Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 18;64(Pt 2):o468. doi: 10.1107/S1600536808000937

Diethyl 2,3-dihydro­thieno[3,4-b]-1,4-dioxine-5,7-dicarboxyl­ate

Katsuhiko Ono a,*, Masaaki Tomura b, Katsuhiro Saito a
PMCID: PMC2960460  PMID: 21201494

Abstract

The title compound, C12H14O6S, is a dicarboxylic acid diethyl ester of 3,4-ethyl­enedioxy­thio­phene, which is a component of electrically conductive poly(3,4-ethyl­enedioxy­thio­phene) (PEDOT). The ethyl­ene group is disordered over two sites with occupancy factors 0.64 and 0.36. Both the carbonyl groups are coplanar with the thio­phene ring. The mol­ecules form centrosymmetric dimers with an R 2 2(12) coupling by inter­molecular C—H⋯O hydrogen bonds [3.333 (5) Å] at the ethoxy­carbonyl groups. The dimer units are arranged to form a ribbon-like mol­ecular sheet.

Related literature

The title compound was synthesized as a precursor of 3,4-ethyl­enedioxy­thio­phene, which is polymerized to afford PEDOT (Groenendaal et al., 2000; Pei et al., 1994). Synthetic methods for the title compound have been reported by: Coffey et al. (1996); Kumar et al. (1998); Zong et al. (2002); Caras-Quintero & Bäuerle (2002). For literature on related mol­ecular structures, including a 3,4-ethyl­enedioxy­thio­phene ring system, see: Sotzing et al. (1996); Abboud et al. (1998); Kumar et al. (1998). For related literature, see: Bernstein et al. (1995); Allen et al. (1987).graphic file with name e-64-0o468-scheme1.jpg

Experimental

Crystal data

  • C12H14O6S

  • M r = 286.30

  • Triclinic, Inline graphic

  • a = 4.6805 (8) Å

  • b = 8.3673 (17) Å

  • c = 17.351 (3) Å

  • α = 94.294 (7)°

  • β = 92.024 (9)°

  • γ = 105.641 (9)°

  • V = 651.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 295 (1) K

  • 0.60 × 0.10 × 0.08 mm

Data collection

  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: none

  • 5181 measured reflections

  • 2899 independent reflections

  • 2300 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069

  • wR(F 2) = 0.176

  • S = 1.11

  • 2899 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000937/hg2368sup1.cif

e-64-0o468-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000937/hg2368Isup2.hkl

e-64-0o468-Isup2.hkl (142.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O3i 0.96 2.66 3.333 (5) 127
C9—H9A⋯O3ii 0.96 2.62 3.523 (7) 157
C6B—H6B1⋯O5iii 0.97 2.68 3.233 (12) 117

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by a Grant-in-Aid (grant No. 19550034) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.

supplementary crystallographic information

Comment

The title compound (I) has been prepared as a precursor of 3,4-ethylenedioxythiophene (Coffey et al., 1996; Kumar et al., 1998; Zong et al., 2002; Caras-Quintero & Bäuerle, 2002), which is polymerized by oxidizing agents to afford poly(3,4-ethylenedioxythiophene) (PEDOT). PEDOT shows high electrical conductivities and high stabilities in the oxidized states. Furthermore, the thin films of oxidized PEDOT are almost transparent. Therefore, these are used for organic electrodes in the study of electronic devices (Groenendaal et al., 2000; Pei et al., 1994). With regard to the hole-transporting abilities, the arrangement of 3,4-ethylenedioxythiophene units in film has attracted considerable attention. A few crystal structures including a 3,4-ethylenedioxythiophene ring system were reported (Sotzing et al., 1996; Abboud et al., 1998; Kumar et al., 1998). In this paper, we report the crystal structure of compound (I) that is a dicarboxylic acid diethyl ester of 3,4-ethylenedioxythiophene.

The compound (I) crystallizes in the P1 space group. The molecular structure is shown in Fig. 1. The ethylene moiety is disordered over two sites (O1—C5A—C6A—O2 and O1—C5B—C6B—O2) with occupancies of 0.36:0.64. The bond lengths and angles are all within expected ranges (Allen et al., 1987). Both the carbonyl moieties are planar to the thiophene ring. The molecules form a centrosymmetric dimer with a graph-set motif (Bernstein et al., 1995) of R22(12) by intermolecular C–H···O hydrogen bonds at the ethoxycarbonyl groups [C9–H9B···O3(–x + 3, –y, –z): 3.333 (5) Å]. The dimer units are arranged to form a ribbon-like molecular sheet along the b axis, as shown in Fig. 2. The ribbon-like molecular sheets stack to form a layer structure (Fig. 3).

Experimental

The title compound (I) was prepared as follows: A solution of diethyl 3,4-dihydroxythiophene-2,5-dicarboxylate (3.12 g, 12 mmol) and caesium fluoride (7.26 g, 48 mmol) in dry acetonitrile (200 ml) was stirred for 1 h under nitrogen. After addition of a solution of ethylene di(p-toluenesulfonate) (5.55 g, 15 mmol) in dry acetonitrile (100 ml), the reaction mixture was refluxed for 48 h. The reaction mixture was filtered and the precipitate was washed with acetonitrile. The filtrate was concentrated and the residue was chromatographed on alumina gel (CH2Cl2) and silica gel (CH2Cl2) to afford the compound of (I) (2.38 g, 69%) as colorless needles. Physical data for (I): m.p. 424–425 K; IR (KBr, cm-1) 2998, 1698, 1454, 1377, 1302, 1098; 1H NMR (CDCl3, δ p.p.m): 1.37 (t, J = 7.1 Hz, 6H), 4.35 (q, J = 7.1 Hz, 4H), 4.40 (s, 4H); 13C NMR (CDCl3, δ p.p.m): 14.2, 61.3, 64.7, 111.8, 144.9, 160.7; MS (EI): m/z 286 (M+), 241, 213, 169. Anal. Calcd for C12H14O6S: C, 50.34; H, 4.93. Found: C, 50.50; H, 4.96. Colorless crystals of (I) suitable for X-ray analysis were obtained from a methanol solution.

Refinement

All the H atoms were placed in geometrically calculated positions, with C—H = 0.97 (methylene) and 0.96 (methyl) Å and Uiso(H) = 1.2Ueq(C) (methylene) and 1.5Ueq(C) (methyl), and refined using a riding model.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms and H atoms are shown as small spheres of arbitrary radii. The disordered atoms (C5B and C6B) are omitted for clarity.

Fig. 2.

Fig. 2.

The packing diagram of (I), ribbon-like molecular sheet.

Fig. 3.

Fig. 3.

The packing diagram of (I), packing mode of molecular sheets.

Crystal data

C12H14O6S Z = 2
Mr = 286.30 F000 = 300
Triclinic, P1 Dx = 1.460 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71070 Å
a = 4.6805 (8) Å Cell parameters from 1654 reflections
b = 8.3673 (17) Å θ = 3.3–27.5º
c = 17.351 (3) Å µ = 0.27 mm1
α = 94.294 (7)º T = 295 (1) K
β = 92.024 (9)º Plate, colorless
γ = 105.641 (9)º 0.60 × 0.10 × 0.08 mm
V = 651.4 (2) Å3

Data collection

Rigaku/MSC Mercury CCD diffractometer 2300 reflections with I > 2σ(I)
Monochromator: Graphite Monochromator Rint = 0.036
Detector resolution: 14.6199 pixels mm-1 θmax = 27.5º
T = 295(1) K θmin = 3.3º
φ and ω scans h = −4→6
Absorption correction: none k = −10→10
5181 measured reflections l = −22→19
2899 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069 H-atom parameters constrained
wR(F2) = 0.176   w = 1/[σ2(Fo2) + (0.0793P)2 + 0.337P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max < 0.001
2899 reflections Δρmax = 0.55 e Å3
193 parameters Δρmin = −0.26 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.The methylene carbon atoms and the associated hydrogen atoms of the dioxine ring are disordered over two sites (O1—C5A—C6A—O2 and O1—C5B—C6B—O2) with occupancies of 0.36 (2):0.64 (2). The values were determined by refining site occupancies.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.86744 (17) 0.05411 (9) 0.23931 (5) 0.0487 (3)
O1 1.1659 (5) 0.5120 (3) 0.18957 (13) 0.0547 (6)
O2 0.7713 (5) 0.4829 (2) 0.31477 (12) 0.0501 (5)
O3 1.2360 (6) 0.0234 (3) 0.11029 (18) 0.0783 (8)
O4 1.4165 (6) 0.2967 (3) 0.09719 (14) 0.0649 (7)
O5 0.4735 (5) −0.0297 (3) 0.36729 (15) 0.0632 (6)
O6 0.4318 (4) 0.2289 (3) 0.39704 (12) 0.0491 (5)
C1 1.0739 (6) 0.2137 (4) 0.19066 (17) 0.0430 (6)
C2 1.0364 (6) 0.3648 (3) 0.21764 (16) 0.0400 (6)
C3 0.8393 (6) 0.3508 (3) 0.27903 (15) 0.0377 (6)
C4 0.7311 (6) 0.1889 (3) 0.29702 (16) 0.0399 (6)
C5A 1.162 (5) 0.6525 (14) 0.2449 (14) 0.062 (5) 0.36 (2)
H5A1 1.2257 0.7562 0.2207 0.074* 0.36 (2)
H5A2 1.2966 0.6576 0.2893 0.074* 0.36 (2)
C6A 0.855 (5) 0.629 (2) 0.2697 (13) 0.059 (4) 0.36 (2)
H6A1 0.8417 0.7271 0.3011 0.070* 0.36 (2)
H6A2 0.7183 0.6125 0.2246 0.070* 0.36 (2)
C5B 1.018 (4) 0.6382 (11) 0.2131 (7) 0.065 (3) 0.64 (2)
H5B1 0.8276 0.6153 0.1843 0.078* 0.64 (2)
H5B2 1.1379 0.7469 0.2017 0.078* 0.64 (2)
C6B 0.971 (4) 0.6381 (10) 0.2987 (7) 0.063 (3) 0.64 (2)
H6B1 1.1603 0.6543 0.3272 0.076* 0.64 (2)
H6B2 0.8898 0.7292 0.3153 0.076* 0.64 (2)
C7 1.2491 (7) 0.1675 (4) 0.12851 (19) 0.0517 (7)
C8 1.5944 (10) 0.2624 (6) 0.0335 (2) 0.0806 (12)
H8A 1.7836 0.3470 0.0367 0.097*
H8B 1.6335 0.1552 0.0378 0.097*
C9 1.4402 (13) 0.2613 (7) −0.0398 (3) 0.1016 (16)
H9A 1.2575 0.1739 −0.0439 0.152*
H9B 1.5623 0.2426 −0.0809 0.152*
H9C 1.3978 0.3666 −0.0435 0.152*
C10 0.5316 (6) 0.1166 (3) 0.35600 (17) 0.0444 (6)
C11 0.2365 (7) 0.1649 (4) 0.45733 (19) 0.0571 (8)
H11A 0.3405 0.1178 0.4951 0.069*
H11B 0.0649 0.0783 0.4352 0.069*
C12 0.1406 (9) 0.3054 (5) 0.4950 (2) 0.0747 (11)
H12A 0.3081 0.3833 0.5227 0.112*
H12B −0.0094 0.2637 0.5303 0.112*
H12C 0.0612 0.3602 0.4562 0.112*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0565 (5) 0.0320 (4) 0.0588 (5) 0.0137 (3) 0.0039 (3) 0.0041 (3)
O1 0.0743 (14) 0.0356 (11) 0.0540 (13) 0.0104 (10) 0.0276 (10) 0.0088 (9)
O2 0.0703 (13) 0.0307 (10) 0.0490 (12) 0.0103 (9) 0.0232 (10) 0.0043 (8)
O3 0.0888 (18) 0.0575 (15) 0.095 (2) 0.0335 (14) 0.0233 (15) −0.0121 (14)
O4 0.0793 (16) 0.0678 (16) 0.0562 (14) 0.0309 (13) 0.0280 (12) 0.0075 (12)
O5 0.0707 (14) 0.0373 (12) 0.0790 (17) 0.0050 (10) 0.0115 (12) 0.0213 (11)
O6 0.0515 (11) 0.0418 (11) 0.0513 (12) 0.0041 (9) 0.0154 (9) 0.0127 (9)
C1 0.0454 (15) 0.0401 (15) 0.0445 (16) 0.0144 (12) 0.0023 (12) 0.0004 (12)
C2 0.0462 (14) 0.0328 (13) 0.0396 (14) 0.0079 (11) 0.0048 (11) 0.0039 (11)
C3 0.0421 (13) 0.0317 (13) 0.0379 (14) 0.0079 (10) 0.0030 (10) 0.0028 (11)
C4 0.0429 (14) 0.0313 (13) 0.0444 (15) 0.0080 (11) 0.0017 (11) 0.0049 (11)
C5A 0.089 (10) 0.021 (4) 0.066 (9) 0.000 (5) 0.024 (7) −0.007 (5)
C6A 0.089 (11) 0.029 (5) 0.059 (10) 0.016 (6) 0.017 (7) 0.004 (6)
C5B 0.109 (8) 0.036 (3) 0.056 (5) 0.023 (4) 0.038 (5) 0.013 (3)
C6B 0.100 (7) 0.026 (3) 0.055 (5) 0.002 (4) 0.036 (4) 0.004 (3)
C7 0.0530 (17) 0.0508 (18) 0.0554 (18) 0.0238 (14) 0.0030 (14) −0.0049 (15)
C8 0.082 (3) 0.106 (3) 0.068 (3) 0.047 (2) 0.028 (2) 0.005 (2)
C9 0.154 (5) 0.099 (4) 0.071 (3) 0.066 (3) 0.027 (3) 0.006 (3)
C10 0.0441 (14) 0.0361 (14) 0.0488 (16) 0.0014 (11) 0.0009 (12) 0.0122 (12)
C11 0.0505 (17) 0.064 (2) 0.0530 (19) 0.0031 (15) 0.0139 (14) 0.0208 (16)
C12 0.073 (2) 0.079 (3) 0.062 (2) 0.003 (2) 0.0216 (18) 0.000 (2)

Geometric parameters (Å, °)

S1—C4 1.716 (3) C5A—H5A2 0.9700
S1—C1 1.720 (3) C6A—H6A1 0.9700
O1—C2 1.352 (3) C6A—H6A2 0.9700
O1—C5B 1.453 (8) C5B—C6B 1.508 (18)
O1—C5A 1.466 (13) C5B—H5B1 0.9700
O2—C3 1.345 (3) C5B—H5B2 0.9700
O2—C6B 1.435 (9) C6B—H6B1 0.9700
O2—C6A 1.468 (16) C6B—H6B2 0.9700
O3—C7 1.207 (4) C8—C9 1.439 (6)
O4—C7 1.319 (4) C8—H8A 0.9700
O4—C8 1.463 (4) C8—H8B 0.9700
O5—C10 1.213 (3) C9—H9A 0.9600
O6—C10 1.329 (4) C9—H9B 0.9600
O6—C11 1.451 (3) C9—H9C 0.9600
C1—C2 1.373 (4) C11—C12 1.483 (5)
C1—C7 1.468 (4) C11—H11A 0.9700
C2—C3 1.425 (4) C11—H11B 0.9700
C3—C4 1.376 (4) C12—H12A 0.9600
C4—C10 1.463 (4) C12—H12B 0.9600
C5A—C6A 1.48 (3) C12—H12C 0.9600
C5A—H5A1 0.9700
C4—S1—C1 91.98 (13) H5B1—C5B—H5B2 108.2
C2—O1—C5B 111.5 (4) O2—C6B—C5B 110.0 (11)
C2—O1—C5A 111.2 (6) O2—C6B—H6B1 109.7
C5B—O1—C5A 33.1 (6) C5B—C6B—H6B1 109.7
C3—O2—C6B 112.4 (4) O2—C6B—H6B2 109.7
C3—O2—C6A 111.3 (7) C5B—C6B—H6B2 109.7
C6B—O2—C6A 28.4 (6) H6B1—C6B—H6B2 108.2
C7—O4—C8 117.3 (3) O3—C7—O4 125.4 (3)
C10—O6—C11 115.5 (2) O3—C7—C1 121.2 (3)
C2—C1—C7 131.7 (3) O4—C7—C1 113.4 (3)
C2—C1—S1 111.6 (2) C9—C8—O4 110.4 (3)
C7—C1—S1 116.7 (2) C9—C8—H8A 109.6
O1—C2—C1 125.0 (3) O4—C8—H8A 109.6
O1—C2—C3 122.6 (2) C9—C8—H8B 109.6
C1—C2—C3 112.4 (2) O4—C8—H8B 109.6
O2—C3—C4 124.8 (2) H8A—C8—H8B 108.1
O2—C3—C2 122.8 (2) C8—C9—H9A 109.5
C4—C3—C2 112.4 (2) C8—C9—H9B 109.5
C3—C4—C10 131.5 (3) H9A—C9—H9B 109.5
C3—C4—S1 111.6 (2) C8—C9—H9C 109.5
C10—C4—S1 116.8 (2) H9A—C9—H9C 109.5
O1—C5A—C6A 108.4 (18) H9B—C9—H9C 109.5
O1—C5A—H5A1 110.0 O5—C10—O6 124.2 (3)
C6A—C5A—H5A1 110.0 O5—C10—C4 122.8 (3)
O1—C5A—H5A2 110.0 O6—C10—C4 112.9 (2)
C6A—C5A—H5A2 110.0 O6—C11—C12 107.9 (3)
H5A1—C5A—H5A2 108.4 O6—C11—H11A 110.1
O2—C6A—C5A 110.1 (18) C12—C11—H11A 110.1
O2—C6A—H6A1 109.6 O6—C11—H11B 110.1
C5A—C6A—H6A1 109.6 C12—C11—H11B 110.1
O2—C6A—H6A2 109.6 H11A—C11—H11B 108.4
C5A—C6A—H6A2 109.6 C11—C12—H12A 109.5
H6A1—C6A—H6A2 108.2 C11—C12—H12B 109.5
O1—C5B—C6B 109.7 (11) H12A—C12—H12B 109.5
O1—C5B—H5B1 109.7 C11—C12—H12C 109.5
C6B—C5B—H5B1 109.7 H12A—C12—H12C 109.5
O1—C5B—H5B2 109.7 H12B—C12—H12C 109.5
C6B—C5B—H5B2 109.7
C4—S1—C1—C2 −0.5 (2) C2—O1—C5A—C6A −50 (3)
C4—S1—C1—C7 −179.3 (2) C5B—O1—C5A—C6A 46.7 (17)
C5B—O1—C2—C1 162.8 (8) C3—O2—C6A—C5A −48 (2)
C5A—O1—C2—C1 −161.5 (13) C6B—O2—C6A—C5A 50 (2)
C5B—O1—C2—C3 −16.3 (9) O1—C5A—C6A—O2 67 (3)
C5A—O1—C2—C3 19.4 (13) C2—O1—C5B—C6B 47.5 (16)
C7—C1—C2—O1 −0.2 (5) C5A—O1—C5B—C6B −48.7 (13)
S1—C1—C2—O1 −178.7 (2) C3—O2—C6B—C5B 46.3 (17)
C7—C1—C2—C3 179.0 (3) C6A—O2—C6B—C5B −47.3 (18)
S1—C1—C2—C3 0.5 (3) O1—C5B—C6B—O2 −65 (2)
C6B—O2—C3—C4 164.7 (8) C8—O4—C7—O3 1.9 (5)
C6A—O2—C3—C4 −164.7 (11) C8—O4—C7—C1 −178.7 (3)
C6B—O2—C3—C2 −14.9 (9) C2—C1—C7—O3 −174.9 (3)
C6A—O2—C3—C2 15.7 (11) S1—C1—C7—O3 3.5 (4)
O1—C2—C3—O2 −1.3 (4) C2—C1—C7—O4 5.7 (5)
C1—C2—C3—O2 179.5 (2) S1—C1—C7—O4 −175.8 (2)
O1—C2—C3—C4 179.0 (3) C7—O4—C8—C9 95.4 (4)
C1—C2—C3—C4 −0.2 (4) C11—O6—C10—O5 −1.4 (4)
O2—C3—C4—C10 −1.2 (5) C11—O6—C10—C4 −179.1 (2)
C2—C3—C4—C10 178.4 (3) C3—C4—C10—O5 −175.0 (3)
O2—C3—C4—S1 −179.9 (2) S1—C4—C10—O5 3.6 (4)
C2—C3—C4—S1 −0.2 (3) C3—C4—C10—O6 2.7 (5)
C1—S1—C4—C3 0.4 (2) S1—C4—C10—O6 −178.76 (18)
C1—S1—C4—C10 −178.4 (2) C10—O6—C11—C12 −178.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9B···O3i 0.96 2.66 3.333 (5) 127
C9—H9A···O3ii 0.96 2.62 3.523 (7) 157
C6B—H6B1···O5iii 0.97 2.68 3.233 (12) 117

Symmetry codes: (i) −x+3, −y, −z; (ii) −x+2, −y, −z; (iii) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2368).

References

  1. Abboud, K. A., Irvin, D. J. & Reynolds, J. R. (1998). Acta Cryst. C54, 1994–1997.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Caras-Quintero, D. & Bäuerle, P. (2002). Chem Commun pp. 2690–2691. [DOI] [PubMed]
  5. Coffey, M., McKellar, B. R., Reinhardt, B. A., Nijakowski, T. & Feld, W. A. (1996). Synth Commun 26, 2205–2212.
  6. Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. (2000). Adv Mater 12, 481–494.
  7. Kumar, A., Welsh, D. M., Morvant, M. C., Piroux, F., Abboud, K. A. & Reynolds, J. R. (1998). Chem Mater 10, 896–902.
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  9. Pei, Q., Zuccarello, G., Ahlskog, M. & Inganäs, O. (1994). Polymer, 35, 1347–1351.
  10. Rigaku/MSC (2001). CrystalClear Version 1.3. Rigaku Corporation, Tokyo, Japan.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sotzing, G. A., Reynolds, J. R. & Steel, P. J. (1996). Chem Mater 8, 882–889.
  13. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  14. Zong, K., Madrigal, L., Groenendaal, L. & Reynolds, J. R. (2002). Chem Commun pp. 2498–2499.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000937/hg2368sup1.cif

e-64-0o468-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000937/hg2368Isup2.hkl

e-64-0o468-Isup2.hkl (142.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES