Abstract
Urea forms a 1:1 solvate with N,N-dimethylacetamide (DMA) [systematic name: diaminomethanal–N,N-dimethylacetamide (1/1), C4H9NO·CH4N2O] with both molecules positioned on a twofold axis, giving rise to rotational disorder of the DMA molecule. The molecules display a layered structure in which urea molecules form hydrogen-bonded ribbons bounded by molecules of solvent.
Related literature
For details on experimental methods used to obtain this crystalline compound, see: Florence et al. (2003 ▶). For crystal structures of urea, see: Fernandes et al. (2007 ▶); Vaughan & Donohue (1952 ▶), and references therein; Swaminathan et al. (1984 ▶); Pryor & Sanger (1970 ▶); Guth et al. (1980 ▶); Weber et al. (2002 ▶). For related literature, see: Etter (1990 ▶).
Experimental
Crystal data
C4H9NO·CH4N2O
M r = 147.18
Monoclinic,
a = 7.2770 (3) Å
b = 17.5394 (9) Å
c = 7.3789 (4) Å
β = 119.450 (3)°
V = 820.11 (7) Å3
Z = 4
Mo Kα radiation
μ = 0.09 mm−1
T = 120 K
0.40 × 0.12 × 0.04 mm
Data collection
Bruker–Nonius KappaCCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007 ▶) T min = 0.867, T max = 1 (expected range = 0.864–0.996)
5338 measured reflections
941 independent reflections
552 reflections with I > 2.0σ(I)
R int = 0.048
Refinement
R[F 2 > 2σ(F 2)] = 0.050
wR(F 2) = 0.150
S = 0.89
939 reflections
63 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.31 e Å−3
Δρmin = −0.39 e Å−3
Data collection: COLLECT (Hooft, 1998 ▶); cell refinement: DENZO (Otwinowski & Minor, 1997 ▶) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR92 (Altomare et al., 1994 ▶); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶) and Mercury (Macrae et al., 2006 ▶); software used to prepare material for publication: enCIFer (Allen et al., 2004 ▶) and publCIF (Westrip, 2008 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067232/ga2020sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067232/ga2020Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N3—H31⋯O2i | 0.87 (2) | 2.06 (2) | 2.930 (2) | 180 (3) |
| N3—H32⋯O9ii | 0.87 (2) | 2.09 (2) | 2.878 (3) | 149.7 (19) |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (http://www.cposs.org.uk). We also thank the EPSRC National X-ray Crystallography Service at the University of Southampton for the data collection.
supplementary crystallographic information
Comment
The crystal structure of urea has been widely studied (see for example, Vaughan and Donohue (1952) and references therein; Swaminathan et al. (1984), Pryor and Sanger (1970), Guth et al. (1980) and Weber et al. (2002)). This previously unreported crystalline solvate of urea was discovered during an investigation into the influence of different crystallization solvents on urea crystal morphology (see also Fernandes et al., 2007). The sample was obtained by slow evaporation from a saturated N,N-dimethylacetamide (DMA) solution at 298 K and identified by using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent recrystallization produced a single-crystal suitable for X-ray diffraction at 120 K (Fig. 1).
Both molecules lie over a two fold rotation axis resulting in the DMA being disordered (see refinement section for details). Each urea molecule interacts with adjacent urea molecules via contact 1 (Fig. 2, entry 1, Table 1), forming a hydrogen bonded ribbon that runs in the direction [-1 0 1]. Molecules of DMA lie on the edge of the ribbons, connected through a second hydrogen bond (contact 2), (entry 2, Table 1).The DMA-bordered ribbons of urea pack side-by-side to form a two-dimensional sheet.
Experimental
The compound was sourced from Sigma-Aldrich and used as supplied. A single-crystal sample of the 1/1 solvate was recrystallized from a saturated N,N-dimethylacetamide solution by isothermal solvent evaporation at room temperature (298 K).
Refinement
The DMA moiety was found to be disordered over a 2-fold rotation axis, with atoms C7 and O9 sitting on this axis. The site occupancies of N4 and C8 were consequently fixed to 1/2, whilst that of C6 was fixed to 1.0 as this atom acts as a methyl carbon both attached to N4 and to C8 in the disordered model. All non-H-atoms were modelled with anisotropic displacement parameters. H-atoms attached to N3 were located in a difference Fourier map and their positions were freely refined. H-atoms attached to C6 and C7 were positioned geometrically, taking into account disorder and occupancy of the parents atoms, and their positions were fixed during refinement. Uiso(H) were assigned in the range 1.2–1.5 times Ueq of the parent atom.
Note that both the (1 1 0) and the (-2 0 2) reflections were excluded from the final refinement as they were significant outliers on the Fo versus Fc plot.
Figures
Fig. 1.
The molecular structure of the title compound showing 50% probablility displacement ellipsoids. Hydrogen atoms have been omitted for clarity. A twofold axis runs through C1, O2 of urea and O9, C7 of DMA, giving rise to the rotational disorder of the DMA molecule. Symmetry codes: (i) -x, y, 1/2 - z. (ii) -x, y, 3/2 - z.
Fig. 2.
Selected molecular packing, viewed down the a axis, of the title compound illustrating the hydrogen bonded network. Urea molecules (green) form an R22(8) motif (Etter, 1990) involving contact 1 (entry 1, Table 1) that propagates to form an infinite ribbon. DMA molecules (shown in blues with rotational disorder) are hydrogen bonded via N—H···O contacts 2 (entry 2, Table 1) at the edges of the ribbon. Hydrogen bonds are shown as dashed lines and hydrogen atoms have been omitted for clarity. Symmetry codes: (a) -x, 1 - y, 1 - z; (b) 1/2 - x, 1/2 - y, 1 - z.
Crystal data
| C4H9NO·CH4N2O | F000 = 320 |
| Mr = 147.18 | Dx = 1.192 Mg m−3 |
| Monoclinic, C2/c | Melting point: 406 K |
| Hall symbol: -C 2yc | Mo Kα radiation λ = 0.71073 Å |
| a = 7.2770 (3) Å | Cell parameters from 2218 reflections |
| b = 17.5394 (9) Å | θ = 3–27º |
| c = 7.3789 (4) Å | µ = 0.09 mm−1 |
| β = 119.450 (3)º | T = 120 K |
| V = 820.11 (7) Å3 | Lath, colourless |
| Z = 4 | 0.40 × 0.12 × 0.04 mm |
Data collection
| Bruker–Nonius KappaCCD diffractometer | 941 independent reflections |
| Radiation source: Bruker-Nonius FR591 rotating anode | 552 reflections with I > 2.0σ(I) |
| Monochromator: graphite | Rint = 0.048 |
| Detector resolution: 9.091 pixels mm-1 | θmax = 27.6º |
| T = 120(2) K | θmin = 3.4º |
| φ & ω scans | h = −9→9 |
| Absorption correction: multi-scan(SADABS; Bruker, 2007) | k = −22→22 |
| Tmin = 0.867, Tmax = 1 | l = −9→9 |
| 5338 measured reflections |
Refinement
| Refinement on F2 | Hydrogen site location: geom + difmap |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.050 | Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.07P)2] ,where P = (max(Fo2,0) + 2Fc2)/3 |
| wR(F2) = 0.150 | (Δ/σ)max = 0.0001 |
| S = 0.89 | Δρmax = 0.31 e Å−3 |
| 939 reflections | Δρmin = −0.39 e Å−3 |
| 63 parameters | Extinction correction: none |
| Primary atom site location: structure-invariant direct methods |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| C1 | 0.0000 | 0.30587 (14) | 0.2500 | 0.0293 | |
| O2 | 0.0000 | 0.23473 (9) | 0.2500 | 0.0380 | |
| N3 | 0.1649 (2) | 0.34642 (10) | 0.3935 (3) | 0.0360 | |
| N4 | 0.0668 (4) | 0.37977 (18) | 0.7962 (5) | 0.0347 | 0.5000 |
| C6 | 0.2835 (3) | 0.40670 (13) | 0.9670 (4) | 0.0525 | |
| C7 | 0.0000 | 0.29897 (16) | 0.7500 | 0.0508 | |
| C8 | −0.0735 (5) | 0.4351 (2) | 0.6946 (6) | 0.0347 | 0.5000 |
| O9 | 0.0000 | 0.50307 (11) | 0.7500 | 0.0628 | |
| H31 | 0.264 (3) | 0.3224 (11) | 0.499 (4) | 0.0365* | |
| H32 | 0.158 (3) | 0.3959 (13) | 0.393 (3) | 0.0360* | |
| H71 | −0.1409 | 0.2969 | 0.6380 | 0.0608* | 0.5000 |
| H72 | 0.0074 | 0.2760 | 0.8696 | 0.0608* | 0.5000 |
| H73 | 0.0908 | 0.2732 | 0.7124 | 0.0608* | 0.5000 |
| H61 | 0.2880 | 0.4608 | 0.9665 | 0.0542* | 0.5000 |
| H62 | 0.3056 | 0.3894 | 1.0980 | 0.0542* | 0.5000 |
| H63 | 0.3889 | 0.3866 | 0.9409 | 0.0542* | 0.5000 |
| H64 | 0.2827 | 0.3526 | 0.9657 | 0.0542* | 0.5000 |
| H65 | 0.3108 | 0.4244 | 1.0994 | 0.0542* | 0.5000 |
| H66 | 0.3885 | 0.4250 | 0.9377 | 0.0542* | 0.5000 |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0239 (11) | 0.0284 (14) | 0.0251 (13) | 0.0000 | 0.0038 (10) | 0.0000 |
| O2 | 0.0315 (9) | 0.0245 (10) | 0.0342 (11) | 0.0000 | −0.0022 (8) | 0.0000 |
| N3 | 0.0289 (8) | 0.0261 (9) | 0.0325 (10) | −0.0009 (6) | −0.0006 (7) | 0.0011 (7) |
| N4 | 0.0290 (18) | 0.0271 (17) | 0.038 (2) | 0.0003 (11) | 0.0085 (16) | −0.0020 (14) |
| C6 | 0.0327 (10) | 0.0554 (14) | 0.0474 (14) | −0.0003 (9) | 0.0026 (10) | 0.0046 (11) |
| C7 | 0.0663 (19) | 0.0236 (14) | 0.059 (2) | 0.0000 | 0.0286 (17) | 0.0000 |
| C8 | 0.0332 (19) | 0.030 (2) | 0.031 (2) | −0.0004 (14) | 0.0084 (16) | 0.0008 (16) |
| O9 | 0.0855 (16) | 0.0210 (11) | 0.0587 (16) | 0.0000 | 0.0176 (13) | 0.0000 |
Geometric parameters (Å, °)
| O9—C8 | 1.288 (4) | C6—H63 | 0.9500 |
| O9—C8i | 1.288 (4) | C6—H64 | 0.9500 |
| O2—C1 | 1.248 (3) | C6—H65 | 0.9500 |
| N4—C6 | 1.531 (4) | C6—H61 | 0.9500 |
| N4—C8 | 1.339 (5) | C6—H66 | 0.9500 |
| N4—C7 | 1.483 (4) | C7—H72i | 0.9500 |
| N3—C1 | 1.348 (2) | C7—H73i | 0.9500 |
| N3—H32 | 0.87 (2) | C7—H71i | 0.9500 |
| N3—H31 | 0.87 (2) | C7—H71 | 0.9500 |
| C6—C8i | 1.488 (5) | C7—H72 | 0.9500 |
| C6—H62 | 0.9500 | C7—H73 | 0.9500 |
| C6—N4—C7 | 124.9 (2) | C8i—C6—H61 | 72.00 |
| C6—N4—C8 | 115.5 (3) | H62—C6—H63 | 110.00 |
| C7—N4—C8 | 119.4 (3) | H62—C6—H64 | 72.00 |
| C1—N3—H32 | 119.8 (14) | C8i—C6—H66 | 109.00 |
| H31—N3—H32 | 120.7 (19) | N4—C7—H71i | 75.00 |
| C1—N3—H31 | 118.4 (14) | N4—C7—H72i | 119.00 |
| N4—C8—C6i | 114.0 (3) | N4—C7—H73 | 109.00 |
| O9—C8—N4 | 114.2 (3) | H71—C7—H72 | 110.00 |
| O9—C8—C6i | 131.8 (3) | H71—C7—H73 | 110.00 |
| N4—C6—H61 | 109.00 | N4—C7—H73i | 126.00 |
| N4—C6—H62 | 109.00 | H71—C7—H71i | 176.00 |
| N4—C6—H63 | 109.00 | H71—C7—H72i | 68.00 |
| N4—C6—H64 | 72.00 | H71—C7—H73i | 68.00 |
| H61—C6—H63 | 110.00 | H72—C7—H73 | 110.00 |
| H61—C6—H64 | 178.00 | N4i—C7—H72 | 119.00 |
| H61—C6—H65 | 72.00 | H71i—C7—H72 | 68.00 |
| H61—C6—H66 | 68.00 | N4i—C7—H71 | 75.00 |
| N4—C6—H65 | 124.00 | N4i—C7—H73 | 126.00 |
| N4—C6—H66 | 122.00 | H71i—C7—H73 | 68.00 |
| H61—C6—H62 | 110.00 | N4i—C7—H71i | 109.00 |
| H62—C6—H66 | 126.00 | N4i—C7—H72i | 109.00 |
| C8i—C6—H62 | 121.00 | N4i—C7—H73i | 109.00 |
| H63—C6—H64 | 68.00 | H71i—C7—H72i | 110.00 |
| H63—C6—H65 | 123.00 | H71i—C7—H73i | 110.00 |
| C8i—C6—H63 | 125.00 | N4—C7—H71 | 109.00 |
| H64—C6—H65 | 110.00 | N4—C7—H72 | 109.00 |
| H64—C6—H66 | 110.00 | O2—C1—N3 | 121.84 (12) |
| C8i—C6—H64 | 109.00 | O2—C1—N3ii | 121.84 (12) |
| H65—C6—H66 | 110.00 | N3—C1—N3ii | 116.3 (2) |
| C8i—C6—H65 | 109.00 |
Symmetry codes: (i) −x, y, −z+3/2; (ii) −x, y, −z+1/2.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N3—H31···O2iii | 0.87 (2) | 2.06 (2) | 2.930 (2) | 180 (3) |
| N3—H32···O9iv | 0.87 (2) | 2.09 (2) | 2.878 (3) | 149.7 (19) |
Symmetry codes: (iii) −x+1/2, −y+1/2, −z+1; (iv) −x, −y+1, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GA2020).
References
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
- Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
- Bruker (2007). SADABS. Version 2007/2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Fernandes, P., Florence, A. J., Fabbiani, F., David, W. I. F. & Shankland, K. (2007). Acta Cryst. E63, o4861. [DOI] [PMC free article] [PubMed]
- Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci.92, 1930–1938. [DOI] [PubMed]
- Guth, H., Heger, G., Klein, S., Treutmann, W. & Scheringer, C. (1980). Z. Kristallogr.153, 237–254.
- Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pryor, A. W. & Sanger, P. L. (1970). Acta Cryst. A26, 543–558.
- Swaminathan, S., Craven, B. M. & McMullan, R. K. (1984). Acta Cryst. B40, 300–306.
- Vaughan, P. & Donohue, J. (1952). Acta Cryst.5, 530–535.
- Weber, H. P., Marshall, W. G. & Dmitriev, V. (2002). Acta Cryst. A58 (Suppl.), C174.
- Westrip, S. P. (2008). publCIF In preparation.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067232/ga2020sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067232/ga2020Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


