Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 23;64(Pt 2):o480. doi: 10.1107/S1600536808001839

N,N-Bis(diphenyl­phosphino)-1,2-dimethyl­propyl­amine

Nicoline Cloete a,*, Hendrik G Visser a, Andreas Roodt a, Jontho T Dixon b, Kevin Blann b
PMCID: PMC2960458  PMID: 21201505

Abstract

The diphenyl­phosphine groups in the title compound, C29H31NP2, are staggered relative to the PNP backbone. The N atom adopts an almost planar geometry with the two P atoms and the C atom attached to it, in order to accommodate the steric bulk of the phenyl groups and the alkyl group. Three C atoms of the 1,2-dimethylpropylamine group are disordered over two positions in a 9:1 ratio. The mol­ecules pack diagonally in the unit cell across the ac plane in a head-to-tail fashion.

Related literature

For similar structures, see: Keat et al. (1981); Cotton et al. (1996); Fei et al. (2003). For ethyl­ene tetra­merization, see: Bollmann et al. (2004).graphic file with name e-64-0o480-scheme1.jpg

Experimental

Crystal data

  • C29H31NP2

  • M r = 455.49

  • Triclinic, Inline graphic

  • a = 9.242 (5) Å

  • b = 10.454 (5) Å

  • c = 12.899 (5) Å

  • α = 91.031 (5)°

  • β = 98.188 (5)°

  • γ = 102.775 (5)°

  • V = 1201.4 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 101 (2) K

  • 0.47 × 0.29 × 0.14 mm

Data collection

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.912, T max = 0.974

  • 24124 measured reflections

  • 5947 independent reflections

  • 5313 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.107

  • S = 1.09

  • 5947 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001839/pv2057sup1.cif

e-64-0o480-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001839/pv2057Isup2.hkl

e-64-0o480-Isup2.hkl (285.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the South African National Research Foundation (NRF), the Research Fund of the University of the Free State and Sasol is gratefully acknowledged. Part of this material is based on work supported by the South African National Research Foundation (GUN 2038915). Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

supplementary crystallographic information

Comment

Diphosphinoamine (PNP) ligands with various substituents on both the P and N atoms have proven to be very effective in ethylene tetramerization catalyst systems and have been shown to produce 1-octene in good selectivity (Bollmann et al., 2004). It seems that the substituents on the N atom profoundly affected the catalyst productivity. This paper forms part of a structural and kinetic investigation into the mechanism of the catalytic cycle.

The crystals of the title compound, (I), crystallize in the triclinic space group. All bond distances and angles in (I) (Figure 1a) are considered to be normal and fall within the range reported for similar complexes (Keat et al., 1981; Cotton et al., 1996; Fei et al., 2003). A slight disorder of 12% is observed in the 1,2-dimethylpropylamine substituent (Figure 1 b). The distance of N1 from the P1—P2—C1 plane was calculated as 0.216 (2) Å. The geometry around the phosphorous ligands is distorted from tetrahedral geometry with C—P—C angles being the most distorted (varying from 99.56 (7)° to 99.78 (7)°). The P1—N1—P2 angle is 117.83 (7)°.

Experimental

1,2-Dimethylpropylamine (0.01 mole, 0.811 g) was dissolved in dichloromethane (30 ml) and placed in an ice bath. Triethylamine (0.03 mol, 4.22 ml) was added to the solution while it was being stirred. Chlorodiphenylphosphine (0.02 mol, 3.62 ml) was slowly added to the reaction mixture. The ice bath was removed after 30 minutes and the reaction mixture was allowed to stir at room temperature for a further 12 hrs.

The dichloromethane was removed under reduced pressure. A mixture of hexane (20 ml) and toluene (2 ml) was added to the remaining white powder and was passed through a column containing neutral activated alumina (35 g). The solvent of the eluent was removed under reduced pressure and the white precipitate was collected. The product was recrystallized from methanol, single colourless crystals were obtained (yield 2.551 g, 56.1%) the next day which were suitable for X-ray crystallography.

Refinement

The methyl, methine and aromatic H atoms were placed in geometrically idealized positions at C—H = 0.98, 1.00, 0.95 Å, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the rest of the H-atoms. The 1,2-dimethylpropylamine substituent was disordered over two sites with site occupancy factors for atoms C1, C2 and C3 being 0.880 (3) and 0.120 (3) for the unprimed and primed atoms, respectively.

Figures

Fig. 1.

Fig. 1.

A view of (I) shown with 50% probability displacement ellipsoids. Atoms C1', C2' and C3' and the H atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

A view of (I) illustrating the disordered part of the molecule.

Fig. 3.

Fig. 3.

A perspective view of the unit cell of (I) along the b axis.

Crystal data

C29H31NP2 Z = 2
Mr = 455.49 F000 = 484
Triclinic, P1 Dx = 1.259 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71069 Å
a = 9.242 (5) Å Cell parameters from 5808 reflections
b = 10.454 (5) Å θ = 2.5–28.3º
c = 12.899 (5) Å µ = 0.20 mm1
α = 91.031 (5)º T = 101 (2) K
β = 98.188 (5)º Needle, colourless
γ = 102.775 (5)º 0.47 × 0.29 × 0.14 mm
V = 1201.4 (10) Å3

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer Rint = 0.031
ω and φ scans θmax = 28.3º
Absorption correction: multi-scan(SADABS; Bruker, 2004) θmin = 1.6º
Tmin = 0.913, Tmax = 0.974 h = −12→12
24124 measured reflections k = −13→13
5947 independent reflections l = −17→17
5313 reflections with I > 2σ(I)

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full   w = 1/[σ2(Fo2) + (0.0452P)2 + 0.8476P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.040 (Δ/σ)max = 0.001
wR(F2) = 0.108 Δρmax = 0.56 e Å3
S = 1.09 Δρmin = −0.52 e Å3
5947 reflections Extinction correction: none
299 parameters

Special details

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 20 s/frame. A total of 1264 frames were collected with a frame width of 0.5° covering up to θ = 28.27° with 99.7% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
P1 0.70056 (4) 0.12612 (3) 0.21511 (3) 0.01317 (9)
P2 0.67790 (4) 0.37407 (4) 0.31828 (3) 0.01449 (9)
N1 0.78800 (13) 0.27976 (12) 0.27060 (10) 0.0140 (2)
C1 0.93360 (17) 0.35565 (16) 0.23925 (13) 0.0135 (3) 0.880 (3)
H1 0.9915 0.2902 0.2213 0.016* 0.880 (3)
C2 1.03165 (18) 0.44779 (17) 0.33011 (13) 0.0161 (3) 0.880 (3)
H2 0.9765 0.5164 0.3455 0.019* 0.880 (3)
C3 1.1814 (3) 0.5179 (2) 0.29853 (17) 0.0221 (5) 0.880 (3)
H3A 1.1627 0.5635 0.234 0.033* 0.880 (3)
H3B 1.2405 0.4534 0.2867 0.033* 0.880 (3)
H3C 1.237 0.5818 0.3547 0.033* 0.880 (3)
C4 1.0608 (2) 0.37797 (18) 0.42997 (13) 0.0276 (4)
H4A 0.9649 0.3331 0.4503 0.041* 0.880 (3)
H4B 1.1163 0.4422 0.486 0.041* 0.880 (3)
H4C 1.1199 0.3134 0.4183 0.041* 0.880 (3)
C5 0.90750 (18) 0.43599 (16) 0.14037 (13) 0.0222 (3)
H5A 0.8456 0.3773 0.0829 0.033* 0.880 (3)
H5B 1.0044 0.4764 0.1193 0.033* 0.880 (3)
H5C 0.8562 0.5047 0.1568 0.033* 0.880 (3)
C1' 0.9525 (13) 0.3419 (12) 0.3000 (11) 0.0135 (3) 0.120 (3)
H1' 1.0041 0.2825 0.2648 0.016* 0.120 (3)
C2' 0.9878 (13) 0.4706 (12) 0.2442 (10) 0.0161 (3) 0.120 (3)
H2' 0.9385 0.5336 0.2773 0.019* 0.120 (3)
C3' 1.164 (2) 0.530 (2) 0.2663 (15) 0.0221 (5) 0.120 (3)
H3'1 1.1961 0.5462 0.342 0.033* 0.120 (3)
H3'2 1.1869 0.6134 0.2315 0.033* 0.120 (3)
H3'3 1.2161 0.4683 0.239 0.033* 0.120 (3)
H4'1 1.044 0.2992 0.4706 0.041* 0.120 (3)
H4'2 1.0292 0.4487 0.4653 0.041* 0.120 (3)
H4'3 1.1677 0.4056 0.4242 0.041* 0.120 (3)
H5'1 0.9224 0.5132 0.0978 0.033* 0.120 (3)
H5'2 0.8003 0.4047 0.1438 0.033* 0.120 (3)
H5'3 0.945 0.3663 0.1085 0.033* 0.120 (3)
C11 0.72299 (16) 0.13544 (14) 0.07574 (11) 0.0160 (3)
C12 0.84843 (17) 0.11312 (15) 0.03598 (12) 0.0193 (3)
H12A 0.9257 0.0869 0.0815 0.023*
C13 0.86207 (19) 0.12861 (16) −0.06911 (13) 0.0229 (3)
H13 0.9481 0.1128 −0.095 0.027*
C14 0.7501 (2) 0.16710 (17) −0.13625 (13) 0.0259 (3)
H14 0.7596 0.1784 −0.2081 0.031*
C15 0.6245 (2) 0.18891 (19) −0.09798 (13) 0.0273 (4)
H15A 0.5479 0.2155 −0.1438 0.033*
C16 0.60969 (18) 0.17224 (17) 0.00689 (13) 0.0221 (3)
H16 0.5222 0.1859 0.032 0.027*
C21 0.82593 (16) 0.01717 (14) 0.25649 (12) 0.0160 (3)
C22 0.78897 (18) −0.10914 (15) 0.20857 (14) 0.0219 (3)
H22 0.7106 −0.1304 0.1506 0.026*
C23 0.8651 (2) −0.20396 (16) 0.24445 (15) 0.0280 (4)
H23A 0.8368 −0.29 0.2121 0.034*
C24 0.9823 (2) −0.17373 (18) 0.32730 (14) 0.0301 (4)
H24A 1.0354 −0.2382 0.3515 0.036*
C25 1.0208 (2) −0.0491 (2) 0.37406 (14) 0.0335 (4)
H25A 1.1018 −0.0272 0.4303 0.04*
C26 0.9421 (2) 0.04519 (17) 0.33964 (13) 0.0251 (3)
H26 0.9687 0.1301 0.3739 0.03*
C31 0.50526 (16) 0.34906 (15) 0.22286 (11) 0.0160 (3)
C32 0.49159 (18) 0.44964 (17) 0.15521 (13) 0.0223 (3)
H32 0.5688 0.5275 0.1613 0.027*
C33 0.3657 (2) 0.4373 (2) 0.07870 (13) 0.0296 (4)
H33 0.3575 0.5064 0.033 0.035*
C34 0.2534 (2) 0.3248 (2) 0.06951 (14) 0.0312 (4)
H34 0.1684 0.3157 0.0167 0.037*
C35 0.26411 (18) 0.22487 (18) 0.13728 (15) 0.0283 (4)
H35 0.186 0.1477 0.1311 0.034*
C36 0.38839 (17) 0.23698 (16) 0.21414 (13) 0.0208 (3)
H36 0.3941 0.1687 0.2611 0.025*
C41 0.60386 (16) 0.28426 (15) 0.42658 (12) 0.0172 (3)
C42 0.48788 (18) 0.32576 (18) 0.46699 (13) 0.0245 (3)
H42 0.4469 0.3932 0.4343 0.029*
C43 0.43217 (19) 0.2696 (2) 0.55412 (14) 0.0293 (4)
H43 0.3531 0.2983 0.5804 0.035*
C44 0.49202 (19) 0.17178 (18) 0.60269 (13) 0.0272 (4)
H44 0.4542 0.1332 0.6623 0.033*
C45 0.60676 (19) 0.13068 (17) 0.56409 (13) 0.0245 (3)
H45 0.6477 0.0636 0.5975 0.029*
C46 0.66313 (17) 0.18625 (15) 0.47688 (12) 0.0195 (3)
H46 0.7426 0.1572 0.4514 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.01201 (17) 0.01326 (17) 0.01526 (18) 0.00541 (13) 0.00153 (13) 0.00045 (13)
P2 0.01198 (17) 0.01493 (18) 0.01806 (19) 0.00708 (13) 0.00105 (13) −0.00021 (14)
N1 0.0110 (5) 0.0127 (5) 0.0190 (6) 0.0053 (4) 0.0011 (4) −0.0007 (4)
C1 0.0109 (7) 0.0155 (7) 0.0148 (8) 0.0050 (5) 0.0015 (6) −0.0005 (6)
C2 0.0141 (7) 0.0184 (8) 0.0165 (7) 0.0057 (6) 0.0015 (6) −0.0021 (6)
C3 0.0164 (9) 0.0249 (10) 0.0232 (12) 0.0010 (7) 0.0034 (9) −0.0015 (9)
C4 0.0360 (9) 0.0294 (9) 0.0188 (8) 0.0104 (7) 0.0042 (7) 0.0024 (7)
C5 0.0250 (8) 0.0243 (8) 0.0195 (7) 0.0126 (6) −0.0003 (6) −0.0008 (6)
N1' 0.0110 (5) 0.0127 (5) 0.0190 (6) 0.0053 (4) 0.0011 (4) −0.0007 (4)
C1' 0.0109 (7) 0.0155 (7) 0.0148 (8) 0.0050 (5) 0.0015 (6) −0.0005 (6)
C2' 0.0141 (7) 0.0184 (8) 0.0165 (7) 0.0057 (6) 0.0015 (6) −0.0021 (6)
C3' 0.0164 (9) 0.0249 (10) 0.0232 (12) 0.0010 (7) 0.0034 (9) −0.0015 (9)
C4' 0.0360 (9) 0.0294 (9) 0.0188 (8) 0.0104 (7) 0.0042 (7) 0.0024 (7)
C5' 0.0250 (8) 0.0243 (8) 0.0195 (7) 0.0126 (6) −0.0003 (6) −0.0008 (6)
C11 0.0162 (6) 0.0164 (7) 0.0159 (7) 0.0055 (5) 0.0015 (5) −0.0002 (5)
C12 0.0185 (7) 0.0209 (7) 0.0211 (7) 0.0091 (6) 0.0041 (6) 0.0022 (6)
C13 0.0257 (8) 0.0245 (8) 0.0226 (8) 0.0104 (6) 0.0095 (6) 0.0020 (6)
C14 0.0325 (9) 0.0303 (9) 0.0172 (7) 0.0104 (7) 0.0061 (6) 0.0011 (6)
C15 0.0271 (8) 0.0380 (10) 0.0187 (8) 0.0144 (7) −0.0012 (6) 0.0025 (7)
C16 0.0191 (7) 0.0303 (8) 0.0194 (7) 0.0118 (6) 0.0016 (6) 0.0006 (6)
C21 0.0174 (7) 0.0163 (7) 0.0173 (7) 0.0083 (5) 0.0054 (5) 0.0031 (5)
C22 0.0210 (7) 0.0176 (7) 0.0292 (8) 0.0071 (6) 0.0057 (6) 0.0004 (6)
C23 0.0345 (9) 0.0163 (7) 0.0393 (10) 0.0120 (7) 0.0151 (8) 0.0033 (7)
C24 0.0442 (10) 0.0321 (9) 0.0264 (9) 0.0288 (8) 0.0142 (8) 0.0127 (7)
C25 0.0425 (10) 0.0436 (11) 0.0218 (8) 0.0308 (9) −0.0036 (7) 0.0015 (8)
C26 0.0323 (9) 0.0265 (8) 0.0197 (8) 0.0184 (7) −0.0038 (6) −0.0028 (6)
C31 0.0135 (6) 0.0217 (7) 0.0159 (7) 0.0102 (5) 0.0027 (5) 0.0001 (5)
C32 0.0197 (7) 0.0300 (8) 0.0217 (8) 0.0126 (6) 0.0063 (6) 0.0076 (6)
C33 0.0283 (9) 0.0485 (11) 0.0194 (8) 0.0233 (8) 0.0044 (7) 0.0101 (7)
C34 0.0235 (8) 0.0522 (11) 0.0216 (8) 0.0226 (8) −0.0056 (6) −0.0080 (8)
C35 0.0164 (7) 0.0313 (9) 0.0365 (10) 0.0100 (6) −0.0037 (7) −0.0117 (7)
C36 0.0166 (7) 0.0211 (7) 0.0267 (8) 0.0099 (6) 0.0017 (6) −0.0015 (6)
C41 0.0163 (7) 0.0205 (7) 0.0149 (7) 0.0062 (5) −0.0004 (5) −0.0009 (5)
C42 0.0221 (8) 0.0346 (9) 0.0207 (8) 0.0148 (7) 0.0033 (6) 0.0016 (7)
C43 0.0228 (8) 0.0457 (11) 0.0222 (8) 0.0122 (7) 0.0062 (6) 0.0001 (7)
C44 0.0273 (8) 0.0352 (9) 0.0162 (7) 0.0009 (7) 0.0038 (6) 0.0009 (7)
C45 0.0299 (8) 0.0243 (8) 0.0178 (7) 0.0059 (6) −0.0010 (6) 0.0018 (6)
C46 0.0210 (7) 0.0208 (7) 0.0173 (7) 0.0077 (6) 0.0000 (6) −0.0009 (6)

Geometric parameters (Å, °)

P1—N1 1.7219 (14) C15—C16 1.389 (2)
P1—C21 1.8314 (16) C15—H15A 0.95
P1—C11 1.8406 (17) C16—H16 0.95
P2—N1 1.7279 (13) C21—C26 1.382 (2)
P2—C41 1.8267 (17) C21—C22 1.398 (2)
P2—C31 1.8367 (16) C22—C23 1.387 (2)
N1—C1 1.516 (2) C22—H22 0.95
C1—C2 1.547 (2) C23—C24 1.386 (3)
C1—C5 1.559 (2) C23—H23A 0.95
C1—H1 1.00 C24—C25 1.376 (3)
C2—C4 1.512 (2) C24—H24A 0.95
C2—C3 1.531 (3) C25—C26 1.392 (2)
C2—H2 1.00 C25—H25A 0.95
C3—H3A 0.98 C26—H26 0.95
C3—H3B 0.98 C31—C32 1.394 (2)
C3—H3C 0.98 C31—C36 1.398 (2)
C4—H4A 0.98 C32—C33 1.395 (2)
C4—H4B 0.98 C32—H32 0.95
C4—H4C 0.98 C33—C34 1.376 (3)
C5—H5A 0.98 C33—H33 0.95
C5—H5B 0.98 C34—C35 1.385 (3)
C5—H5C 0.98 C34—H34 0.95
C1'—C2' 1.531 (18) C35—C36 1.387 (2)
C1'—H1' 1.00 C35—H35 0.95
C2'—C3' 1.59 (2) C36—H36 0.95
C2'—H2' 1.00 C41—C46 1.393 (2)
C3'—H3'1 0.98 C41—C42 1.402 (2)
C3'—H3'2 0.98 C42—C43 1.388 (2)
C3'—H3'3 0.98 C42—H42 0.95
C11—C12 1.395 (2) C43—C44 1.386 (3)
C11—C16 1.400 (2) C43—H43 0.95
C12—C13 1.388 (2) C44—C45 1.379 (3)
C12—H12A 0.95 C44—H44 0.95
C13—C14 1.387 (2) C45—C46 1.390 (2)
C13—H13 0.95 C45—H45 0.95
C14—C15 1.386 (2) C46—H46 0.95
C14—H14 0.95
N1—P1—C21 106.57 (7) C14—C15—C16 120.55 (15)
N1—P1—C11 104.94 (7) C14—C15—H15A 119.7
C21—P1—C11 99.56 (7) C16—C15—H15A 119.7
N1—P2—C41 104.98 (7) C15—C16—C11 120.32 (15)
N1—P2—C31 106.17 (7) C15—C16—H16 119.8
C41—P2—C31 99.78 (7) C11—C16—H16 119.8
C1—N1—P1 121.49 (10) C26—C21—C22 117.95 (14)
C1—N1—P2 115.52 (10) C26—C21—P1 124.64 (12)
P1—N1—P2 117.83 (7) C22—C21—P1 116.91 (12)
N1—C1—C2 112.09 (13) C23—C22—C21 120.96 (16)
N1—C1—C5 112.51 (12) C23—C22—H22 119.5
C2—C1—C5 109.68 (13) C21—C22—H22 119.5
N1—C1—H1 107.4 C24—C23—C22 120.29 (16)
C2—C1—H1 107.4 C24—C23—H23A 119.9
C5—C1—H1 107.4 C22—C23—H23A 119.9
C4—C2—C3 109.39 (15) C25—C24—C23 119.14 (15)
C4—C2—C1 113.19 (14) C25—C24—H24A 120.4
C3—C2—C1 111.16 (15) C23—C24—H24A 120.4
C4—C2—H2 107.6 C24—C25—C26 120.57 (17)
C3—C2—H2 107.6 C24—C25—H25A 119.7
C1—C2—H2 107.6 C26—C25—H25A 119.7
C2—C3—H3A 109.5 C21—C26—C25 121.07 (16)
C2—C3—H3B 109.5 C21—C26—H26 119.5
H3A—C3—H3B 109.5 C25—C26—H26 119.5
C2—C3—H3C 109.5 C32—C31—C36 118.56 (14)
H3A—C3—H3C 109.5 C32—C31—P2 117.02 (12)
H3B—C3—H3C 109.5 C36—C31—P2 124.42 (12)
C2—C4—H4A 109.5 C31—C32—C33 120.72 (16)
C2—C4—H4B 109.5 C31—C32—H32 119.6
H4A—C4—H4B 109.5 C33—C32—H32 119.6
C2—C4—H4C 109.5 C34—C33—C32 119.92 (17)
H4A—C4—H4C 109.5 C34—C33—H33 120
H4B—C4—H4C 109.5 C32—C33—H33 120
C1—C5—H5A 109.5 C33—C34—C35 120.06 (16)
C1—C5—H5B 109.5 C33—C34—H34 120
H5A—C5—H5B 109.5 C35—C34—H34 120
C1—C5—H5C 109.5 C34—C35—C36 120.32 (17)
H5A—C5—H5C 109.5 C34—C35—H35 119.8
H5B—C5—H5C 109.5 C36—C35—H35 119.8
C2'—C1'—H1' 104.3 C35—C36—C31 120.38 (16)
C1'—C2'—C3' 109.0 (11) C35—C36—H36 119.8
C1'—C2'—H2' 107.2 C31—C36—H36 119.8
C3'—C2'—H2' 107.2 C46—C41—C42 118.29 (15)
C2'—C3'—H3'1 109.5 C46—C41—P2 124.54 (12)
C2'—C3'—H3'2 109.5 C42—C41—P2 116.92 (12)
H3'1—C3'—H3'2 109.5 C43—C42—C41 120.92 (16)
C2'—C3'—H3'3 109.5 C43—C42—H42 119.5
H3'1—C3'—H3'3 109.5 C41—C42—H42 119.5
H3'2—C3'—H3'3 109.5 C44—C43—C42 119.92 (16)
C12—C11—C16 118.48 (14) C44—C43—H43 120
C12—C11—P1 123.86 (11) C42—C43—H43 120
C16—C11—P1 117.61 (11) C45—C44—C43 119.71 (16)
C13—C12—C11 121.00 (14) C45—C44—H44 120.1
C13—C12—H12A 119.5 C43—C44—H44 120.1
C11—C12—H12A 119.5 C44—C45—C46 120.75 (16)
C14—C13—C12 120.00 (15) C44—C45—H45 119.6
C14—C13—H13 120 C46—C45—H45 119.6
C12—C13—H13 120 C45—C46—C41 120.40 (15)
C15—C14—C13 119.63 (15) C45—C46—H46 119.8
C15—C14—H14 120.2 C41—C46—H46 119.8
C13—C14—H14 120.2

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2057).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Bollmann, A., Blann, K., Dixon, J. T., Hess, F. M., Killian, E., Maumela, H., McGuinness, D. S., Morgan, D. H., Neveling, A., Otto, S., Overett, M., Slawin, A. M. Z., Wasserscheid, P. & Kuhlmann, S. (2004). J. Am. Chem. Soc.126, 14712–14713. [DOI] [PubMed]
  3. Brandenburg, K. & Putz, H. (2005). DIAMOND Release 3.0c. Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2004). SAINT-Plus (Version 7.12, including XPREP) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2005). APEX2 Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg. Chim. Acta, 252, 251–256.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Fei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772–2779.
  9. Keat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem. Soc. Dalton Trans. pp. 2192–2198.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001839/pv2057sup1.cif

e-64-0o480-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001839/pv2057Isup2.hkl

e-64-0o480-Isup2.hkl (285.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES