Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 11;64(Pt 2):o436. doi: 10.1107/S1600536808000640

Cyclo(l-tyrosyl-l-tryptophanyl) dimethylformamide solvate

Carl Henrik Görbitz a,*, Lars Male Hartviksen a
PMCID: PMC2960427  PMID: 21201463

Abstract

The structure of the title compound [systematic name: (3S,6S)-3-(4-hydroxy­benz­yl)-6-(1H-indol-3-ylmeth­yl)piperazine-2,5-dione dimethyl­formamide solvate], C20H19N3O3·C3H7NO, contains hydrogen-bonded tapes typical for diketopiperazines. The structure is stabilized by strong inter­molecular inter­actions of the types O—H⋯O and N—H⋯O involving the dipeptide and the solvent mol­ecules. The absolute configuration was known from the starting materials.

Related literature

For related structures, see: Morris et al. (1974); Grant et al. (1999); Suguna et al. (1984); Lin & Webb (1973); Razak et al., (2000); Luo & Palmore (2002); Görbitz (1987); Görbitz & Hartviksen (2006). Solvent inclusion: Görbitz & Hersleth (2000). Cambridge Structural Database: Allen (2002).graphic file with name e-64-0o436-scheme1.jpg

Experimental

Crystal data

  • C20H19N3O3·C3H7NO

  • M r = 422.48

  • Monoclinic, Inline graphic

  • a = 6.1923 (2) Å

  • b = 15.3873 (5) Å

  • c = 11.3780 (3) Å

  • β = 96.661 (1)°

  • V = 1076.81 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 105 (2) K

  • 0.80 × 0.65 × 0.20 mm

Data collection

  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.800, T max = 0.982

  • 9514 measured reflections

  • 2786 independent reflections

  • 2454 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.122

  • S = 1.15

  • 2786 reflections

  • 297 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808000640/pv2058sup1.cif

e-64-0o436-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000640/pv2058Isup2.hkl

e-64-0o436-Isup2.hkl (136.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.96 (3) 1.94 (3) 2.902 (3) 174 (3)
N2—H2⋯O3ii 0.87 (3) 2.01 (3) 2.884 (3) 178 (3)
N3—H3⋯O1iii 0.81 (4) 2.16 (4) 2.851 (3) 144 (3)
O2—H4⋯O1D 1.04 (5) 1.59 (5) 2.606 (3) 163 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The purchase of the diffractometer was made possible through support from the Research Council of Norway (NFR).

supplementary crystallographic information

Comment

The title compound, (3S,6S)-3-(4-hydroxsybenzyl)-6 -(1H-indol-3-yl)methylpiperazine-2,5-dione dimethylformamide solvate, (I), was obtained as the result of an attempt to crystallize the corresponding linear dipeptide Tyr-Trp from a dimethylformamide solution. In our laboratory we have previously observed similar cyclization reactions taking place for several other dipeptides including Asp-Ala (Görbitz, 1987), Ile-Ile (Görbitz & Hartviksen, 2006) and Val-Leu (unpublished results).

The crystal structure of (I) contains straight hydrogen-bonded tapes as seen in Fig. 2. A search in the Cambridge Structural Database (CSD; Version 5.28 of November 2006; Allen 2002) revealed 59 examples of such tapes (unperturbed e.g. by additional cyclic connections between the two Cα-atoms). The periodicity of this pattern, usually corresponding to a unit-cell parameter, shows a quite narrow distribution with 54 out of 59 observations in the range 6.06 to 6.26 Å, with 6.19 Å observed for (I) being close to the 6.16 Å average value. The full range observed in the CSD is from 6.01 to 6.57 Å, with the upper limit being represented by a distinct outlier (piperazine-2,5-dione:2,5-dihydroxyterephatlic acid 1:1, Luo & Palmore, 2002).

The carbonyl O atom of the cocrystallized dimethylformamide (DMF) solvent molecule accepts a H atom from the Tyr hydroxyl group, but the DMF molecule is also involved in a number of weaker hydrogen bonds (Table 2 and Fig. 2). This is in line with previous findings that DMF molecules are often more heavily involved in intermolecular interactions than one traditionally would expect (Görbitz & Hersleth, 2000).

From the 20 naturally occurring amino acids one can construct 210 different cyclic dipeptides (as opposed to 400 linear dipeptides). Single crystal structural studies have been presented for 20 of them, including four structures with Tyr or Trp residues: cyclo(Gly-Trp) (Morris et al., 1974), cyclo(Trp-Trp) DMSO solvate (Grant et al., 1999), cyclo(Leu-Tyr) hydrate (Suguna et al., 1984), and cyclo(Ser-Tyr) hydrate (Lin & Webb, 1973). From a conformational point of view these four peptides resemble (I) as well as each other, and all except cyclo(Trp-Trp) crystallize in the P21 space group. Nevertheless, each cyclic dipeptide has its own unique packing arrangement, also when all other compounds with a diketopiperazine moiety are considered.

Experimental

The corresponding linear peptide Tyr-Trp was obtained from Bachem. Crystals of the cyclic analogue resulting from ring closure were obtained by slow evaporation of a solution of Tyr-Trp in dimethylformamide.

Refinement

Positional parameters were refined for H atoms involved in short hydrogen bonds. Other H atoms were positioned with idealized geometry and fixed C—H distances for CH3, CH2, CH and aromatic CH type H-atoms at 0.98, 0.99, 1.00 and 0.95 Å, respectively; Uiso values were 1.2Ueq of the carrier atom or 1.5Ueq for the OH and methyl groups. In the absence of significant anomalous scattering effects, 2334 Friedel pairs were merged. The absolute configuration was known for the purchased material.

Figures

Fig. 1.

Fig. 1.

: The molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

: Crystal packing arrangement viewed approximately along the a axis. Hydrogen bonds and weaker interactions have been indicated by dashed lines; non-essential peptide H atoms have been left out for clarity.

Crystal data

C20H19N3O3·C3H7NO F000 = 448
Mr = 422.48 Dx = 1.303 Mg m3
Monoclinic, P21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 7819 reflections
a = 6.1923 (2) Å θ = 1.8–28.3º
b = 15.3873 (5) Å µ = 0.09 mm1
c = 11.3780 (3) Å T = 105 (2) K
β = 96.6610 (10)º Block, colourless
V = 1076.81 (6) Å3 0.80 × 0.65 × 0.20 mm
Z = 2

Data collection

Siemens SMART CCD diffractometer 2786 independent reflections
Radiation source: fine-focus sealed tube 2454 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.038
Detector resolution: 8.3 pixels mm-1 θmax = 28.3º
T = 105(2) K θmin = 1.8º
Sets of exposures each taken over 0.3° ω rotation scans h = −8→8
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) k = −20→20
Tmin = 0.800, Tmax = 0.982 l = −12→15
9514 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122   w = 1/[σ2(Fo2) + (0.0645P)2 + 0.2252P] where P = (Fo2 + 2Fc2)/3
S = 1.15 (Δ/σ)max = 0.001
2786 reflections Δρmax = 0.23 e Å3
297 parameters Δρmin = −0.27 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Data were collected by measuring three sets of exposures with the detector set at 2θ = 29°, crystal-to-detector distance 5.00 cm. Refinement of F2 against ALL reflections.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1720 (3) −0.00215 (12) 0.52224 (17) 0.0277 (4)
O2 0.6882 (4) 0.38722 (14) 0.7195 (2) 0.0378 (5)
H4 0.566 (7) 0.409 (3) 0.768 (4) 0.057*
O3 0.8442 (3) 0.11985 (12) 0.31396 (17) 0.0269 (4)
N1 0.7154 (3) 0.02668 (14) 0.44228 (19) 0.0230 (4)
H1 0.867 (5) 0.014 (2) 0.465 (3) 0.028*
N2 0.2984 (3) 0.09051 (13) 0.39160 (19) 0.0223 (4)
H2 0.162 (6) 0.101 (2) 0.369 (3) 0.027*
N3 −0.0323 (4) 0.35012 (15) 0.3555 (2) 0.0268 (4)
H3 −0.123 (6) 0.379 (3) 0.383 (3) 0.032*
C1 0.5533 (4) −0.00266 (16) 0.5160 (2) 0.0231 (5)
H11 0.5496 −0.0676 0.5117 0.028*
C2 0.6176 (4) 0.02202 (18) 0.6471 (2) 0.0280 (5)
H21 0.5086 −0.0024 0.6951 0.034*
H22 0.7596 −0.0050 0.6747 0.034*
C3 0.6339 (4) 0.11897 (18) 0.6686 (2) 0.0269 (5)
C4 0.4638 (4) 0.16582 (19) 0.7071 (2) 0.0283 (5)
H41 0.3344 0.1361 0.7206 0.034*
C5 0.4777 (4) 0.2550 (2) 0.7265 (2) 0.0317 (6)
H51 0.3601 0.2854 0.7543 0.038*
C6 0.6650 (5) 0.29970 (19) 0.7049 (2) 0.0305 (6)
C7 0.8369 (5) 0.2541 (2) 0.6663 (3) 0.0334 (6)
H71 0.9651 0.2840 0.6515 0.040*
C8 0.8222 (4) 0.1643 (2) 0.6491 (2) 0.0307 (6)
H81 0.9417 0.1336 0.6239 0.037*
C9 0.3262 (4) 0.02939 (16) 0.4750 (2) 0.0214 (4)
C10 0.4684 (4) 0.13210 (15) 0.3333 (2) 0.0203 (4)
H101 0.4283 0.1259 0.2460 0.024*
C11 0.4861 (4) 0.23024 (15) 0.3614 (2) 0.0245 (5)
H111 0.5356 0.2378 0.4467 0.029*
H112 0.5976 0.2561 0.3164 0.029*
C12 0.2766 (4) 0.27826 (15) 0.3319 (2) 0.0219 (5)
C13 0.1520 (4) 0.31262 (17) 0.4122 (2) 0.0259 (5)
H131 0.1882 0.3108 0.4956 0.031*
C14 0.1618 (4) 0.29527 (15) 0.2171 (2) 0.0236 (5)
C15 0.2022 (5) 0.27731 (19) 0.1009 (3) 0.0312 (5)
H151 0.3336 0.2499 0.0857 0.037*
C16 0.0465 (6) 0.3004 (2) 0.0084 (3) 0.0397 (7)
H161 0.0713 0.2876 −0.0706 0.048*
C17 −0.1462 (5) 0.3422 (2) 0.0292 (3) 0.0426 (7)
H171 −0.2505 0.3565 −0.0359 0.051*
C18 −0.1877 (5) 0.36285 (19) 0.1422 (3) 0.0367 (6)
H181 −0.3178 0.3919 0.1561 0.044*
C19 −0.0318 (4) 0.33969 (16) 0.2361 (2) 0.0270 (5)
C20 0.6919 (4) 0.09162 (16) 0.3637 (2) 0.0213 (4)
O1D 0.4352 (4) 0.46196 (17) 0.8569 (2) 0.0448 (5)
N1D 0.1638 (4) 0.53136 (19) 0.9359 (2) 0.0370 (5)
C1D 0.2408 (5) 0.4758 (2) 0.8623 (3) 0.0373 (6)
H1D 0.119 (6) 0.450 (3) 0.804 (3) 0.045*
C2D −0.0661 (6) 0.5502 (2) 0.9296 (4) 0.0509 (9)
H21D −0.1468 0.5109 0.8726 0.076*
H22D −0.0925 0.6104 0.9041 0.076*
H23D −0.1147 0.5419 1.0078 0.076*
C3D 0.3101 (7) 0.5866 (5) 1.0106 (5) 0.094 (2)
H31D 0.4563 0.5613 1.0191 0.141*
H32D 0.2590 0.5916 1.0887 0.141*
H33D 0.3142 0.6444 0.9747 0.141*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0200 (8) 0.0271 (9) 0.0367 (10) 0.0003 (7) 0.0066 (7) 0.0090 (7)
O2 0.0475 (12) 0.0301 (10) 0.0363 (11) −0.0044 (9) 0.0074 (9) −0.0026 (8)
O3 0.0188 (8) 0.0296 (9) 0.0328 (9) 0.0005 (7) 0.0059 (7) 0.0044 (8)
N1 0.0159 (9) 0.0234 (9) 0.0304 (10) 0.0030 (7) 0.0053 (7) 0.0032 (8)
N2 0.0160 (9) 0.0208 (9) 0.0303 (10) 0.0003 (7) 0.0046 (8) 0.0045 (8)
N3 0.0237 (10) 0.0212 (10) 0.0363 (12) 0.0008 (8) 0.0071 (8) −0.0046 (9)
C1 0.0193 (10) 0.0197 (10) 0.0310 (12) 0.0015 (9) 0.0051 (9) 0.0049 (9)
C2 0.0252 (11) 0.0301 (13) 0.0286 (12) 0.0026 (10) 0.0022 (9) 0.0064 (10)
C3 0.0248 (11) 0.0320 (13) 0.0237 (11) −0.0006 (10) 0.0014 (9) 0.0008 (10)
C4 0.0224 (11) 0.0345 (14) 0.0278 (12) −0.0012 (10) 0.0024 (9) 0.0005 (10)
C5 0.0277 (12) 0.0385 (15) 0.0289 (13) 0.0020 (11) 0.0036 (10) −0.0025 (11)
C6 0.0339 (14) 0.0320 (14) 0.0251 (12) −0.0023 (11) 0.0009 (10) −0.0020 (10)
C7 0.0279 (13) 0.0412 (15) 0.0318 (13) −0.0059 (11) 0.0072 (10) −0.0049 (12)
C8 0.0213 (11) 0.0400 (15) 0.0311 (13) 0.0001 (10) 0.0038 (10) −0.0017 (11)
C9 0.0173 (10) 0.0192 (10) 0.0276 (11) 0.0019 (8) 0.0028 (8) 0.0001 (9)
C10 0.0151 (9) 0.0192 (10) 0.0266 (11) 0.0001 (8) 0.0022 (8) 0.0030 (9)
C11 0.0204 (10) 0.0192 (11) 0.0336 (13) −0.0017 (8) 0.0027 (9) 0.0014 (9)
C12 0.0197 (10) 0.0172 (10) 0.0292 (12) −0.0029 (8) 0.0038 (9) 0.0011 (8)
C13 0.0265 (11) 0.0215 (11) 0.0300 (12) −0.0035 (9) 0.0049 (9) −0.0011 (9)
C14 0.0243 (11) 0.0170 (11) 0.0296 (12) −0.0009 (8) 0.0038 (9) 0.0020 (9)
C15 0.0367 (14) 0.0267 (12) 0.0312 (13) 0.0018 (11) 0.0080 (10) 0.0028 (10)
C16 0.0542 (19) 0.0377 (16) 0.0263 (13) −0.0017 (13) 0.0012 (12) 0.0041 (12)
C17 0.0484 (17) 0.0380 (16) 0.0381 (15) 0.0011 (14) −0.0087 (13) 0.0143 (13)
C18 0.0311 (13) 0.0295 (14) 0.0477 (17) 0.0020 (11) −0.0037 (12) 0.0063 (12)
C19 0.0272 (11) 0.0194 (11) 0.0347 (13) −0.0022 (9) 0.0046 (10) 0.0022 (10)
C20 0.0191 (10) 0.0212 (10) 0.0234 (11) 0.0023 (8) 0.0012 (8) −0.0019 (8)
O1D 0.0433 (12) 0.0462 (13) 0.0455 (12) 0.0077 (11) 0.0076 (10) −0.0020 (11)
N1D 0.0350 (12) 0.0415 (13) 0.0339 (12) 0.0042 (11) 0.0012 (10) 0.0027 (11)
C1D 0.0428 (16) 0.0280 (13) 0.0403 (16) 0.0007 (11) 0.0014 (13) 0.0035 (12)
C2D 0.0373 (16) 0.0400 (18) 0.075 (3) 0.0035 (13) 0.0049 (16) 0.0045 (17)
C3D 0.046 (2) 0.145 (6) 0.086 (3) 0.009 (3) −0.013 (2) −0.074 (4)

Geometric parameters (Å, °)

O1—C9 1.247 (3) C10—C11 1.545 (3)
O2—C6 1.363 (4) C10—H101 1.0000
O2—H4 1.04 (5) C11—C12 1.497 (3)
O3—C20 1.234 (3) C11—H111 0.9900
N1—C20 1.337 (3) C11—H112 0.9900
N1—C1 1.453 (3) C12—C13 1.368 (4)
N1—H1 0.96 (3) C12—C14 1.437 (4)
N2—C9 1.333 (3) C13—H131 0.9500
N2—C10 1.456 (3) C14—C15 1.401 (4)
N2—H2 0.87 (3) C14—C19 1.418 (3)
N3—C19 1.369 (4) C15—C16 1.389 (4)
N3—C13 1.371 (3) C15—H151 0.9500
N3—H3 0.81 (4) C16—C17 1.399 (5)
C1—C9 1.512 (3) C16—H161 0.9500
C1—C2 1.546 (4) C17—C18 1.378 (5)
C1—H11 1.0000 C17—H171 0.9500
C2—C3 1.513 (4) C18—C19 1.400 (4)
C2—H21 0.9900 C18—H181 0.9500
C2—H22 0.9900 O1D—C1D 1.231 (4)
C3—C4 1.389 (4) N1D—C1D 1.324 (4)
C3—C8 1.397 (4) N1D—C3D 1.445 (5)
C4—C5 1.391 (4) N1D—C2D 1.446 (4)
C4—H41 0.9500 C1D—H1D 1.03 (4)
C5—C6 1.394 (4) C2D—H21D 0.9800
C5—H51 0.9500 C2D—H22D 0.9800
C6—C7 1.388 (4) C2D—H23D 0.9800
C7—C8 1.397 (4) C3D—H31D 0.9800
C7—H71 0.9500 C3D—H32D 0.9800
C8—H81 0.9500 C3D—H33D 0.9800
C10—C20 1.520 (3)
C6—O2—H4 108 (3) C12—C11—H111 108.9
C20—N1—C1 126.1 (2) C10—C11—H111 108.9
C20—N1—H1 110 (2) C12—C11—H112 108.9
C1—N1—H1 120 (2) C10—C11—H112 108.9
C9—N2—C10 126.4 (2) H111—C11—H112 107.7
C9—N2—H2 112 (2) C13—C12—C14 106.2 (2)
C10—N2—H2 121 (2) C13—C12—C11 125.6 (2)
C19—N3—C13 108.7 (2) C14—C12—C11 128.2 (2)
C19—N3—H3 122 (3) C12—C13—N3 110.6 (2)
C13—N3—H3 129 (3) C12—C13—H131 124.7
N1—C1—C9 113.6 (2) N3—C13—H131 124.7
N1—C1—C2 111.3 (2) C15—C14—C19 119.0 (2)
C9—C1—C2 110.1 (2) C15—C14—C12 134.3 (2)
N1—C1—H11 107.2 C19—C14—C12 106.7 (2)
C9—C1—H11 107.2 C16—C15—C14 118.7 (3)
C2—C1—H11 107.2 C16—C15—H151 120.6
C3—C2—C1 113.7 (2) C14—C15—H151 120.6
C3—C2—H21 108.8 C15—C16—C17 121.3 (3)
C1—C2—H21 108.8 C15—C16—H161 119.3
C3—C2—H22 108.8 C17—C16—H161 119.3
C1—C2—H22 108.8 C18—C17—C16 121.2 (3)
H21—C2—H22 107.7 C18—C17—H171 119.4
C4—C3—C8 117.9 (3) C16—C17—H171 119.4
C4—C3—C2 121.6 (2) C17—C18—C19 117.8 (3)
C8—C3—C2 120.5 (2) C17—C18—H181 121.1
C3—C4—C5 121.8 (3) C19—C18—H181 121.1
C3—C4—H41 119.1 N3—C19—C18 130.3 (3)
C5—C4—H41 119.1 N3—C19—C14 107.9 (2)
C4—C5—C6 119.7 (3) C18—C19—C14 121.8 (3)
C4—C5—H51 120.1 O3—C20—N1 122.7 (2)
C6—C5—H51 120.1 O3—C20—C10 118.4 (2)
O2—C6—C7 117.7 (3) N1—C20—C10 118.9 (2)
O2—C6—C5 123.0 (3) C1D—N1D—C3D 120.3 (3)
C7—C6—C5 119.4 (3) C1D—N1D—C2D 121.5 (3)
C6—C7—C8 120.3 (3) C3D—N1D—C2D 117.3 (3)
C6—C7—H71 119.9 O1D—C1D—N1D 124.7 (3)
C8—C7—H71 119.9 O1D—C1D—H1D 123 (2)
C7—C8—C3 120.9 (3) N1D—C1D—H1D 112 (2)
C7—C8—H81 119.6 N1D—C2D—H21D 109.5
C3—C8—H81 119.6 N1D—C2D—H22D 109.5
O1—C9—N2 122.6 (2) H21D—C2D—H22D 109.5
O1—C9—C1 118.1 (2) N1D—C2D—H23D 109.5
N2—C9—C1 119.3 (2) H21D—C2D—H23D 109.5
N2—C10—C20 113.8 (2) H22D—C2D—H23D 109.5
N2—C10—C11 111.9 (2) N1D—C3D—H31D 109.5
C20—C10—C11 108.22 (19) N1D—C3D—H32D 109.5
N2—C10—H101 107.5 H31D—C3D—H32D 109.5
C20—C10—H101 107.5 N1D—C3D—H33D 109.5
C11—C10—H101 107.5 H31D—C3D—H33D 109.5
C12—C11—C10 113.42 (19) H32D—C3D—H33D 109.5
N1—C1—C2—C3 62.3 (3) C14—C12—C13—N3 −0.2 (3)
C1—C2—C3—C4 97.5 (3) C11—C12—C13—N3 −178.3 (2)
N2—C10—C11—C12 −55.4 (3) C19—N3—C13—C12 0.7 (3)
C10—C11—C12—C13 109.8 (3) C13—C12—C14—C15 179.9 (3)
C20—N1—C1—C9 16.1 (4) C11—C12—C14—C15 −2.1 (4)
C20—N1—C1—C2 −108.9 (3) C13—C12—C14—C19 −0.4 (3)
C9—C1—C2—C3 −64.6 (3) C11—C12—C14—C19 177.6 (2)
C1—C2—C3—C8 −82.1 (3) C19—C14—C15—C16 −2.7 (4)
C8—C3—C4—C5 −0.1 (4) C12—C14—C15—C16 177.0 (3)
C2—C3—C4—C5 −179.7 (2) C14—C15—C16—C17 1.1 (4)
C3—C4—C5—C6 1.2 (4) C15—C16—C17—C18 0.8 (5)
C4—C5—C6—O2 178.6 (3) C16—C17—C18—C19 −0.8 (5)
C4—C5—C6—C7 −1.2 (4) C13—N3—C19—C18 176.7 (3)
O2—C6—C7—C8 −179.7 (3) C13—N3—C19—C14 −1.0 (3)
C5—C6—C7—C8 0.1 (4) C17—C18—C19—N3 −178.3 (3)
C6—C7—C8—C3 1.0 (4) C17—C18—C19—C14 −0.9 (4)
C4—C3—C8—C7 −1.0 (4) C15—C14—C19—N3 −179.4 (2)
C2—C3—C8—C7 178.6 (3) C12—C14—C19—N3 0.9 (3)
C10—N2—C9—O1 178.7 (2) C15—C14—C19—C18 2.7 (4)
C10—N2—C9—C1 −0.4 (4) C12—C14—C19—C18 −177.1 (2)
N1—C1—C9—O1 170.0 (2) C1—N1—C20—O3 171.3 (2)
C2—C1—C9—O1 −64.4 (3) C1—N1—C20—C10 −9.2 (4)
N1—C1—C9—N2 −10.8 (3) N2—C10—C20—O3 176.5 (2)
C2—C1—C9—N2 114.7 (2) C11—C10—C20—O3 −58.4 (3)
C9—N2—C10—C20 7.7 (3) N2—C10—C20—N1 −3.0 (3)
C9—N2—C10—C11 −115.4 (3) C11—C10—C20—N1 122.1 (2)
C20—C10—C11—C12 178.4 (2) C3D—N1D—C1D—O1D 5.3 (6)
C10—C11—C12—C14 −67.9 (3) C2D—N1D—C1D—O1D 174.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.96 (3) 1.94 (3) 2.902 (3) 174 (3)
N2—H2···O3ii 0.87 (3) 2.01 (3) 2.884 (3) 178 (3)
N3—H3···O1iii 0.81 (4) 2.16 (4) 2.851 (3) 144 (3)
O2—H4···O1D 1.04 (5) 1.59 (5) 2.606 (3) 163 (4)
C1D—H1D···O2ii 1.03 (4) 2.89 (4) 3.862 (4) 158
C2D—H21D···O1Dii 0.98 2.68 3.387 (4) 129
C2D—H21D···O2ii 0.98 2.70 3.671 (4) 171
C2D—H22D···C15iii 0.98 2.66 3.602 (4) 163
C3D—H32D···C3iv 0.98 2.80 3.660 (4) 147

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) −x, y+1/2, −z+1; (iv) −x+1, y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2058).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bruker (1998). SMART Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2001). SAINT-Plus Version 6.22. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Görbitz, C. H. (1987). Acta Chem. Scand. B, 41, 83–86.
  6. Görbitz, C. H. & Hartviksen, L. M. (2006). Acta Cryst. E62, o2358–o2360.
  7. Görbitz, C. H. & Hersleth, H.-P. (2000). Acta Cryst. B56, 1094–1102. [DOI] [PubMed]
  8. Grant, G. D., Hunt, A. L., Milne, P. J., Roos, H. M. & Joubert, J. A. (1999). J. Chem. Crystallogr.29, 435–447.
  9. Lin, C.-F. & Webb, L. E. (1973). J. Am. Chem. Soc.95, 6803–6811. [DOI] [PubMed]
  10. Luo, T.-J. M. & Palmore, G. T. R. (2002). Cryst. Growth Des.2, 337–350.
  11. Morris, A. J., Geddes, A. J. & Sheldrick, B. (1974). Cryst. Struct. Commun.3, 345–349.
  12. Razak, I. A., Shanmuga Sundara Raj, S., Fun, H.-K., Chen, Z.-F., Zhang, J., Xiong, R.-G. & You, X.-Z. (2000). Acta Cryst. C56, e341–e342.
  13. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Suguna, K., Ramakumar, S. & Kopple, K. D. (1984). Acta Cryst. C40, 2053–2056.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808000640/pv2058sup1.cif

e-64-0o436-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000640/pv2058Isup2.hkl

e-64-0o436-Isup2.hkl (136.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES