Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 9;64(Pt 9):o1735. doi: 10.1107/S1600536808025221

N,N′-Dicyclo­hexyl­naphthalene-1,8;4:5-dicarboximide

Deepak Shukla a, Manju Rajeswaran a,*
PMCID: PMC2960487  PMID: 21201718

Abstract

The title compound, C26H26N2O4, synthesized by the reaction of naphthalene-1,4,5,8-tetra­carboxylic acid anhydride and cyclo­hexyl­amine, exhibits good n-type semiconducting properties. Accordingly, thin-film transistor devices comprising this compound show n-type behavior with high field-effect electron moblity ca 6 cm2/Vs [Shukla, Nelson, Freeman, Rajeswaran, Ahearn, Meyer & Carey(2008). Chem. Mater. Submitted]. The asymmetric unit comprises one-quarter of the centrosymmetric mol­ecule in which all but two methyl­ene C atoms of the cyclo­hexane ring lie on a mirror plane; the point-group symmetry is 2/m. The naphthalene­diimide unit is strictly planar, and the cyclo­hexane rings adopt chair conformations with the diimide unit in an equatorial position on each ring.

Related literature

For general background on the semi-conducting properties and use of this class of material in organic thin-film transistor applications, see: Chesterfield et al. (2004a ,b ); Facceti et al. (2008); Jones et al. (2004); Katz et al. (2000a ,b ); Shukla et al. (2008).graphic file with name e-64-o1735-scheme1.jpg

Experimental

Crystal data

  • C26H26N2O4

  • M r = 430.49

  • Monoclinic, Inline graphic

  • a = 8.5410 (2) Å

  • b = 6.6780 (2) Å

  • c = 18.4270 (9) Å

  • β = 102.4790 (18)°

  • V = 1026.19 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.35 × 0.25 × 0.17 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 3354 measured reflections

  • 1227 independent reflections

  • 787 reflections with I > 2σ(I)

  • R int = 0.087

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.182

  • S = 1.06

  • 1227 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2007).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808025221/sj2528sup1.cif

e-64-o1735-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025221/sj2528Isup2.hkl

e-64-o1735-Isup2.hkl (60.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Ms Wendy Ahearn and Ms Dianne Meyer of Eastman Kodak Company for material purification and crystal growth via sublimation.

supplementary crystallographic information

Comment

Amongst n-type semiconductors, naphthalene diimide (NDI) and perylene diimide (PDI) based systems have been studied extensively (Chesterfield, et al., 2004a; Chesterfield et al., 2004b; Facceti et al., 2008; Jones, et al., 2004; Katz, et al., 2000a; Katz, et al., 2000b). We report here the structure of the title diimide molecule, I, (Fig. 1).

Experimental

The diimide 1 was prepared by direct condensation of 1,4,5,8-naphthalenetetracarboxylic acid anhydride (1.34 g, 5.00 mmol) and cyclohexylamine (30 mmol) in the presence of zinc acetate (50 mg) in 15 mL quinoline. The mixture was heated at 140-150°C for four hours, cooled and diluted with several volumes of methanol. The resulting slurry was filtered, the collected solid washed with methanol and dried in air. The crude product was then purified by train sublimation at 10-4 to 10-6 torr. 1H NMR (CD2Cl2,500.05 MHz): δ (ppm) = 8.76 (s, 4H), 5.10 (t,2H, J = 12 Hz), 2.64 (dt, 2H, J = 12 and 11.7 Hzs), 1.57 (dt, 2H, J = 12 and11.7 Hz), 2.03 (d, 2H, J = 12 Hz), 1.87 (d, 2H, J = 12 Hz), 1.47 (m, 2H); 13C(CD2Cl2, 500.05 MHz): d = 163.23, 130.74, 127.13, 126.70,54.85, 29.38, 26.66, 25.52; MS (MALDI-TOF) m/z cald. for [C26H26N2O4]430.5 found: 430.2.

Refinement

All H-atoms were positioned geometrically using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic 0.97Å, Uiso = 1.2Ueq (C) for CH2 atoms.

Figures

Fig. 1.

Fig. 1.

Structure of the title compound (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.

Crystal data

C26H26N2O4 F000 = 456
Mr = 430.49 Dx = 1.393 Mg m3
Monoclinic, C2/m Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2y Cell parameters from 21067 reflections
a = 8.5410 (2) Å θ = 1.0–27.5º
b = 6.6780 (2) Å µ = 0.09 mm1
c = 18.4270 (9) Å T = 293 (2) K
β = 102.4790 (18)º Block, orange
V = 1026.19 (6) Å3 0.35 × 0.25 × 0.17 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer 1227 independent reflections
Radiation source: fine-focus sealed tube 787 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.087
Detector resolution: 9 pixels mm-1 θmax = 27.4º
T = 293(2) K θmin = 4.3º
φ and ω scans h = −10→10
Absorption correction: none k = −8→8
3354 measured reflections l = −23→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067 H-atom parameters constrained
wR(F2) = 0.182   w = 1/[σ2(Fo2) + (0.0638P)2 + 1.0546P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
1227 reflections Δρmax = 0.39 e Å3
91 parameters Δρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2160 (3) 0.0000 0.28476 (12) 0.0594 (8)
O2 0.7630 (3) 0.0000 0.33332 (13) 0.0647 (8)
N1 0.4894 (3) 0.0000 0.30625 (13) 0.0431 (7)
C1 0.6391 (4) 0.0000 0.35566 (18) 0.0457 (8)
C2 0.6418 (3) 0.0000 0.43622 (17) 0.0422 (8)
C3 0.7854 (4) 0.0000 0.48703 (18) 0.0510 (9)
H3 0.8806 0.0000 0.4703 0.061*
C4 0.4979 (3) 0.0000 0.46157 (16) 0.0384 (7)
C5 0.2086 (4) 0.0000 0.43639 (18) 0.0494 (9)
H5 0.1100 0.0000 0.4030 0.059*
C6 0.3486 (3) 0.0000 0.41020 (17) 0.0410 (7)
C7 0.3427 (4) 0.0000 0.32968 (18) 0.0446 (8)
C8 0.4868 (4) 0.0000 0.22507 (16) 0.0460 (8)
H8 0.5991 0.0000 0.2207 0.055*
C9 0.4125 (3) 0.1896 (4) 0.18665 (13) 0.0591 (7)
H9A 0.4684 0.3060 0.2110 0.071*
H9B 0.3010 0.1986 0.1901 0.071*
C10 0.4238 (3) 0.1862 (5) 0.10529 (14) 0.0708 (9)
H10A 0.3699 0.3031 0.0803 0.085*
H10B 0.5356 0.1926 0.1022 0.085*
C11 0.3488 (5) 0.0000 0.0665 (2) 0.0664 (11)
H11A 0.3624 0.0000 0.0156 0.080*
H11B 0.2348 0.0000 0.0654 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0365 (12) 0.088 (2) 0.0494 (14) 0.000 0.0005 (9) 0.000
O2 0.0363 (12) 0.105 (2) 0.0535 (14) 0.000 0.0113 (10) 0.000
N1 0.0330 (12) 0.0522 (17) 0.0428 (14) 0.000 0.0052 (10) 0.000
C1 0.0323 (15) 0.051 (2) 0.0514 (19) 0.000 0.0047 (12) 0.000
C2 0.0322 (15) 0.0478 (19) 0.0456 (18) 0.000 0.0066 (12) 0.000
C3 0.0296 (15) 0.071 (2) 0.0513 (19) 0.000 0.0072 (12) 0.000
C4 0.0309 (14) 0.0364 (16) 0.0459 (16) 0.000 0.0040 (11) 0.000
C5 0.0292 (14) 0.065 (2) 0.0503 (19) 0.000 0.0012 (12) 0.000
C6 0.0303 (15) 0.0445 (18) 0.0460 (17) 0.000 0.0033 (12) 0.000
C7 0.0357 (15) 0.0466 (19) 0.0491 (18) 0.000 0.0038 (13) 0.000
C8 0.0379 (15) 0.059 (2) 0.0403 (17) 0.000 0.0059 (12) 0.000
C9 0.0643 (15) 0.0483 (15) 0.0601 (16) −0.0050 (13) 0.0033 (11) 0.0031 (12)
C10 0.0716 (17) 0.080 (2) 0.0561 (16) −0.0103 (17) 0.0045 (12) 0.0170 (15)
C11 0.056 (2) 0.094 (3) 0.047 (2) 0.000 0.0059 (16) 0.000

Geometric parameters (Å, °)

O1—C7 1.212 (3) C5—H5 0.9300
O2—C1 1.216 (4) C6—C7 1.474 (4)
N1—C1 1.401 (4) C8—C9ii 1.521 (3)
N1—C7 1.411 (4) C8—C9 1.521 (3)
N1—C8 1.491 (4) C8—H8 0.9800
C1—C2 1.480 (4) C9—C10 1.523 (3)
C2—C3 1.373 (4) C9—H9A 0.9700
C2—C4 1.406 (4) C9—H9B 0.9700
C3—C5i 1.401 (4) C10—C11 1.506 (4)
C3—H3 0.9300 C10—H10A 0.9700
C4—C4i 1.409 (6) C10—H10B 0.9700
C4—C6 1.415 (4) C11—C10ii 1.506 (4)
C5—C6 1.382 (4) C11—H11A 0.9700
C5—C3i 1.401 (4) C11—H11B 0.9700
C1—N1—C7 123.2 (3) N1—C8—C9ii 112.42 (17)
C1—N1—C8 117.8 (3) N1—C8—C9 112.42 (17)
C7—N1—C8 119.0 (2) C9ii—C8—C9 112.7 (3)
O2—C1—N1 121.3 (3) N1—C8—H8 106.2
O2—C1—C2 120.9 (3) C9ii—C8—H8 106.2
N1—C1—C2 117.8 (3) C9—C8—H8 106.2
C3—C2—C4 119.3 (3) C8—C9—C10 109.7 (2)
C3—C2—C1 120.1 (3) C8—C9—H9A 109.7
C4—C2—C1 120.5 (3) C10—C9—H9A 109.7
C2—C3—C5i 121.3 (3) C8—C9—H9B 109.7
C2—C3—H3 119.3 C10—C9—H9B 109.7
C5i—C3—H3 119.3 H9A—C9—H9B 108.2
C2—C4—C4i 120.0 (3) C11—C10—C9 111.6 (3)
C2—C4—C6 120.3 (3) C11—C10—H10A 109.3
C4i—C4—C6 119.7 (3) C9—C10—H10A 109.3
C6—C5—C3i 120.4 (3) C11—C10—H10B 109.3
C6—C5—H5 119.8 C9—C10—H10B 109.3
C3i—C5—H5 119.8 H10A—C10—H10B 108.0
C5—C6—C4 119.3 (3) C10—C11—C10ii 111.3 (3)
C5—C6—C7 120.5 (3) C10—C11—H11A 109.4
C4—C6—C7 120.2 (3) C10ii—C11—H11A 109.4
O1—C7—N1 120.8 (3) C10—C11—H11B 109.4
O1—C7—C6 121.2 (3) C10ii—C11—H11B 109.4
N1—C7—C6 118.0 (2) H11A—C11—H11B 108.0
C7—N1—C1—O2 180.0 C2—C4—C6—C7 0.0
C8—N1—C1—O2 0.0 C4i—C4—C6—C7 180.0
C7—N1—C1—C2 0.0 C1—N1—C7—O1 180.0
C8—N1—C1—C2 180.0 C8—N1—C7—O1 0.0
O2—C1—C2—C3 0.0 C1—N1—C7—C6 0.0
N1—C1—C2—C3 180.0 C8—N1—C7—C6 180.0
O2—C1—C2—C4 180.0 C5—C6—C7—O1 0.0
N1—C1—C2—C4 0.0 C4—C6—C7—O1 180.0
C4—C2—C3—C5i 0.000 (1) C5—C6—C7—N1 180.0
C1—C2—C3—C5i 180.0 C4—C6—C7—N1 0.0
C3—C2—C4—C4i 0.0 C1—N1—C8—C9ii 115.76 (19)
C1—C2—C4—C4i 180.0 C7—N1—C8—C9ii −64.24 (19)
C3—C2—C4—C6 180.0 C1—N1—C8—C9 −115.76 (19)
C1—C2—C4—C6 0.0 C7—N1—C8—C9 64.24 (19)
C3i—C5—C6—C4 0.000 (1) N1—C8—C9—C10 176.2 (2)
C3i—C5—C6—C7 180.0 C9ii—C8—C9—C10 −55.5 (4)
C2—C4—C6—C5 180.0 C8—C9—C10—C11 55.2 (3)
C4i—C4—C6—C5 0.000 (1) C9—C10—C11—C10ii −56.5 (4)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2528).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Chesterfield, R. J., McKeen, J. C., Newman, C. R., Ewbank, P. C., da SilvaFilho, D. A., Brédas, J. L., Miller, L. L., Mann, K. R. & Frisbie, C. D. (2004a). J. Phys. Chem. B, 108, 19281–19292.
  3. Chesterfield, R. J., McKeen, J. C., Newman, C. R., Frisbie, C. D., Ewbank, P. C., Mann, K. R. & Miller, L. L. (2004b). Appl. Phys. Lett.95, 6396–6405.
  4. Facceti, A., Yoon, M.-H. & Marks, T. J. (2008). Adv. Mater.17, 1705–1725.
  5. Jones, B. A., Ahrens, M. J., Yoon, M.–H., Facchetti, A., Marks, T. J. & Wasielewski, M. R. (2004). Angew. Chem. Int. Ed 43, 6363–6366. [DOI] [PubMed]
  6. Katz, H. E., Johnson, J., Lovinger, A. J. & Li, W. (2000a). J. Am. Chem. Soc.122, 7787–7792.
  7. Katz, H. E., Lovinger, A. J., Johnson, J., Kloc, C., Siegrist, T., Li, W., Lin, Y.-Y. & Dodabalapur, A. (2000b). Nature (London), 404, 478–481. [DOI] [PubMed]
  8. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shukla, D., Nelson, S. F., Freeman, D. C., Rajeswaran, M., Ahearn, W. G., Meyer, D. M. & Carey, J. T. (2008). Chem. Mater. Submitted.
  12. Westrip, S. P. (2007). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808025221/sj2528sup1.cif

e-64-o1735-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025221/sj2528Isup2.hkl

e-64-o1735-Isup2.hkl (60.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES