Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 9;64(Pt 2):o391. doi: 10.1107/S1600536807068535

3,3′-(2-Oxocyclo­pentane-1,3-di­yl)dipropane­nitrile

Yi Deng a,*, Yan-Xue Chen b, Zhi-Lei Gao b, Jin-Hui Yang c, Wei Wang b
PMCID: PMC2960466  PMID: 21201421

Abstract

The complete mol­ecule of the title compound, C11H14N2O, is generated by crystallographic twofold symmetry, with the C=O group lying on the rotation axis. In the crystal structure, weak C—H⋯N inter­actions form zigzag chains of mol­ecules.

Related literature

For the synthesis, see: Westman & Kober (1964). For a similar compound, see: Chen et al. (2007).graphic file with name e-64-0o391-scheme1.jpg

Experimental

Crystal data

  • C11H14N2O

  • M r = 190.24

  • Monoclinic, Inline graphic

  • a = 18.261 (3) Å

  • b = 7.8182 (10) Å

  • c = 8.1943 (11) Å

  • β = 111.510 (9)°

  • V = 1088.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 (2) K

  • 0.24 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.971, T max = 0.992

  • 3003 measured reflections

  • 1114 independent reflections

  • 644 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.133

  • S = 1.03

  • 1114 reflections

  • 65 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068535/hb2685sup1.cif

e-64-0o391-sup1.cif (13.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068535/hb2685Isup2.hkl

e-64-0o391-Isup2.hkl (55.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯N1i 0.97 2.54 3.466 (3) 160

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The title compound, (I), which was first prepared by Westman & Kober (1964), is as a intermediate in the synthesis of 6,7-dihydro-5H-cyclopenta[b]pyridine ramification. We report here its structure (Fig. 1). For a related structure, see Chen et al. (2007).

The complete molecule of (I) is generated by crystallographic 2-fold symmetry, with the C=O group lying on the rotation axis. In the crystal, weak C—H···N interactions (Table 1) lead to zigzag chains of molecules.

Experimental

The title compound was prepared according to the method of Westman & Kober (1964). Colourless blocks of (I) were obtained by slow evaporation of a methanol solution (m.p. 335–336 K).

Refinement

All the H atoms were positioned geometrically (C—H = 0.97–0.98 Å), and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I). Displacement ellopsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radius. Symmetry code: (i) 2 - x, y, 1/2 - z.

Crystal data

C11H14N2O F000 = 408
Mr = 190.24 Dx = 1.161 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 798 reflections
a = 18.261 (3) Å θ = 2.9–23.6º
b = 7.8182 (10) Å µ = 0.08 mm1
c = 8.1943 (11) Å T = 294 (2) K
β = 111.510 (9)º Block, colorless
V = 1088.4 (3) Å3 0.24 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 1114 independent reflections
Radiation source: fine-focus sealed tube 644 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.045
T = 294(2) K θmax = 26.4º
ω scans θmin = 2.4º
Absorption correction: multi-scan(SADABS; Bruker, 1997) h = −22→14
Tmin = 0.971, Tmax = 0.992 k = −9→9
3003 measured reflections l = −10→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.133   w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1398P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.002
1114 reflections Δρmax = 0.15 e Å3
65 parameters Δρmin = −0.13 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.0000 1.0500 (2) 0.2500 0.0639 (6)
N1 0.69534 (13) 0.8243 (3) −0.3591 (3) 0.0968 (8)
C1 1.0000 0.8948 (3) 0.2500 0.0495 (7)
C2 0.95717 (10) 0.7841 (2) 0.0927 (2) 0.0491 (5)
H2 0.9889 0.7818 0.0189 0.059*
C3 0.96129 (10) 0.6064 (2) 0.1722 (2) 0.0555 (5)
H3A 0.9174 0.5874 0.2097 0.067*
H3B 0.9609 0.5184 0.0884 0.067*
C4 0.87656 (11) 0.8505 (2) −0.0189 (2) 0.0579 (6)
H4A 0.8805 0.9706 −0.0443 0.069*
H4B 0.8417 0.8409 0.0461 0.069*
C5 0.84170 (11) 0.7522 (3) −0.1902 (3) 0.0627 (6)
H5A 0.8720 0.7769 −0.2630 0.075*
H5B 0.8460 0.6305 −0.1651 0.075*
C6 0.75994 (14) 0.7945 (3) −0.2864 (3) 0.0672 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0821 (14) 0.0465 (12) 0.0598 (12) 0.000 0.0223 (10) 0.000
N1 0.0764 (15) 0.1164 (18) 0.0812 (15) 0.0217 (12) 0.0096 (11) −0.0174 (13)
C1 0.0539 (15) 0.0485 (17) 0.0538 (16) 0.000 0.0286 (13) 0.000
C2 0.0550 (11) 0.0493 (11) 0.0462 (11) 0.0005 (8) 0.0222 (9) −0.0018 (8)
C3 0.0605 (11) 0.0496 (11) 0.0569 (11) −0.0020 (9) 0.0221 (9) −0.0027 (9)
C4 0.0598 (12) 0.0566 (12) 0.0554 (12) 0.0026 (9) 0.0191 (10) −0.0027 (10)
C5 0.0624 (14) 0.0638 (12) 0.0570 (13) 0.0006 (10) 0.0159 (11) −0.0072 (10)
C6 0.0680 (14) 0.0697 (15) 0.0570 (13) 0.0067 (12) 0.0147 (11) −0.0095 (11)

Geometric parameters (Å, °)

O1—C1 1.213 (3) C3—H3A 0.9700
N1—C6 1.134 (3) C3—H3B 0.9700
C1—C2 1.511 (2) C4—C5 1.521 (2)
C1—C2i 1.511 (2) C4—H4A 0.9700
C2—C4 1.512 (2) C4—H4B 0.9700
C2—C3 1.525 (2) C5—C6 1.448 (3)
C2—H2 0.9800 C5—H5A 0.9700
C3—C3i 1.518 (3) C5—H5B 0.9700
O1—C1—C2 124.94 (10) H3A—C3—H3B 109.0
O1—C1—C2i 124.95 (10) C2—C4—C5 111.70 (15)
C2—C1—C2i 110.1 (2) C2—C4—H4A 109.3
C1—C2—C4 113.82 (14) C5—C4—H4A 109.3
C1—C2—C3 103.22 (15) C2—C4—H4B 109.3
C4—C2—C3 117.13 (15) C5—C4—H4B 109.3
C1—C2—H2 107.4 H4A—C4—H4B 107.9
C4—C2—H2 107.4 C6—C5—C4 112.71 (17)
C3—C2—H2 107.4 C6—C5—H5A 109.1
C3i—C3—C2 104.12 (10) C4—C5—H5A 109.1
C3i—C3—H3A 110.9 C6—C5—H5B 109.1
C2—C3—H3A 110.9 C4—C5—H5B 109.1
C3i—C3—H3B 110.9 H5A—C5—H5B 107.8
C2—C3—H3B 110.9 N1—C6—C5 178.1 (3)
O1—C1—C2—C4 −39.96 (17) C4—C2—C3—C3i −157.50 (18)
C2i—C1—C2—C4 140.04 (17) C1—C2—C4—C5 170.57 (15)
O1—C1—C2—C3 −167.96 (8) C3—C2—C4—C5 −69.0 (2)
C2i—C1—C2—C3 12.04 (8) C2—C4—C5—C6 170.72 (17)
C1—C2—C3—C3i −31.6 (2)

Symmetry codes: (i) −x+2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5B···N1ii 0.97 2.54 3.466 (3) 160

Symmetry codes: (ii) −x+3/2, y−1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2685).

References

  1. Bruker (1997). SMART, SAINT, SADABS and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, Y., Yang, J., Deng, Y., Li, G. & Wang, W. (2007). Acta Cryst. E63, o4054.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Westman, T. L. & Kober, A. E. (1964). J. Org. Chem 29, 2448–2450.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068535/hb2685sup1.cif

e-64-0o391-sup1.cif (13.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068535/hb2685Isup2.hkl

e-64-0o391-Isup2.hkl (55.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES