, °)

C1—C2 1.383 (2) C13—C14 1.414 (3)
C1—C6 1.396 (2) C13—Fe1 2.0328 (18)
C1—N1 1.468 (2) C13—H13 0.9800
C2—C3 1.369 (3) C14—Fe1 2.0325 (17)
C2—H2 0.9300 C14—H14 0.9800
C3—C4 1.376 (3) C15—C16 1.384 (3)
C3—N2 1.474 (2) C15—C19 1.391 (4)
C4—C5 1.371 (2) C15—Fe1 2.039 (2)
C4—H4 0.9300 C15—H15 0.9800
C5—C6 1.389 (2) C16—C17 1.390 (4)
C5—H5 0.9300 C16—Fe1 2.031 (2)
C6—N4 1.4036 (18) C16—H16 0.9800
C7—N3 1.327 (2) C17—C18 1.441 (4)
C7—C8 1.404 (2) C17—Fe1 2.0285 (19)
C7—C20 1.493 (2) C17—H17 0.9800
C8—C9 1.368 (2) C18—C19 1.411 (4)
C8—H8 0.9300 C18—Fe1 2.0290 (18)
C9—N4 1.3658 (18) C18—H18 0.9800
C9—C10 1.461 (2) C19—Fe1 2.032 (2)
C10—C11 1.429 (2) C19—H19 0.9800
C10—C14 1.432 (2) C20—H20A 0.9600
C10—Fe1 2.0394 (13) C20—H20B 0.9600
C11—C12 1.422 (2) C20—H20C 0.9600
C11—Fe1 2.0299 (15) N1—O1 1.212 (2)
C11—H11 0.9800 N1—O2 1.227 (2)
C12—C13 1.398 (3) N2—O4 1.210 (3)
C12—Fe1 2.0318 (17) N2—O3 1.212 (3)
C12—H12 0.9800 N3—N4 1.3775 (18)
C2—C1—C6 121.03 (15) Fe1—C17—H17 126.3
C2—C1—N1 116.47 (15) C19—C18—C17 106.3 (2)
C6—C1—N1 122.45 (14) C19—C18—Fe1 69.78 (11)
C3—C2—C1 118.33 (16) C17—C18—Fe1 69.17 (11)
C3—C2—H2 120.8 C19—C18—H18 126.9
C1—C2—H2 120.8 C17—C18—H18 126.9
C2—C3—C4 122.51 (15) Fe1—C18—H18 126.9
C2—C3—N2 117.97 (18) C15—C19—C18 108.7 (2)
C4—C3—N2 119.51 (18) C15—C19—Fe1 70.27 (12)
C5—C4—C3 118.24 (16) C18—C19—Fe1 69.55 (12)
C5—C4—H4 120.9 C15—C19—H19 125.7
C3—C4—H4 120.9 C18—C19—H19 125.7
C4—C5—C6 121.72 (17) Fe1—C19—H19 125.7
C4—C5—H5 119.1 C7—C20—H20A 109.5
C6—C5—H5 119.1 C7—C20—H20B 109.5
C5—C6—C1 117.96 (14) H20A—C20—H20B 109.5
C5—C6—N4 117.92 (14) C7—C20—H20C 109.5
C1—C6—N4 124.11 (14) H20A—C20—H20C 109.5
N3—C7—C8 111.62 (14) H20B—C20—H20C 109.5
N3—C7—C20 121.14 (16) C17—Fe1—C18 41.62 (11)
C8—C7—C20 127.23 (16) C17—Fe1—C11 159.40 (10)
C9—C8—C7 106.43 (14) C18—Fe1—C11 156.84 (10)
C9—C8—H8 126.8 C17—Fe1—C16 40.04 (11)
C7—C8—H8 126.8 C18—Fe1—C16 68.37 (10)
N4—C9—C8 105.52 (13) C11—Fe1—C16 123.17 (9)
N4—C9—C10 124.59 (13) C17—Fe1—C12 158.55 (11)
C8—C9—C10 129.85 (14) C18—Fe1—C12 121.65 (10)
C11—C10—C14 107.16 (14) C11—Fe1—C12 40.99 (7)
C11—C10—C9 129.07 (14) C16—Fe1—C12 159.78 (10)
C14—C10—C9 123.73 (14) C17—Fe1—C19 68.40 (11)
C11—C10—Fe1 69.09 (8) C18—Fe1—C19 40.67 (11)
C14—C10—Fe1 69.15 (8) C11—Fe1—C19 121.03 (10)
C9—C10—Fe1 124.97 (10) C16—Fe1—C19 67.29 (10)
C12—C11—C10 107.78 (16) C12—Fe1—C19 107.79 (9)
C12—C11—Fe1 69.58 (9) C17—Fe1—C14 107.97 (10)
C10—C11—Fe1 69.80 (8) C18—Fe1—C14 124.35 (10)
C12—C11—H11 126.1 C11—Fe1—C14 69.05 (7)
C10—C11—H11 126.1 C16—Fe1—C14 122.61 (9)
Fe1—C11—H11 126.1 C12—Fe1—C14 68.44 (8)
C13—C12—C11 108.44 (16) C19—Fe1—C14 161.20 (10)
C13—C12—Fe1 69.92 (10) C17—Fe1—C13 123.33 (11)
C11—C12—Fe1 69.43 (9) C18—Fe1—C13 108.12 (10)
C13—C12—H12 125.8 C11—Fe1—C13 68.55 (8)
C11—C12—H12 125.8 C16—Fe1—C13 158.67 (11)
Fe1—C12—H12 125.8 C12—Fe1—C13 40.23 (9)
C12—C13—C14 108.75 (16) C19—Fe1—C13 124.66 (9)
C12—C13—Fe1 69.85 (11) C14—Fe1—C13 40.72 (8)
C14—C13—Fe1 69.63 (10) C17—Fe1—C15 67.57 (11)
C12—C13—H13 125.6 C18—Fe1—C15 68.07 (11)
C14—C13—H13 125.6 C11—Fe1—C15 106.92 (9)
Fe1—C13—H13 125.6 C16—Fe1—C15 39.76 (10)
C13—C14—C10 107.86 (17) C12—Fe1—C15 123.95 (10)
C13—C14—Fe1 69.65 (11) C19—Fe1—C15 39.96 (10)
C10—C14—Fe1 69.66 (9) C14—Fe1—C15 157.41 (9)
C13—C14—H14 126.1 C13—Fe1—C15 160.32 (10)
C10—C14—H14 126.1 C17—Fe1—C10 123.26 (9)
Fe1—C14—H14 126.1 C18—Fe1—C10 161.03 (10)
C16—C15—C19 108.5 (2) C11—Fe1—C10 41.11 (6)
C16—C15—Fe1 69.83 (12) C16—Fe1—C10 107.29 (8)
C19—C15—Fe1 69.77 (13) C12—Fe1—C10 68.91 (6)
C16—C15—H15 125.8 C19—Fe1—C10 156.41 (10)
C19—C15—H15 125.8 C14—Fe1—C10 41.19 (6)
Fe1—C15—H15 125.8 C13—Fe1—C10 68.82 (7)
C15—C16—C17 109.2 (2) C15—Fe1—C10 121.20 (8)
C15—C16—Fe1 70.41 (12) O1—N1—O2 124.75 (19)
C17—C16—Fe1 69.88 (13) O1—N1—C1 118.46 (17)
C15—C16—H16 125.4 O2—N1—C1 116.70 (18)
C17—C16—H16 125.4 O4—N2—O3 124.54 (19)
Fe1—C16—H16 125.4 O4—N2—C3 117.2 (2)
C16—C17—C18 107.3 (2) O3—N2—C3 118.2 (2)
C16—C17—Fe1 70.08 (11) C7—N3—N4 103.94 (12)
C18—C17—Fe1 69.21 (12) C9—N4—N3 112.48 (11)
C16—C17—H17 126.3 C9—N4—C6 129.99 (12)
C18—C17—H17 126.3 N3—N4—C6 117.48 (11)
C6—C1—C2—C3 −3.0 (2) C13—C12—Fe1—C18 80.62 (15)
N1—C1—C2—C3 174.66 (14) C11—C12—Fe1—C18 −159.58 (13)
C1—C2—C3—C4 −1.3 (2) C13—C12—Fe1—C11 −119.80 (16)
C1—C2—C3—N2 177.89 (14) C13—C12—Fe1—C16 −164.5 (2)
C2—C3—C4—C5 3.7 (2) C11—C12—Fe1—C16 −44.7 (3)
N2—C3—C4—C5 −175.45 (15) C13—C12—Fe1—C19 123.06 (13)
C3—C4—C5—C6 −1.9 (2) C11—C12—Fe1—C19 −117.14 (13)
C4—C5—C6—C1 −2.2 (2) C13—C12—Fe1—C14 −37.36 (10)
C4—C5—C6—N4 176.74 (14) C11—C12—Fe1—C14 82.44 (12)
C2—C1—C6—C5 4.7 (2) C11—C12—Fe1—C13 119.80 (16)
N1—C1—C6—C5 −172.86 (14) C13—C12—Fe1—C15 164.08 (12)
C2—C1—C6—N4 −174.17 (13) C11—C12—Fe1—C15 −76.12 (14)
N1—C1—C6—N4 8.3 (2) C13—C12—Fe1—C10 −81.74 (11)
N3—C7—C8—C9 0.0 (2) C11—C12—Fe1—C10 38.06 (10)
C20—C7—C8—C9 −179.23 (18) C15—C19—Fe1—C17 −80.42 (17)
C7—C8—C9—N4 −0.63 (18) C18—C19—Fe1—C17 39.38 (16)
C7—C8—C9—C10 177.00 (16) C15—C19—Fe1—C18 −119.8 (2)
N4—C9—C10—C11 23.5 (2) C15—C19—Fe1—C11 79.09 (17)
C8—C9—C10—C11 −153.74 (17) C18—C19—Fe1—C11 −161.12 (15)
N4—C9—C10—C14 −159.30 (15) C15—C19—Fe1—C16 −37.04 (15)
C8—C9—C10—C14 23.5 (3) C18—C19—Fe1—C16 82.75 (17)
N4—C9—C10—Fe1 113.88 (15) C15—C19—Fe1—C12 122.03 (15)
C8—C9—C10—Fe1 −63.4 (2) C18—C19—Fe1—C12 −118.18 (16)
C14—C10—C11—C12 0.56 (18) C15—C19—Fe1—C14 −162.7 (2)
C9—C10—C11—C12 178.14 (15) C18—C19—Fe1—C14 −42.9 (4)
Fe1—C10—C11—C12 59.44 (11) C15—C19—Fe1—C13 163.18 (15)
C14—C10—C11—Fe1 −58.88 (11) C18—C19—Fe1—C13 −77.02 (18)
C9—C10—C11—Fe1 118.70 (15) C18—C19—Fe1—C15 119.8 (2)
C10—C11—C12—C13 −0.36 (19) C15—C19—Fe1—C10 44.1 (3)
Fe1—C11—C12—C13 59.22 (12) C18—C19—Fe1—C10 163.93 (18)
C10—C11—C12—Fe1 −59.58 (11) C13—C14—Fe1—C17 −120.57 (14)
C11—C12—C13—C14 0.0 (2) C10—C14—Fe1—C17 120.32 (13)
Fe1—C12—C13—C14 58.93 (12) C13—C14—Fe1—C18 −77.49 (16)
C11—C12—C13—Fe1 −58.92 (12) C10—C14—Fe1—C18 163.41 (12)
C12—C13—C14—C10 0.3 (2) C13—C14—Fe1—C11 81.06 (13)
Fe1—C13—C14—C10 59.40 (11) C10—C14—Fe1—C11 −38.04 (9)
C12—C13—C14—Fe1 −59.07 (13) C13—C14—Fe1—C16 −162.16 (13)
C11—C10—C14—C13 −0.55 (18) C10—C14—Fe1—C16 78.74 (13)
C9—C10—C14—C13 −178.29 (14) C13—C14—Fe1—C12 36.93 (12)
Fe1—C10—C14—C13 −59.39 (12) C10—C14—Fe1—C12 −82.17 (11)
C11—C10—C14—Fe1 58.84 (11) C13—C14—Fe1—C19 −45.0 (3)
C9—C10—C14—Fe1 −118.89 (14) C10—C14—Fe1—C19 −164.1 (3)
C19—C15—C16—C17 0.0 (2) C10—C14—Fe1—C13 −119.10 (16)
Fe1—C15—C16—C17 59.27 (15) C13—C14—Fe1—C15 164.8 (2)
C19—C15—C16—Fe1 −59.27 (15) C10—C14—Fe1—C15 45.7 (3)
C15—C16—C17—C18 −0.2 (2) C13—C14—Fe1—C10 119.10 (16)
Fe1—C16—C17—C18 59.42 (14) C12—C13—Fe1—C17 −161.33 (13)
C15—C16—C17—Fe1 −59.60 (15) C14—C13—Fe1—C17 78.58 (15)
C16—C17—C18—C19 0.3 (2) C12—C13—Fe1—C18 −117.91 (13)
Fe1—C17—C18—C19 60.25 (14) C14—C13—Fe1—C18 122.00 (14)
C16—C17—C18—Fe1 −59.97 (14) C12—C13—Fe1—C11 37.71 (10)
C16—C15—C19—C18 0.2 (2) C14—C13—Fe1—C11 −82.39 (11)
Fe1—C15—C19—C18 −59.13 (15) C12—C13—Fe1—C16 165.3 (2)
C16—C15—C19—Fe1 59.31 (15) C14—C13—Fe1—C16 45.2 (3)
C17—C18—C19—C15 −0.3 (2) C14—C13—Fe1—C12 −120.09 (15)
Fe1—C18—C19—C15 59.58 (15) C12—C13—Fe1—C19 −75.98 (15)
C17—C18—C19—Fe1 −59.85 (14) C14—C13—Fe1—C19 163.93 (13)
C16—C17—Fe1—C18 118.5 (2) C12—C13—Fe1—C14 120.09 (15)
C16—C17—Fe1—C11 −41.5 (3) C12—C13—Fe1—C15 −42.5 (3)
C18—C17—Fe1—C11 −160.0 (2) C14—C13—Fe1—C15 −162.6 (2)
C18—C17—Fe1—C16 −118.5 (2) C12—C13—Fe1—C10 81.98 (10)
C16—C17—Fe1—C12 163.7 (2) C14—C13—Fe1—C10 −38.11 (10)
C18—C17—Fe1—C12 45.2 (3) C16—C15—Fe1—C17 −36.98 (16)
C16—C17—Fe1—C19 79.97 (16) C19—C15—Fe1—C17 82.68 (18)
C18—C17—Fe1—C19 −38.50 (16) C16—C15—Fe1—C18 −82.10 (17)
C16—C17—Fe1—C14 −119.65 (14) C19—C15—Fe1—C18 37.57 (16)
C18—C17—Fe1—C14 121.88 (16) C16—C15—Fe1—C11 121.91 (15)
C16—C17—Fe1—C13 −161.88 (13) C19—C15—Fe1—C11 −118.42 (15)
C18—C17—Fe1—C13 79.65 (18) C19—C15—Fe1—C16 119.7 (2)
C16—C17—Fe1—C15 36.73 (15) C16—C15—Fe1—C12 163.64 (13)
C18—C17—Fe1—C15 −81.74 (17) C19—C15—Fe1—C12 −76.69 (17)
C16—C17—Fe1—C10 −76.82 (16) C16—C15—Fe1—C19 −119.7 (2)
C18—C17—Fe1—C10 164.72 (14) C16—C15—Fe1—C14 45.9 (3)
C19—C18—Fe1—C17 −117.4 (2) C19—C15—Fe1—C14 165.6 (2)
C19—C18—Fe1—C11 44.8 (3) C16—C15—Fe1—C13 −164.6 (2)
C17—C18—Fe1—C11 162.2 (2) C19—C15—Fe1—C13 −45.0 (3)
C19—C18—Fe1—C16 −79.89 (16) C16—C15—Fe1—C10 79.35 (16)
C17—C18—Fe1—C16 37.47 (16) C19—C15—Fe1—C10 −160.98 (14)
C19—C18—Fe1—C12 80.40 (18) C11—C10—Fe1—C17 161.99 (13)
C17—C18—Fe1—C12 −162.24 (16) C14—C10—Fe1—C17 −79.09 (15)
C17—C18—Fe1—C19 117.4 (2) C9—C10—Fe1—C17 38.21 (18)
C19—C18—Fe1—C14 164.58 (14) C11—C10—Fe1—C18 −165.4 (3)
C17—C18—Fe1—C14 −78.06 (18) C14—C10—Fe1—C18 −46.5 (3)
C19—C18—Fe1—C13 122.51 (16) C9—C10—Fe1—C18 70.8 (3)
C17—C18—Fe1—C13 −120.13 (17) C14—C10—Fe1—C11 118.92 (15)
C19—C18—Fe1—C15 −36.93 (15) C9—C10—Fe1—C11 −123.78 (18)
C17—C18—Fe1—C15 80.43 (17) C11—C10—Fe1—C16 120.99 (12)
C19—C18—Fe1—C10 −160.1 (2) C14—C10—Fe1—C16 −120.09 (13)
C17—C18—Fe1—C10 −42.7 (3) C9—C10—Fe1—C16 −2.79 (16)
C12—C11—Fe1—C17 −166.3 (3) C11—C10—Fe1—C12 −37.96 (11)
C10—C11—Fe1—C17 −47.3 (3) C14—C10—Fe1—C12 80.96 (12)
C12—C11—Fe1—C18 49.0 (3) C9—C10—Fe1—C12 −161.75 (16)
C10—C11—Fe1—C18 168.0 (2) C11—C10—Fe1—C19 48.3 (2)
C12—C11—Fe1—C16 163.11 (13) C14—C10—Fe1—C19 167.2 (2)
C10—C11—Fe1—C16 −77.93 (13) C9—C10—Fe1—C19 −75.5 (2)
C10—C11—Fe1—C12 118.96 (16) C11—C10—Fe1—C14 −118.92 (15)
C12—C11—Fe1—C19 81.45 (15) C9—C10—Fe1—C14 117.30 (17)
C10—C11—Fe1—C19 −159.59 (12) C11—C10—Fe1—C13 −81.24 (12)
C12—C11—Fe1—C14 −80.84 (13) C14—C10—Fe1—C13 37.68 (12)
C10—C11—Fe1—C14 38.12 (10) C9—C10—Fe1—C13 154.98 (15)
C12—C11—Fe1—C13 −37.03 (12) C11—C10—Fe1—C15 79.82 (13)
C10—C11—Fe1—C13 81.94 (11) C14—C10—Fe1—C15 −161.26 (12)
C12—C11—Fe1—C15 122.68 (13) C9—C10—Fe1—C15 −43.96 (16)
C10—C11—Fe1—C15 −118.36 (12) C2—C1—N1—O1 −151.82 (15)
C12—C11—Fe1—C10 −118.96 (16) C6—C1—N1—O1 25.8 (2)
C15—C16—Fe1—C17 120.2 (2) C2—C1—N1—O2 24.8 (2)
C15—C16—Fe1—C18 81.29 (17) C6—C1—N1—O2 −157.56 (17)
C17—C16—Fe1—C18 −38.91 (16) C2—C3—N2—O4 173.5 (2)
C15—C16—Fe1—C11 −75.99 (16) C4—C3—N2—O4 −7.3 (3)
C17—C16—Fe1—C11 163.82 (14) C2—C3—N2—O3 −8.1 (3)
C15—C16—Fe1—C12 −42.5 (3) C4—C3—N2—O3 171.12 (17)
C17—C16—Fe1—C12 −162.7 (2) C8—C7—N3—N4 0.66 (19)
C15—C16—Fe1—C19 37.22 (16) C20—C7—N3—N4 179.92 (17)
C17—C16—Fe1—C19 −82.97 (17) C8—C9—N4—N3 1.10 (18)
C15—C16—Fe1—C14 −160.88 (13) C10—C9—N4—N3 −176.70 (14)
C17—C16—Fe1—C14 78.93 (16) C8—C9—N4—C6 −176.26 (16)
C15—C16—Fe1—C13 165.8 (2) C10—C9—N4—C6 5.9 (3)
C17—C16—Fe1—C13 45.6 (3) C7—N3—N4—C9 −1.10 (18)
C17—C16—Fe1—C15 −120.2 (2) C7—N3—N4—C6 176.62 (14)
C15—C16—Fe1—C10 −118.31 (14) C5—C6—N4—C9 −127.16 (17)
C17—C16—Fe1—C10 121.50 (15) C1—C6—N4—C9 51.7 (2)
C13—C12—Fe1—C17 47.0 (3) C5—C6—N4—N3 55.59 (19)
C11—C12—Fe1—C17 166.8 (2) C1—C6—N4—N3 −125.57 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8···O4i 0.93 2.46 3.380 (3) 170

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2122).

References

  1. Basurto, S., Riant, O., Moreno, D., Rojo, J. & Torroba, T. (2007). J. Org. Chem.72, 4673–4688. [DOI] [PubMed]
  2. Beer, D. P., Gale, A. P. & Chen, Z. (1998). Adv. Phys. Org. Chem.31, 1–89.
  3. Bruker (2004). SAINT (Version 6.0a) and APEX2 (Version 1.22). Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Erasmus, J. J. C., Lamprecht, G. J., Swarts, J. C., Roodt, A. & Oskarsson, Å. (1996). Acta Cryst. C52, 3000–3002.
  5. Fabbrizzi, L. & Poggi, A. (1995). Chem. Soc. Rev.24, 197–202.
  6. Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed. London: Addison Wesley Longman Limited.
  7. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  10. Shi, Y.-C., Sui, C.-X. & Cheng, H.-J. (2005). Acta Cryst. E61, m1563–m1565.
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067384/gk2122sup1.cif

e-64-0m265-sup1.cif (30.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067384/gk2122Isup2.hkl

e-64-0m265-Isup2.hkl (292.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES