Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 9;64(Pt 9):m1143–m1144. doi: 10.1107/S1600536808025257

Bis(2,6-dimethyl­pyridinium) hexa­chlorido­platinate(IV)

Vahid Amani a, Rahmatollah Rahimi b, Hamid Reza Khavasi a,*
PMCID: PMC2960473  PMID: 21201599

Abstract

The asymmetric unit of the title compound, (C7H10N)2[PtCl6], contains one independent protonated 2,6-dimethyl­pyridinium cation and half of a centrosymmetric [PtCl6]2− anion. The Pt atom has an octa­hedral coordination. In the crystal structure, inter­molecular N—H⋯Cl and C—H⋯Cl hydrogen bonds result in the formation of a supra­molecular structure. There is a π–π contact between the pyridine rings [centroid–centroid distance = 4.235 (1) Å].

Related literature

For related literature, see: Abedi et al. (2008); Bencini et al. (1992); Bokach et al. (2003); Bowmaker et al. (1998); Ciccarese et al. (1998); Delafontaine et al. (1987); Effendy et al. (2006); Hasan et al. (2001); Hojjat Kashani et al. (2008); Hu et al. (2003); Jin et al. (2000, 2003, 2006); Juan et al. (1998); Kansikas et al. (1994); Li & Liu (2003); Rafizadeh et al. (2006); Terzis & Mentzafos (1983); Yousefi, Amani & Khavasi (2007); Yousefi, Ahmadi et al. (2007); Yousefi et al. (2007a ,b ); Zordan & Brammer (2004); Zordan et al. (2005).graphic file with name e-64-m1143-scheme1.jpg

Experimental

Crystal data

  • (C7H10N)2[PtCl6]

  • M r = 624.10

  • Monoclinic, Inline graphic

  • a = 9.9142 (12) Å

  • b = 9.6031 (10) Å

  • c = 11.3305 (14) Å

  • β = 107.117 (10)°

  • V = 1031.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.58 mm−1

  • T = 298 (2) K

  • 0.48 × 0.45 × 0.38 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2005)T min = 0.41, T max = 0.60

  • 2756 measured reflections

  • 2756 independent reflections

  • 2387 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069

  • wR(F 2) = 0.189

  • S = 1.10

  • 2756 reflections

  • 111 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.82 e Å−3

  • Δρmin = −1.09 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808025257/hk2508sup1.cif

e-64-m1143-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025257/hk2508Isup2.hkl

e-64-m1143-Isup2.hkl (132.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Pt1—Cl2 2.3161 (16)
Pt1—Cl3 2.3239 (16)
Pt1—Cl1 2.3298 (14)
Cl2—Pt1—Cl1 90.25 (6)
Cl2i—Pt1—Cl1 89.75 (6)
Cl2—Pt1—Cl3i 90.20 (8)
Cl2—Pt1—Cl3 89.80 (8)
Cl3—Pt1—Cl1i 89.37 (6)
Cl3—Pt1—Cl1 90.63 (6)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯Cl3ii 0.85 (8) 2.45 (8) 3.279 (6) 168 (7)
C1—H1B⋯Cl1ii 0.96 2.83 3.654 (11) 145
C4—H4⋯Cl2iii 0.93 2.71 3.616 (11) 165

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We are grateful to Shahid Beheshti University for financial support.

supplementary crystallographic information

Comment

In recent years, there has been considerable interest in proton transfer systems and their structures (Rafizadeh et al., 2006; Yousefi, Amani & Khavasi, 2007; Abedi et al., 2008; Hojjat Kashani et al., 2008). Several proton transfer systems using 2,6-dimethylpyridine, with proton donor molecules, such as [2,6-dmpy.H](NO3), (II), (Jin et al., 2003), [2,6-dmpy.H]2[CoCl4], (III), (Kansikas et al., 1994), [2,6-dmpy.H]Cl, (IV), (Effendy et al., 2006), [2,6-dmpy.H]3[BiBr6], (V), (Bowmaker et al., 1998), [2,6-dmpy.H]2- [O3CrOCrO3], (VI), (Jin et al., 2006) and [2,6-dmpy.H][Ph(COOH)(COO)], (VII), (Jin et al., 2000) [2,6-dmpy.H is 2,6-dimethylpyridinium] have been synthesized and characterized by single-crystal X-ray diffraction methods.

There are also several proton transfer systems using H2[PtCl6] with proton acceptor molecules, such as [HpyBr-3]2[PtCl6].2H2O, (XIII), and [HpyI-3]2[PtCl6].2H2O, (IX),(Zordan & Brammer, 2004), [BMIM]2[PtCl6], (X), and [EMIM]2[PtCl6], (XI), (Hasan et al., 2001), {(DABCO)H2[PtCl6]}, (XII), (Juan et al., 1998), {p-C6H4(CH2ImMe)2[PtCl6]}, (XIII), (Li & Liu, 2003), [het][PtCl6].2H2O, (XIV), (Hu et al., 2003), [9-MeGuaH]2[PtCl6].2H2O, (XV), (Terzis & Mentzafos, 1983), [H10[30]aneN10][PtCl6]2Cl6.2H2O, (XVI), (Bencini et al., 1992), [H2Me2ppz][PtCl6], (XVII), (Ciccarese et al., 1998), [PA]2[PtCl6]Cl, (XVIII), (Delafontaine et al., 1987), [DEA]2[PtCl6], (XIX), (Bokach et al., 2003), [HpyCl-3]3[PtCl6]Cl, (XX), (Zordan et al., 2005), [2,9-dmphen.H]2- [PtCl6], (XXI), (Yousefi, Ahmadi et al., 2007), [H2DA18C6][PtCl6].2H2O, (XXII), (Yousefi et al., 2007a) and [TBA]3[PtCl6]Cl, (XXIII), (Yousefi et al., 2007b) [where hpy is halo- pyridinium, BMIM+ is 1-n-butyl-3-methylimidazolium, EMIM+ is 1-ethyl-3-methylimidazolium, DABCO is 1,4-diazabicyclooctane, Im is imidazolium, het is 2-(α-hydroxyethyl) thiamine, 9-MeGuaH is 9-methylguaninium, [H10[30]aneN10] is [C20H60N10]10+ cation, H2Me2ppz is N,N'-dimethylpiperazinium, PA is pentane-1,5- diammonium, DEA is diethyl-ammonium, 2,9-dmphen.H is 2,9-dimethyl-1,10 -phenanthrolinium, H2DA18C6 is 1,10-Diazonia-18-crown-6 and TBA is tribenzylammonium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I), (Fig. 1) contains one independent protonated 2,6-di- methylpyridinium cation and half of a centrosymmetric [PtCl6]2- anion. The Pt ion has an octahedral coordination. In cation, the bond lengths and angles are in good agreement with the corresponding values in (II) and (IV). In [PtCl6]2- anion, the Pt-Cl bond lengths and Cl-Pt-Cl bond angles (Table 1) are also within normal ranges, as in (XXI), (XXII) and (XXIII).

In the crystal structure (Fig. 2), intermolecular N-H···Cl and C-H···Cl hydrogen bonds (Table 2) result in the formation of a supramolecular structure, in which they may be effective in the stabilization of the structure. A π—π contact between A (N1/C2-C6) rings Cg1···Cg1i [symmetry code: (i) -x, 1 - y, 1 - z, where Cg1 is centroid of the ring A (N1/C2-C6)] further stabilize the structure, with centroid-centroid distance of 4.235 (1) Å.

Experimental

For the preparation of the title compound, a solution of 2,6-dimethylpyridine (0.16 g, 1.48 mmol, 0.17 ml) in methanol (15 ml) was added to a solution of H2PtCl6.6H2O, (0.38 g, 0.74 mmol) in acetonitrile (15 ml) and the resulting yellow solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, orange prismatic crystals of were isolated (yield; 0.34 g; 73.6%).

Refinement

H1D atom (for NH) was located in difference syntheses and refined isotropically [N-H = 0.85 (7) Å and Uiso(H) = 0.029 (17) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level [symmetry code: (a) -x, 1 - y, -z].

Fig. 2.

Fig. 2.

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

(C7H10N)2[PtCl6] F000 = 596
Mr = 624.10 Dx = 2.010 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1071 reflections
a = 9.9142 (12) Å θ = 2.4–29.1º
b = 9.6031 (10) Å µ = 7.58 mm1
c = 11.3305 (14) Å T = 298 (2) K
β = 107.117 (10)º Prism, orange
V = 1031.0 (2) Å3 0.48 × 0.45 × 0.38 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 2756 independent reflections
Radiation source: fine-focus sealed tube 2387 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.094
T = 298(2) K θmax = 29.1º
φ and ω scans θmin = 2.4º
Absorption correction: numerical(X-SHAPE and X-RED; Stoe & Cie, 2005) h = −13→13
Tmin = 0.41, Tmax = 0.60 k = −12→13
2756 measured reflections l = −15→15

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.069   w = 1/[σ2(Fo2) + (0.1499P)2 + 0.5352P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.189 (Δ/σ)max = 0.019
S = 1.10 Δρmax = 1.82 e Å3
2756 reflections Δρmin = −1.09 e Å3
111 parameters Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.029 (3)
Secondary atom site location: difference Fourier map

Special details

Experimental. shape of crystal determined optically (X-SHAPE and X-RED; Stoe & Cie, 2005)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.0000 0.5000 0.0000 0.0265 (2)
Cl1 0.14887 (17) 0.56949 (18) −0.11435 (15) 0.0411 (4)
Cl2 0.0667 (2) 0.6927 (2) 0.12679 (17) 0.0504 (5)
Cl3 −0.18455 (17) 0.6275 (2) −0.12863 (15) 0.0486 (5)
N1 0.3768 (6) 0.8089 (7) 0.1075 (5) 0.0409 (12)
H1D 0.348 (8) 0.822 (8) 0.170 (7) 0.029 (17)*
C1 0.5069 (11) 0.6118 (11) 0.2190 (9) 0.069 (2)
H1A 0.4229 0.5663 0.2249 0.082*
H1B 0.5475 0.6653 0.2924 0.082*
H1C 0.5735 0.5431 0.2100 0.082*
C2 0.4710 (8) 0.7054 (9) 0.1103 (8) 0.0503 (18)
C3 0.5217 (11) 0.6928 (17) 0.0112 (9) 0.062 (3)
H3 0.5875 0.6241 0.0104 0.074*
C4 0.4756 (12) 0.7819 (14) −0.0875 (10) 0.076 (3)
H4 0.5090 0.7727 −0.1557 0.091*
C5 0.3790 (11) 0.8854 (11) −0.0849 (7) 0.064 (3)
H5 0.3482 0.9462 −0.1513 0.077*
C6 0.3278 (8) 0.8987 (8) 0.0163 (7) 0.0472 (16)
C7 0.224 (2) 1.0036 (8) 0.033 (2) 0.071 (5)
H7A 0.1375 0.9938 −0.0325 0.085*
H7B 0.2617 1.0955 0.0302 0.085*
H7C 0.2072 0.9892 0.1109 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.057 (5) 0.061 (5) 0.073 (6) 0.009 (4) −0.003 (4) −0.008 (4)
C2 0.034 (3) 0.053 (4) 0.060 (4) −0.009 (3) 0.009 (3) −0.022 (3)
C3 0.046 (4) 0.071 (7) 0.076 (7) −0.015 (5) 0.028 (4) −0.031 (5)
C4 0.069 (6) 0.111 (9) 0.061 (5) −0.038 (6) 0.041 (5) −0.029 (6)
C5 0.067 (5) 0.086 (6) 0.036 (3) −0.035 (5) 0.011 (4) 0.001 (4)
C6 0.040 (3) 0.051 (4) 0.044 (3) −0.013 (3) 0.003 (3) 0.001 (3)
C7 0.060 (10) 0.054 (8) 0.092 (15) −0.002 (3) 0.011 (10) 0.016 (4)
N1 0.039 (3) 0.053 (3) 0.034 (2) −0.005 (2) 0.016 (2) −0.007 (2)
Pt1 0.0244 (3) 0.0322 (3) 0.0223 (3) −0.00137 (8) 0.00597 (18) 0.00008 (7)
Cl1 0.0382 (8) 0.0514 (9) 0.0389 (8) −0.0048 (6) 0.0196 (6) 0.0033 (6)
Cl2 0.0563 (10) 0.0491 (9) 0.0502 (9) −0.0189 (7) 0.0224 (8) −0.0207 (7)
Cl3 0.0365 (8) 0.0688 (11) 0.0390 (8) 0.0165 (7) 0.0087 (6) 0.0169 (7)

Geometric parameters (Å, °)

Pt1—Cl2 2.3161 (16) C2—C3 1.365 (11)
Pt1—Cl2i 2.3161 (16) C3—C4 1.374 (19)
Pt1—Cl3i 2.3239 (16) C3—H3 0.9300
Pt1—Cl3 2.3239 (16) C4—C5 1.387 (18)
Pt1—Cl1i 2.3298 (14) C4—H4 0.9300
Pt1—Cl1 2.3298 (14) C5—C6 1.390 (12)
N1—H1D 0.85 (7) C5—H5 0.9300
C1—C2 1.480 (14) C6—N1 1.323 (10)
C1—H1A 0.9600 C6—C7 1.49 (2)
C1—H1B 0.9600 C7—H7A 0.9600
C1—H1C 0.9600 C7—H7B 0.9600
C2—N1 1.357 (10) C7—H7C 0.9600
Cl1i—Pt1—Cl1 180.00 (8) H1B—C1—H1C 109.5
Cl2—Pt1—Cl1i 89.75 (6) N1—C2—C3 117.6 (10)
Cl2i—Pt1—Cl1i 90.25 (6) N1—C2—C1 117.4 (8)
Cl2—Pt1—Cl1 90.25 (6) C3—C2—C1 125.0 (10)
Cl2i—Pt1—Cl1 89.75 (6) C2—C3—C4 120.0 (12)
Cl2—Pt1—Cl2i 180.00 (6) C2—C3—H3 120.0
Cl2—Pt1—Cl3i 90.20 (8) C4—C3—H3 120.0
Cl2i—Pt1—Cl3i 89.80 (8) C3—C4—C5 119.7 (9)
Cl2—Pt1—Cl3 89.80 (8) C3—C4—H4 120.2
Cl2i—Pt1—Cl3 90.20 (8) C5—C4—H4 120.2
Cl3i—Pt1—Cl1i 90.63 (6) C4—C5—C6 120.4 (9)
Cl3—Pt1—Cl1i 89.37 (6) C4—C5—H5 119.8
Cl3i—Pt1—Cl3 180.0 C6—C5—H5 119.8
Cl3i—Pt1—Cl1 89.37 (6) N1—C6—C5 116.4 (8)
Cl3—Pt1—Cl1 90.63 (6) N1—C6—C7 116.9 (11)
C6—N1—C2 126.0 (7) C5—C6—C7 126.7 (12)
C6—N1—H1D 115 (5) C6—C7—H7A 109.5
C2—N1—H1D 119 (5) C6—C7—H7B 109.5
C2—C1—H1A 109.5 H7A—C7—H7B 109.5
C2—C1—H1B 109.5 C6—C7—H7C 109.5
H1A—C1—H1B 109.5 H7A—C7—H7C 109.5
C2—C1—H1C 109.5 H7B—C7—H7C 109.5
H1A—C1—H1C 109.5
N1—C2—C3—C4 −1.0 (14) C4—C5—C6—C7 −179.9 (12)
C1—C2—C3—C4 176.8 (10) C5—C6—N1—C2 −0.5 (11)
C2—C3—C4—C5 0.9 (15) C7—C6—N1—C2 179.7 (10)
C3—C4—C5—C6 −0.5 (14) C3—C2—N1—C6 0.8 (11)
C4—C5—C6—N1 0.3 (11) C1—C2—N1—C6 −177.1 (7)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1D···Cl3ii 0.85 (8) 2.45 (8) 3.279 (6) 168 (7)
C1—H1B···Cl1ii 0.96 2.83 3.654 (11) 145
C4—H4···Cl2iii 0.93 2.71 3.616 (11) 165

Symmetry codes: (ii) x+1/2, −y+3/2, z+1/2; (iii) x+1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2508).

References

  1. Abedi, A., Bahrami Shabestari, A. & Amani, V. (2008). Acta Cryst. E64, o990. [DOI] [PMC free article] [PubMed]
  2. Bencini, A., Bianchi, A., Dapporto, P., Espana, E. G., Micheloni, M., Ramirez, J. A., Paoletti, P. & Paolil, P. (1992). Inorg. Chem.31, 1902–1908.
  3. Bokach, N. A., Pakhomova, T. B., Kukushkin, V. Y., Haukka, M. & Pombeiro, A. J. L. (2003). Inorg. Chem.42, 7560–7568. [DOI] [PubMed]
  4. Bowmaker, G. A., Junk, P. C., Lee, A. M., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem.51, 293–309.
  5. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Ciccarese, A., Clemente, D. A., Fanizzi, F. P., Marzotto, A. & Valle, G. (1998). Inorg. Chim. Acta, 275–276, 419–426.
  7. Delafontaine, J.-M., Toffoli, P., Khodadad, P., Rodier, N. & Julien, R. (1987). Acta Cryst. C43, 1048–1050.
  8. Effendy, P. C., Junk, C. J., Kepert, L. M., Louis, T. C., Skelton, B. W. & White, A. H. (2006). Z. Anorg. Allg. Chem.632, 1312–1325.
  9. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  10. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  11. Hasan, M., Kozhevnikov, I. V., Siddiqui, M. R. H., Femoni, C., Steiner, A. & Winterton, N. (2001). Inorg. Chem.40, 795–800. [DOI] [PubMed]
  12. Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). E64, m840-m841. [DOI] [PMC free article] [PubMed]
  13. Hu, N. H., Norifusa, T. & Aoki, K. (2003). Dalton Trans. pp. 335–341.
  14. Jin, Z. M., Li, Z. G., Li, M. C., Hu, M. L. & Shen, L. (2003). Acta Cryst. E59, o903–o904.
  15. Jin, Z.-M., Ma, X.-J., Zhang, Y., Tu, B. & Hu, M.-L. (2006). Acta Cryst. E62, m106–m108.
  16. Jin, Z. M., Pan, Y. J., Xu, D. J. & Xu, Y. Z. (2000). J. Chem. Crystallogr.30, 119–121.
  17. Juan, C., Mareque, R. & Lee, B. (1998). Inorg. Chem.37, 4756–4757.
  18. Kansikas, J., Leskela, M., Kenessey, G., Werner, P. E. & Liptay, G. (1994). Acta Chem. Scand.48, 951–959.
  19. Li, D. & Liu, D. (2003). Anal. Sci.19, 1089–1090. [DOI] [PubMed]
  20. Rafizadeh, M. de, Aghayan, H. & Amani, V. (2006). Acta Cryst. E62, o5034–o5035.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Stoe & Cie (2005). X-RED and X-SHAPE Stoe & Cie, Darmstadt, Germany.
  23. Terzis, A. & Mentzafos, D. (1983). Inorg. Chem.22, 1140–1143.
  24. Yousefi, M., Ahmadi, R., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m3114–m3115.
  25. Yousefi, M., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, o3782.
  26. Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007a). Acta Cryst. E63, m2460–m2461.
  27. Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007b). Acta Cryst. E63, m2748–m2749.
  28. Zordan, F. & Brammer, L. (2004). Acta Cryst. B60, 512–519. [DOI] [PubMed]
  29. Zordan, F., Purver, S. L., Adams, H. & Brammer, L. (2005). CrystEngComm, 7, 350–354.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808025257/hk2508sup1.cif

e-64-m1143-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025257/hk2508Isup2.hkl

e-64-m1143-Isup2.hkl (132.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES