Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 4;64(Pt 2):o355. doi: 10.1107/S1600536807067232

Urea–N,N-dimethyl­acetamide (1/1)

Philippe Fernandes a, Alastair J Florence a,*, Francesca Fabbiani b, William I F David b, Kenneth Shankland b
PMCID: PMC2960435  PMID: 21201387

Abstract

Urea forms a 1:1 solvate with N,N-dimethyl­acetamide (DMA) [systematic name: diamino­methanal–N,N-dimethyl­acetamide (1/1), C4H9NO·CH4N2O] with both mol­ecules positioned on a twofold axis, giving rise to rotational disorder of the DMA mol­ecule. The mol­ecules display a layered structure in which urea mol­ecules form hydrogen-bonded ribbons bounded by mol­ecules of solvent.

Related literature

For details on experimental methods used to obtain this crystalline compound, see: Florence et al. (2003). For crystal structures of urea, see: Fernandes et al. (2007); Vaughan & Donohue (1952), and references therein; Swaminathan et al. (1984); Pryor & Sanger (1970); Guth et al. (1980); Weber et al. (2002). For related literature, see: Etter (1990).graphic file with name e-64-0o355-scheme1.jpg

Experimental

Crystal data

  • C4H9NO·CH4N2O

  • M r = 147.18

  • Monoclinic, Inline graphic

  • a = 7.2770 (3) Å

  • b = 17.5394 (9) Å

  • c = 7.3789 (4) Å

  • β = 119.450 (3)°

  • V = 820.11 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.40 × 0.12 × 0.04 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.867, T max = 1 (expected range = 0.864–0.996)

  • 5338 measured reflections

  • 941 independent reflections

  • 552 reflections with I > 2.0σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.150

  • S = 0.89

  • 939 reflections

  • 63 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067232/ga2020sup1.cif

e-64-0o355-sup1.cif (13.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067232/ga2020Isup2.hkl

e-64-0o355-Isup2.hkl (47.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H31⋯O2i 0.87 (2) 2.06 (2) 2.930 (2) 180 (3)
N3—H32⋯O9ii 0.87 (2) 2.09 (2) 2.878 (3) 149.7 (19)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (http://www.cposs.org.uk). We also thank the EPSRC National X-ray Crystallography Service at the University of Southampton for the data collection.

supplementary crystallographic information

Comment

The crystal structure of urea has been widely studied (see for example, Vaughan and Donohue (1952) and references therein; Swaminathan et al. (1984), Pryor and Sanger (1970), Guth et al. (1980) and Weber et al. (2002)). This previously unreported crystalline solvate of urea was discovered during an investigation into the influence of different crystallization solvents on urea crystal morphology (see also Fernandes et al., 2007). The sample was obtained by slow evaporation from a saturated N,N-dimethylacetamide (DMA) solution at 298 K and identified by using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent recrystallization produced a single-crystal suitable for X-ray diffraction at 120 K (Fig. 1).

Both molecules lie over a two fold rotation axis resulting in the DMA being disordered (see refinement section for details). Each urea molecule interacts with adjacent urea molecules via contact 1 (Fig. 2, entry 1, Table 1), forming a hydrogen bonded ribbon that runs in the direction [-1 0 1]. Molecules of DMA lie on the edge of the ribbons, connected through a second hydrogen bond (contact 2), (entry 2, Table 1).The DMA-bordered ribbons of urea pack side-by-side to form a two-dimensional sheet.

Experimental

The compound was sourced from Sigma-Aldrich and used as supplied. A single-crystal sample of the 1/1 solvate was recrystallized from a saturated N,N-dimethylacetamide solution by isothermal solvent evaporation at room temperature (298 K).

Refinement

The DMA moiety was found to be disordered over a 2-fold rotation axis, with atoms C7 and O9 sitting on this axis. The site occupancies of N4 and C8 were consequently fixed to 1/2, whilst that of C6 was fixed to 1.0 as this atom acts as a methyl carbon both attached to N4 and to C8 in the disordered model. All non-H-atoms were modelled with anisotropic displacement parameters. H-atoms attached to N3 were located in a difference Fourier map and their positions were freely refined. H-atoms attached to C6 and C7 were positioned geometrically, taking into account disorder and occupancy of the parents atoms, and their positions were fixed during refinement. Uiso(H) were assigned in the range 1.2–1.5 times Ueq of the parent atom.

Note that both the (1 1 0) and the (-2 0 2) reflections were excluded from the final refinement as they were significant outliers on the Fo versus Fc plot.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probablility displacement ellipsoids. Hydrogen atoms have been omitted for clarity. A twofold axis runs through C1, O2 of urea and O9, C7 of DMA, giving rise to the rotational disorder of the DMA molecule. Symmetry codes: (i) -x, y, 1/2 - z. (ii) -x, y, 3/2 - z.

Fig. 2.

Fig. 2.

Selected molecular packing, viewed down the a axis, of the title compound illustrating the hydrogen bonded network. Urea molecules (green) form an R22(8) motif (Etter, 1990) involving contact 1 (entry 1, Table 1) that propagates to form an infinite ribbon. DMA molecules (shown in blues with rotational disorder) are hydrogen bonded via N—H···O contacts 2 (entry 2, Table 1) at the edges of the ribbon. Hydrogen bonds are shown as dashed lines and hydrogen atoms have been omitted for clarity. Symmetry codes: (a) -x, 1 - y, 1 - z; (b) 1/2 - x, 1/2 - y, 1 - z.

Crystal data

C4H9NO·CH4N2O F000 = 320
Mr = 147.18 Dx = 1.192 Mg m3
Monoclinic, C2/c Melting point: 406 K
Hall symbol: -C 2yc Mo Kα radiation λ = 0.71073 Å
a = 7.2770 (3) Å Cell parameters from 2218 reflections
b = 17.5394 (9) Å θ = 3–27º
c = 7.3789 (4) Å µ = 0.09 mm1
β = 119.450 (3)º T = 120 K
V = 820.11 (7) Å3 Lath, colourless
Z = 4 0.40 × 0.12 × 0.04 mm

Data collection

Bruker–Nonius KappaCCD diffractometer 941 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode 552 reflections with I > 2.0σ(I)
Monochromator: graphite Rint = 0.048
Detector resolution: 9.091 pixels mm-1 θmax = 27.6º
T = 120(2) K θmin = 3.4º
φ & ω scans h = −9→9
Absorption correction: multi-scan(SADABS; Bruker, 2007) k = −22→22
Tmin = 0.867, Tmax = 1 l = −9→9
5338 measured reflections

Refinement

Refinement on F2 Hydrogen site location: geom + difmap
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050   Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.07P)2] ,where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.150 (Δ/σ)max = 0.0001
S = 0.89 Δρmax = 0.31 e Å3
939 reflections Δρmin = −0.39 e Å3
63 parameters Extinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.0000 0.30587 (14) 0.2500 0.0293
O2 0.0000 0.23473 (9) 0.2500 0.0380
N3 0.1649 (2) 0.34642 (10) 0.3935 (3) 0.0360
N4 0.0668 (4) 0.37977 (18) 0.7962 (5) 0.0347 0.5000
C6 0.2835 (3) 0.40670 (13) 0.9670 (4) 0.0525
C7 0.0000 0.29897 (16) 0.7500 0.0508
C8 −0.0735 (5) 0.4351 (2) 0.6946 (6) 0.0347 0.5000
O9 0.0000 0.50307 (11) 0.7500 0.0628
H31 0.264 (3) 0.3224 (11) 0.499 (4) 0.0365*
H32 0.158 (3) 0.3959 (13) 0.393 (3) 0.0360*
H71 −0.1409 0.2969 0.6380 0.0608* 0.5000
H72 0.0074 0.2760 0.8696 0.0608* 0.5000
H73 0.0908 0.2732 0.7124 0.0608* 0.5000
H61 0.2880 0.4608 0.9665 0.0542* 0.5000
H62 0.3056 0.3894 1.0980 0.0542* 0.5000
H63 0.3889 0.3866 0.9409 0.0542* 0.5000
H64 0.2827 0.3526 0.9657 0.0542* 0.5000
H65 0.3108 0.4244 1.0994 0.0542* 0.5000
H66 0.3885 0.4250 0.9377 0.0542* 0.5000

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0239 (11) 0.0284 (14) 0.0251 (13) 0.0000 0.0038 (10) 0.0000
O2 0.0315 (9) 0.0245 (10) 0.0342 (11) 0.0000 −0.0022 (8) 0.0000
N3 0.0289 (8) 0.0261 (9) 0.0325 (10) −0.0009 (6) −0.0006 (7) 0.0011 (7)
N4 0.0290 (18) 0.0271 (17) 0.038 (2) 0.0003 (11) 0.0085 (16) −0.0020 (14)
C6 0.0327 (10) 0.0554 (14) 0.0474 (14) −0.0003 (9) 0.0026 (10) 0.0046 (11)
C7 0.0663 (19) 0.0236 (14) 0.059 (2) 0.0000 0.0286 (17) 0.0000
C8 0.0332 (19) 0.030 (2) 0.031 (2) −0.0004 (14) 0.0084 (16) 0.0008 (16)
O9 0.0855 (16) 0.0210 (11) 0.0587 (16) 0.0000 0.0176 (13) 0.0000

Geometric parameters (Å, °)

O9—C8 1.288 (4) C6—H63 0.9500
O9—C8i 1.288 (4) C6—H64 0.9500
O2—C1 1.248 (3) C6—H65 0.9500
N4—C6 1.531 (4) C6—H61 0.9500
N4—C8 1.339 (5) C6—H66 0.9500
N4—C7 1.483 (4) C7—H72i 0.9500
N3—C1 1.348 (2) C7—H73i 0.9500
N3—H32 0.87 (2) C7—H71i 0.9500
N3—H31 0.87 (2) C7—H71 0.9500
C6—C8i 1.488 (5) C7—H72 0.9500
C6—H62 0.9500 C7—H73 0.9500
C6—N4—C7 124.9 (2) C8i—C6—H61 72.00
C6—N4—C8 115.5 (3) H62—C6—H63 110.00
C7—N4—C8 119.4 (3) H62—C6—H64 72.00
C1—N3—H32 119.8 (14) C8i—C6—H66 109.00
H31—N3—H32 120.7 (19) N4—C7—H71i 75.00
C1—N3—H31 118.4 (14) N4—C7—H72i 119.00
N4—C8—C6i 114.0 (3) N4—C7—H73 109.00
O9—C8—N4 114.2 (3) H71—C7—H72 110.00
O9—C8—C6i 131.8 (3) H71—C7—H73 110.00
N4—C6—H61 109.00 N4—C7—H73i 126.00
N4—C6—H62 109.00 H71—C7—H71i 176.00
N4—C6—H63 109.00 H71—C7—H72i 68.00
N4—C6—H64 72.00 H71—C7—H73i 68.00
H61—C6—H63 110.00 H72—C7—H73 110.00
H61—C6—H64 178.00 N4i—C7—H72 119.00
H61—C6—H65 72.00 H71i—C7—H72 68.00
H61—C6—H66 68.00 N4i—C7—H71 75.00
N4—C6—H65 124.00 N4i—C7—H73 126.00
N4—C6—H66 122.00 H71i—C7—H73 68.00
H61—C6—H62 110.00 N4i—C7—H71i 109.00
H62—C6—H66 126.00 N4i—C7—H72i 109.00
C8i—C6—H62 121.00 N4i—C7—H73i 109.00
H63—C6—H64 68.00 H71i—C7—H72i 110.00
H63—C6—H65 123.00 H71i—C7—H73i 110.00
C8i—C6—H63 125.00 N4—C7—H71 109.00
H64—C6—H65 110.00 N4—C7—H72 109.00
H64—C6—H66 110.00 O2—C1—N3 121.84 (12)
C8i—C6—H64 109.00 O2—C1—N3ii 121.84 (12)
H65—C6—H66 110.00 N3—C1—N3ii 116.3 (2)
C8i—C6—H65 109.00

Symmetry codes: (i) −x, y, −z+3/2; (ii) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H31···O2iii 0.87 (2) 2.06 (2) 2.930 (2) 180 (3)
N3—H32···O9iv 0.87 (2) 2.09 (2) 2.878 (3) 149.7 (19)

Symmetry codes: (iii) −x+1/2, −y+1/2, −z+1; (iv) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GA2020).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  2. Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  4. Bruker (2007). SADABS. Version 2007/2. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Fernandes, P., Florence, A. J., Fabbiani, F., David, W. I. F. & Shankland, K. (2007). Acta Cryst. E63, o4861. [DOI] [PMC free article] [PubMed]
  8. Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci.92, 1930–1938. [DOI] [PubMed]
  9. Guth, H., Heger, G., Klein, S., Treutmann, W. & Scheringer, C. (1980). Z. Kristallogr.153, 237–254.
  10. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  11. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Pryor, A. W. & Sanger, P. L. (1970). Acta Cryst. A26, 543–558.
  14. Swaminathan, S., Craven, B. M. & McMullan, R. K. (1984). Acta Cryst. B40, 300–306.
  15. Vaughan, P. & Donohue, J. (1952). Acta Cryst.5, 530–535.
  16. Weber, H. P., Marshall, W. G. & Dmitriev, V. (2002). Acta Cryst. A58 (Suppl.), C174.
  17. Westrip, S. P. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067232/ga2020sup1.cif

e-64-0o355-sup1.cif (13.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067232/ga2020Isup2.hkl

e-64-0o355-Isup2.hkl (47.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES