Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 20;64(Pt 9):m1189–m1190. doi: 10.1107/S1600536808025646

Dichlorido(4,4′-di-tert-butyl-2,2′-bi­pyridine-κ2 N,N′)gold(III) tetrachlorido­aurate(III) acetonitrile solvate

Sema Öztürk Yıldırım a, Mehmet Akkurt a,*, Nasser Safari b, Vahid Amani b, Vickie McKee c, Anita Abedi d, Hamid Reza Khavasi b
PMCID: PMC2960475  PMID: 21201629

Abstract

In the title compound, [AuCl2(C9H12N)2][AuCl4]·C2H3N, there is a mirror plane passing through Au and the central C—C bond of the bipyridyl ligand in the cation, and through Au and two Cl atoms of the anion. A cis-AuCl2N2 square-planar geometry for the cation and a square-planar AuCl4 geometry for the anion result. The two C atoms and the N atom of the acetonitrile mol­ecule all have m site symmetries. In the crystal structure, weak C—H⋯Cl inter­actions may help to establish the packing.

Related literature

For related structures, see: Abbate et al. (2000); Adams & Strähle (1982); Bjernemose et al. (2004); Hayoun et al. (2006); McInnes et al. (1995).graphic file with name e-64-m1189-scheme1.jpg

Experimental

Crystal data

  • [AuCl2(C9H12N)2][AuCl4]·C2H3N

  • M r = 916.09

  • Monoclinic, Inline graphic

  • a = 6.7880 (9) Å

  • b = 14.2270 (19) Å

  • c = 14.1330 (19) Å

  • β = 97.151 (2)°

  • V = 1354.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.43 mm−1

  • T = 150 (2) K

  • 0.14 × 0.10 × 0.01 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.298, T max = 0.894

  • 14949 measured reflections

  • 3888 independent reflections

  • 2860 reflections with I > 2σ(I)

  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.079

  • S = 1.01

  • 3888 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 1.59 e Å−3

  • Δρmin = −1.24 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025646/hb2776sup1.cif

e-64-m1189-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025646/hb2776Isup2.hkl

e-64-m1189-Isup2.hkl (186.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Au1—Cl1 2.2590 (17)
Au1—N1 2.020 (4)
Au2—Cl2 2.271 (2)
Au2—Cl3 2.2675 (16)
Au2—Cl4 2.311 (2)
N2—C11—C10 179.5 (14)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl3i 0.93 2.66 3.561 (6) 162
C3—H3⋯Cl1ii 0.93 2.64 3.231 (6) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful to Shahid Beheshti University and Islamic Azad University, North Tehran Branch, for financial support.

supplementary crystallographic information

Comment

Several AuIII complexes, with formula, [AuCl2(N—N)], such as [AuCl2(bipy)][BF4], (II), (McInnes et al., 1995), [AuCl2(bipy)](NO3), (III), (Bjernemose et al., 2004), [AuCl2(bipy)][AuBr4], (IV), (Hayoun et al., 2006) and [AuCl2(phen)]Cl.H2O, (V), (Abbate et al., 2000) [where bipy is 2,2'-bipyridine and phen is 1,10-phenanthroline] have been synthesized and characterized by single-crystal X-ray diffraction methods.

Other AuIII complexes, with formula, [AuCl2L2], such as [AuCl2(py)2][AuCl4], (VI) and [AuCl2(py)2]Cl.H2O, (VII), (Adams & Strähle 1982) [where py is pyridine] have also bee prepared and characterized. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I) (Fig. 1) contains one half-cation, one half-anion and one half-acetonitrile molecule; the whole assemblage is symmetric according to a mirror plane. Both Au ions have square-planar coordination (Table 1) and the individual bond lengths and angles are in good agreement with the corresponding values in (II), (III), (IV), (V), (VI) and (VII).

In the crystal of (I), weak intermolecular C—H···Cl hydrogen bonds (Table 2) link the molecules to form a supramolecular structure (Fig. 2 and Fig. 3).

Experimental

A solution of 4,4'-di-tert-butyl-2,2'-bipyridine (0.15 g, 0.56 mmol) in acetonitrile (40 ml) was added to a solution of HAuCl4.3H2O, (0.22 g, 0.56 mmol) in EtOH (50 ml) and the resulting yellow solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, yellow laths and prisms of (I) were isolated (yield 0.38 g; 74.0%).

Refinement

All H atoms were positioned geometrically (C—H = 0.93-0.96Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level and H atoms omitted for clarity. The symmetry codes a and b both refer to (x, 1/2 - y, z).

Fig. 2.

Fig. 2.

A view of the packing and the hydrogen bonding (dashed lines) of (I) down the a axis in the unit cell.

Fig. 3.

Fig. 3.

View of the unit-cell packing of (I) down the c axis.

Crystal data

[AuCl2(C9H12N1)2][AuCl4]·C2H3N F000 = 856
Mr = 916.09 Dx = 2.247 Mg m3
Monoclinic, P21/m Mo Kα radiation λ = 0.71069 Å
Hall symbol: -P 2yb Cell parameters from 2450 reflections
a = 6.7880 (9) Å θ = 2.9–24.8º
b = 14.2270 (19) Å µ = 11.43 mm1
c = 14.1330 (19) Å T = 150 (2) K
β = 97.151 (2)º Lath, yellow
V = 1354.3 (3) Å3 0.14 × 0.10 × 0.01 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 3888 independent reflections
Radiation source: sealed tube 2860 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.060
T = 150(2) K θmax = 29.5º
φ and ω scans θmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 2003) h = −9→9
Tmin = 0.298, Tmax = 0.894 k = −19→19
14949 measured reflections l = −19→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.079   w = 1/[σ2(Fo2) + (0.0318P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
3888 reflections Δρmax = 1.60 e Å3
155 parameters Δρmin = −1.24 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Au1 0.23789 (4) 0.25000 −0.04727 (2) 0.0241 (1)
Cl1 0.2075 (2) 0.13933 (12) −0.16278 (11) 0.0366 (5)
N1 0.2670 (6) 0.3421 (3) 0.0624 (3) 0.0238 (14)
C1 0.3143 (8) 0.3571 (4) 0.2320 (4) 0.0258 (17)
C2 0.2920 (7) 0.3000 (4) 0.1509 (4) 0.0222 (16)
C3 0.2636 (8) 0.4365 (4) 0.0544 (4) 0.0286 (17)
C4 0.2861 (8) 0.4940 (4) 0.1338 (4) 0.0303 (17)
C5 0.3113 (8) 0.4559 (4) 0.2252 (4) 0.0277 (17)
C6 0.3361 (8) 0.5158 (4) 0.3150 (4) 0.0287 (17)
C7 0.5416 (9) 0.4930 (4) 0.3701 (4) 0.0345 (19)
C8 0.1694 (9) 0.4913 (4) 0.3758 (4) 0.0333 (19)
C9 0.3254 (9) 0.6207 (4) 0.2926 (5) 0.035 (2)
N2 0.3784 (17) 0.25000 0.4696 (8) 0.066 (4)
C10 0.104 (2) 0.25000 0.5775 (11) 0.087 (6)
C11 0.2608 (17) 0.25000 0.5153 (9) 0.049 (4)
Au2 0.79109 (4) 0.25000 0.14539 (2) 0.0258 (1)
Cl2 0.8353 (4) 0.25000 0.30734 (16) 0.0402 (8)
Cl3 0.7908 (2) 0.40938 (11) 0.14566 (12) 0.0363 (5)
Cl4 0.7455 (3) 0.25000 −0.01937 (17) 0.0364 (7)
H1 0.33140 0.32920 0.29200 0.0310*
H3 0.24570 0.46360 −0.00600 0.0340*
H4 0.28430 0.55890 0.12610 0.0360*
H7A 0.64220 0.50110 0.32870 0.0520*
H7B 0.54290 0.42920 0.39220 0.0520*
H7C 0.56740 0.53460 0.42370 0.0520*
H8A 0.18300 0.52950 0.43220 0.0500*
H8B 0.17890 0.42610 0.39360 0.0500*
H8C 0.04260 0.50290 0.33950 0.0500*
H9A 0.43180 0.63750 0.25710 0.0520*
H9B 0.33720 0.65570 0.35110 0.0520*
H9C 0.20060 0.63480 0.25560 0.0520*
H10A 0.07320 0.18640 0.59320 0.1300* 0.500
H10B −0.01270 0.27970 0.54530 0.1300* 0.500
H10C 0.14820 0.28390 0.63500 0.1300* 0.500

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Au1 0.0226 (2) 0.0279 (2) 0.0216 (2) 0.0000 0.0016 (1) 0.0000
Cl1 0.0483 (9) 0.0351 (8) 0.0257 (8) 0.0000 (7) 0.0023 (7) −0.0050 (7)
N1 0.023 (2) 0.024 (2) 0.024 (3) −0.0009 (19) 0.0014 (19) −0.003 (2)
C1 0.023 (3) 0.025 (3) 0.029 (3) 0.002 (2) 0.002 (2) 0.004 (2)
C2 0.014 (2) 0.038 (3) 0.015 (3) 0.000 (2) 0.003 (2) 0.001 (2)
C3 0.033 (3) 0.029 (3) 0.024 (3) −0.001 (3) 0.004 (2) 0.002 (3)
C4 0.032 (3) 0.025 (3) 0.033 (3) −0.001 (2) 0.000 (3) 0.000 (3)
C5 0.021 (3) 0.032 (3) 0.031 (3) −0.001 (2) 0.007 (2) −0.001 (3)
C6 0.029 (3) 0.024 (3) 0.032 (3) 0.005 (2) 0.000 (3) −0.002 (3)
C7 0.036 (3) 0.036 (4) 0.030 (3) 0.002 (3) −0.002 (3) −0.006 (3)
C8 0.034 (3) 0.035 (4) 0.031 (3) −0.002 (3) 0.004 (3) −0.007 (3)
C9 0.036 (3) 0.035 (4) 0.032 (4) −0.001 (3) −0.001 (3) −0.003 (3)
N2 0.081 (8) 0.053 (6) 0.068 (7) 0.0000 0.020 (6) 0.0000
C10 0.109 (12) 0.079 (10) 0.080 (10) 0.0000 0.043 (9) 0.0000
C11 0.061 (7) 0.035 (6) 0.051 (7) 0.0000 0.012 (6) 0.0000
Au2 0.0194 (2) 0.0261 (2) 0.0318 (2) 0.0000 0.0033 (1) 0.0000
Cl2 0.0509 (14) 0.0399 (13) 0.0290 (12) 0.0000 0.0018 (10) 0.0000
Cl3 0.0365 (8) 0.0275 (8) 0.0448 (10) −0.0009 (6) 0.0046 (7) 0.0040 (7)
Cl4 0.0272 (10) 0.0439 (13) 0.0377 (12) 0.0000 0.0022 (9) 0.0000

Geometric parameters (Å, °)

Au1—Cl1 2.2590 (17) C1—H1 0.9300
Au1—N1 2.020 (4) C3—H3 0.9300
Au1—Cl1i 2.2590 (17) C4—H4 0.9300
Au1—N1i 2.020 (4) C7—H7B 0.9600
Au2—Cl2 2.271 (2) C7—H7A 0.9600
Au2—Cl3 2.2675 (16) C7—H7C 0.9600
Au2—Cl4 2.311 (2) C8—H8A 0.9600
Au2—Cl3i 2.2675 (16) C8—H8C 0.9600
N1—C3 1.348 (7) C8—H8B 0.9600
N1—C2 1.378 (7) C9—H9B 0.9600
N2—C11 1.088 (17) C9—H9C 0.9600
C1—C5 1.409 (8) C9—H9A 0.9600
C1—C2 1.398 (8) C10—C11 1.462 (19)
C2—C2i 1.423 (8) C10—H10Bi 0.9600
C3—C4 1.382 (8) C10—H10Ci 0.9600
C4—C5 1.392 (8) C10—H10Ai 0.9600
C5—C6 1.521 (8) C10—H10A 0.9600
C6—C8 1.544 (8) C10—H10B 0.9600
C6—C9 1.526 (8) C10—H10C 0.9600
C6—C7 1.545 (8)
Cl1—Au1—N1 176.24 (13) H7A—C7—H7C 109.00
Cl1—Au1—Cl1i 88.38 (6) C6—C7—H7C 109.00
Cl1—Au1—N1i 95.38 (13) H7A—C7—H7B 109.00
Cl1i—Au1—N1 95.38 (13) H7B—C7—H7C 109.00
N1—Au1—N1i 80.86 (17) C6—C8—H8C 110.00
Cl1i—Au1—N1i 176.24 (13) C6—C8—H8A 109.00
Cl2—Au2—Cl3i 89.91 (4) C6—C8—H8B 109.00
Cl2—Au2—Cl3 89.91 (4) H8A—C8—H8B 109.00
Cl2—Au2—Cl4 179.90 (8) H8A—C8—H8C 109.00
Cl3i—Au2—Cl4 90.10 (4) H8B—C8—H8C 109.00
Cl3—Au2—Cl4 90.10 (4) H9A—C9—H9B 109.00
Cl3—Au2—Cl3i 179.77 (6) H9A—C9—H9C 110.00
Au1—N1—C2 113.8 (3) H9B—C9—H9C 110.00
Au1—N1—C3 125.7 (4) C6—C9—H9A 109.00
C2—N1—C3 120.5 (5) C6—C9—H9B 109.00
C2—C1—C5 121.7 (5) C6—C9—H9C 109.00
C1—C2—C2i 125.5 (5) N2—C11—C10 179.5 (14)
N1—C2—C2i 115.8 (5) C11—C10—H10Ci 110.00
N1—C2—C1 118.7 (5) C11—C10—H10A 110.00
N1—C3—C4 121.5 (5) C11—C10—H10B 110.00
C3—C4—C5 120.8 (5) C11—C10—H10C 110.00
C1—C5—C6 120.2 (5) C11—C10—H10Ai 110.00
C1—C5—C4 116.8 (5) C11—C10—H10Bi 110.00
C4—C5—C6 123.0 (5) H10Ai—C10—H10B 60.00
C8—C6—C9 108.5 (5) H10B—C10—H10Bi 52.00
C5—C6—C7 107.6 (4) H10B—C10—H10Ci 141.00
C5—C6—C8 109.0 (5) H10Ai—C10—H10C 52.00
C5—C6—C9 112.2 (5) H10Bi—C10—H10C 141.00
C7—C6—C8 110.5 (5) H10C—C10—H10Ci 60.00
C7—C6—C9 109.1 (5) H10Ai—C10—H10Bi 109.00
C5—C1—H1 119.00 H10Ai—C10—H10Ci 109.00
C2—C1—H1 119.00 H10Bi—C10—H10Ci 109.00
N1—C3—H3 119.00 H10A—C10—H10B 109.00
C4—C3—H3 119.00 H10A—C10—H10C 109.00
C5—C4—H4 120.00 H10A—C10—H10Ai 141.00
C3—C4—H4 120.00 H10A—C10—H10Bi 60.00
C6—C7—H7B 109.00 H10A—C10—H10Ci 52.00
C6—C7—H7A 109.00 H10B—C10—H10C 109.00
Cl1i—Au1—N1—C2 −179.5 (3) N1—C2—C2i—N1i 0.0 (6)
Cl1i—Au1—N1—C3 0.5 (4) N1—C2—C2i—C1i −179.8 (5)
N1i—Au1—N1—C2 0.5 (3) C1—C2—C2i—N1i 179.8 (5)
N1i—Au1—N1—C3 −179.6 (4) C1—C2—C2i—C1i 0.0 (8)
Au1—N1—C2—C1 179.8 (4) N1—C3—C4—C5 −0.6 (8)
Au1—N1—C2—C2i −0.4 (5) C3—C4—C5—C1 0.6 (8)
C3—N1—C2—C1 −0.2 (7) C3—C4—C5—C6 −179.8 (5)
C3—N1—C2—C2i 179.6 (5) C1—C5—C6—C7 60.9 (6)
Au1—N1—C3—C4 −179.6 (4) C1—C5—C6—C8 −58.9 (7)
C2—N1—C3—C4 0.4 (8) C1—C5—C6—C9 −179.1 (5)
C5—C1—C2—N1 0.2 (8) C4—C5—C6—C7 −118.7 (6)
C5—C1—C2—C2i −179.6 (5) C4—C5—C6—C8 121.4 (6)
C2—C1—C5—C4 −0.3 (8) C4—C5—C6—C9 1.3 (8)
C2—C1—C5—C6 −180.0 (5)

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···Cl3ii 0.93 2.66 3.561 (6) 162
C3—H3···Cl1i 0.93 2.64 3.231 (6) 122

Symmetry codes: (ii) −x+1, −y+1, −z; (i) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2776).

References

  1. Abbate, F., Orioli, P., Bruni, B., Marcon, G. & Messori, L. (2000). Inorg. Chim. Acta, 311, 1–5.
  2. Adams, H. N. & Strähle, J. (1982). Z. Anorg. Allg. Chem.485, 65–80.
  3. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  4. Bjernemose, J. K., Raithby, P. R. & Toftlund, H. (2004). Acta Cryst. E60, m1719–m1721.
  5. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Hayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem.45, 6120–6122. [DOI] [PubMed]
  9. McInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023–2025.
  10. Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025646/hb2776sup1.cif

e-64-m1189-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025646/hb2776Isup2.hkl

e-64-m1189-Isup2.hkl (186.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES