Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 13;64(Pt 9):m1156–m1157. doi: 10.1107/S1600536808025476

Dichlorido(4,7-diphenyl-1,10-phenanthroline-κ2 N,N′)gold(III) tetra­chloridoaurate(III)

Roya Ahmadi a, Vahid Amani a,*, Hamid Reza Khavasi b
PMCID: PMC2960497  PMID: 21201607

Abstract

In the cation of the title compound, [AuCl2(C24H16N2)][AuCl4], the AuIII atom is four-coordinated in a distorted square-planar configuration by two N atoms from a 4,7-diphenyl-1,10-phenanthroline ligand and two terminal Cl atoms. In the anion, the AuIII atom has a square-planar coordination. In the crystal structure, intra- and inter­molecular C—H⋯Cl hydrogen bonds are found.

Related literature

For related literature, see: Hojjat Kashani et al. (2008); Mclnnes et al. (1995); Bjernemose et al. (2004); Hayoun et al. (2006); Abbate et al. (2000); Adams & Strahle (1982).graphic file with name e-64-m1156-scheme1.jpg

Experimental

Crystal data

  • [AuCl2(C24H16N2)][AuCl4]

  • M r = 939.03

  • Monoclinic, Inline graphic

  • a = 26.2625 (16) Å

  • b = 13.7608 (6) Å

  • c = 14.4292 (9) Å

  • β = 101.207 (5)°

  • V = 5115.2 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 12.10 mm−1

  • T = 120 (2) K

  • 0.43 × 0.35 × 0.30 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2005) T min = 0.580, T max = 0.640

  • 18667 measured reflections

  • 6864 independent reflections

  • 6404 reflections with I > 2σ(I)

  • R int = 0.090

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.173

  • S = 1.16

  • 6864 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −1.02 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808025476/hk2509sup1.cif

e-64-m1156-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025476/hk2509Isup2.hkl

e-64-m1156-Isup2.hkl (329.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Au1—N2 2.032 (6)
Au1—N1 2.039 (7)
Au1—Cl2 2.2546 (19)
Au1—Cl1 2.257 (2)
Au2—Cl4 2.281 (2)
Au2—Cl5 2.281 (2)
Au2—Cl6 2.284 (2)
Au2—Cl3 2.285 (2)
N2—Au1—N1 81.1 (3)
N2—Au1—Cl2 175.42 (19)
N1—Au1—Cl2 94.3 (2)
N2—Au1—Cl1 94.92 (19)
N1—Au1—Cl1 175.95 (19)
Cl2—Au1—Cl1 89.62 (8)
Cl4—Au2—Cl5 90.26 (10)
Cl4—Au2—Cl6 178.77 (8)
Cl5—Au2—Cl6 89.67 (9)
Cl4—Au2—Cl3 89.96 (10)
Cl5—Au2—Cl3 178.75 (7)
Cl6—Au2—Cl3 90.14 (9)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl2 0.93 2.68 3.244 (9) 120
C1—H1⋯Cl6i 0.93 2.79 3.668 (8) 159
C18—H18⋯Cl2ii 0.93 2.79 3.653 (8) 155
C22—H22⋯Cl1 0.93 2.66 3.239 (8) 121
C22—H22⋯Cl4iii 0.93 2.76 3.555 (9) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

supplementary crystallographic information

Comment

Recently, we reported the synthesis and crystal structure of [H2DA18C6]- [AuCl4].2H2O, (II) (Hojjat Kashani et al., 2008) [where H2DA18C6 is 1,10-Diazonia-18-crown-6]. There are several AuIII complexes, with formula, [AuCl2(N—N)], such as [AuCl2(bipy)][BF4], (III) (Mclnnes et al., 1995), [AuCl2(bipy)](NO3), (IV) (Bjernemose et al., 2004), [AuCl2(bipy)]- [AuBr4], (V) (Hayoun et al., 2006) and [AuCl2(phen)]Cl.H2O, (VI) (Abbate et al., 2000) [where bipy is 2,2'-bipyridine and phen is 1,10-phenanthroline] have been synthesized and characterized by single-crystal X-ray diffraction methods. There are also two AuIII complexes, with formula, [AuCl2L2], such as [AuCl2(py)2][AuCl4], (VII) and [AuCl2(py)2]Cl.H2O, (VIII) (Adams & Strahle, 1982) [where py is pyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I), (Fig. 1) contains one cation and one anion. In the cation, the AuIII atom is four-coordinated in a distorted square-planar configuration by two N atoms from 4,7-diphenyl-1,10-phenanthroline ligand and two terminal Cl atoms. In the anion, the Au ion has a square-planar coordination. In the cation, the Au-Cl and Au-N bond lengths and angles (Table 1) are in good agreement with the corresponding values in (III) and (IV). In the anion, the Au-Cl bond lengths and angles (Table 1) are within normal ranges.

In the crystal structure, intra- and intermolecular C-H···Cl hydrogen bonds (Table 2) link the molecules, in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, a solution of 4,7-diphenyl-1,10- phenanthroline (0.21 g, 0.63 mmol) in EtOH (30 ml) was added to a solution of HAuCl4.3H2O, (0.25 g, 0.63 mmol) in acetonitrile (40 ml) and the resulting yellow solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, yellow prismatic crystals were isolated (yield; 0.45 g, 75.8%, m.p. < 573 K).

Refinement

H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

[AuCl2(C24H16N2)][AuCl4] F000 = 3472
Mr = 939.03 Dx = 2.439 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2231 reflections
a = 26.2625 (16) Å θ = 1.7–29.2º
b = 13.7608 (6) Å µ = 12.10 mm1
c = 14.4292 (9) Å T = 120 (2) K
β = 101.207 (5)º Prism, yellow
V = 5115.2 (5) Å3 0.43 × 0.35 × 0.30 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer 6864 independent reflections
Radiation source: fine-focus sealed tube 6404 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.090
T = 120(2) K θmax = 29.2º
φ and ω scans θmin = 1.7º
Absorption correction: numericalshape of crystal determined optically (PROGRAM? Reference?) h = −35→35
Tmin = 0.580, Tmax = 0.640 k = −18→18
18667 measured reflections l = −19→13

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.068   w = 1/[σ2(Fo2) + (0.0977P)2 + 20.7667P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.173 (Δ/σ)max = 0.048
S = 1.16 Δρmax = 1.07 e Å3
6864 reflections Δρmin = −1.02 e Å3
308 parameters Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00055 (6)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Au1 0.097267 (11) −0.152249 (19) 0.112685 (18) 0.01435 (13)
Au2 0.165438 (12) 0.96986 (2) 0.854512 (18) 0.01739 (13)
Cl1 0.12293 (8) −0.30783 (14) 0.10295 (15) 0.0240 (4)
Cl2 0.01813 (8) −0.20496 (16) 0.12856 (16) 0.0259 (4)
Cl3 0.21356 (9) 1.10394 (18) 0.83479 (15) 0.0280 (4)
Cl4 0.23388 (10) 0.87252 (19) 0.84084 (16) 0.0320 (5)
Cl5 0.11779 (10) 0.83657 (16) 0.87768 (15) 0.0284 (5)
Cl6 0.09622 (8) 1.06689 (16) 0.86481 (15) 0.0257 (4)
N1 0.0787 (3) −0.0088 (5) 0.1182 (5) 0.0160 (12)
N2 0.1667 (2) −0.0939 (5) 0.1005 (4) 0.0138 (11)
C1 0.0334 (3) 0.0290 (6) 0.1291 (6) 0.0203 (15)
H1 0.0055 −0.0117 0.1321 0.024*
C2 0.0279 (3) 0.1283 (7) 0.1359 (6) 0.0193 (14)
H2 −0.0041 0.1535 0.1422 0.023*
C3 0.0691 (3) 0.1922 (6) 0.1336 (5) 0.0159 (13)
C4 0.0612 (3) 0.2989 (6) 0.1480 (5) 0.0161 (13)
C5 0.0146 (4) 0.3441 (6) 0.1051 (6) 0.0211 (16)
H5 −0.0114 0.3090 0.0661 0.025*
C6 0.0082 (3) 0.4422 (7) 0.1221 (6) 0.0239 (16)
H6 −0.0222 0.4734 0.0937 0.029*
C7 0.0463 (4) 0.4939 (6) 0.1804 (6) 0.0229 (16)
H7 0.0418 0.5599 0.1898 0.027*
C8 0.0914 (4) 0.4485 (6) 0.2254 (6) 0.0243 (16)
H8 0.1167 0.4834 0.2660 0.029*
C9 0.0985 (4) 0.3503 (5) 0.2094 (6) 0.0194 (15)
H9 0.1285 0.3191 0.2400 0.023*
C10 0.1156 (3) 0.1527 (5) 0.1165 (5) 0.0127 (13)
C11 0.1599 (3) 0.2079 (5) 0.1012 (5) 0.0146 (13)
H11 0.1577 0.2754 0.0998 0.018*
C12 0.2050 (3) 0.1647 (5) 0.0888 (6) 0.0161 (13)
H12 0.2322 0.2029 0.0769 0.019*
C13 0.2106 (3) 0.0604 (5) 0.0940 (5) 0.0125 (12)
C14 0.2567 (3) 0.0094 (5) 0.0877 (5) 0.0139 (12)
C15 0.3067 (3) 0.0582 (5) 0.0815 (5) 0.0133 (12)
C16 0.3258 (3) 0.1344 (6) 0.1443 (5) 0.0178 (14)
H16 0.3066 0.1577 0.1874 0.021*
C17 0.3743 (3) 0.1738 (6) 0.1401 (6) 0.0194 (14)
H17 0.3868 0.2254 0.1796 0.023*
C18 0.4039 (3) 0.1381 (6) 0.0787 (6) 0.0202 (15)
H18 0.4366 0.1637 0.0782 0.024*
C19 0.3838 (3) 0.0621 (6) 0.0167 (5) 0.0195 (14)
H19 0.4032 0.0384 −0.0258 0.023*
C20 0.3364 (3) 0.0230 (5) 0.0182 (5) 0.0146 (13)
H20 0.3236 −0.0272 −0.0230 0.018*
C21 0.2552 (3) −0.0924 (6) 0.0870 (5) 0.0160 (13)
H21 0.2849 −0.1274 0.0823 0.019*
C22 0.2093 (3) −0.1420 (6) 0.0935 (5) 0.0170 (14)
H22 0.2089 −0.2096 0.0929 0.020*
C23 0.1672 (3) 0.0044 (5) 0.1023 (4) 0.0129 (13)
C24 0.1190 (3) 0.0514 (5) 0.1122 (5) 0.0113 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Au1 0.01838 (19) 0.01279 (17) 0.01316 (17) −0.00363 (8) 0.00622 (12) −0.00142 (9)
Au2 0.0225 (2) 0.01961 (19) 0.00978 (17) 0.00323 (9) 0.00248 (12) −0.00040 (9)
Cl1 0.0312 (9) 0.0133 (8) 0.0308 (9) −0.0030 (7) 0.0144 (8) 0.0002 (7)
Cl2 0.0258 (9) 0.0216 (9) 0.0340 (10) −0.0098 (7) 0.0152 (8) −0.0046 (8)
Cl3 0.0315 (10) 0.0319 (11) 0.0216 (8) −0.0063 (8) 0.0079 (8) 0.0042 (8)
Cl4 0.0382 (12) 0.0347 (11) 0.0229 (9) 0.0178 (10) 0.0057 (9) −0.0016 (9)
Cl5 0.0424 (12) 0.0248 (10) 0.0176 (8) −0.0076 (8) 0.0050 (8) −0.0014 (7)
Cl6 0.0248 (9) 0.0259 (10) 0.0272 (9) 0.0051 (7) 0.0066 (8) −0.0032 (8)
N1 0.023 (3) 0.012 (3) 0.016 (3) −0.002 (2) 0.010 (2) 0.002 (2)
N2 0.015 (3) 0.016 (3) 0.013 (2) −0.003 (2) 0.007 (2) 0.001 (2)
C1 0.022 (4) 0.017 (4) 0.024 (4) −0.005 (3) 0.009 (3) −0.003 (3)
C2 0.012 (3) 0.026 (4) 0.022 (3) 0.000 (3) 0.008 (3) −0.003 (3)
C3 0.015 (3) 0.016 (3) 0.016 (3) 0.003 (3) 0.001 (3) 0.004 (3)
C4 0.024 (3) 0.014 (3) 0.014 (3) 0.004 (3) 0.011 (3) −0.002 (3)
C5 0.027 (4) 0.018 (4) 0.018 (3) 0.005 (3) 0.007 (3) −0.003 (3)
C6 0.025 (4) 0.027 (4) 0.023 (4) 0.014 (3) 0.015 (3) 0.004 (3)
C7 0.038 (5) 0.016 (3) 0.021 (3) 0.001 (3) 0.022 (3) −0.002 (3)
C8 0.031 (4) 0.016 (3) 0.025 (4) −0.003 (3) 0.003 (3) −0.004 (3)
C9 0.030 (4) 0.012 (3) 0.016 (3) 0.002 (3) 0.002 (3) −0.001 (3)
C10 0.014 (3) 0.014 (3) 0.012 (3) −0.002 (2) 0.007 (2) 0.000 (2)
C11 0.016 (3) 0.015 (3) 0.015 (3) 0.002 (2) 0.006 (3) 0.002 (3)
C12 0.015 (3) 0.012 (3) 0.022 (3) −0.006 (2) 0.006 (3) 0.002 (3)
C13 0.009 (3) 0.015 (3) 0.015 (3) −0.001 (2) 0.006 (2) 0.000 (3)
C14 0.018 (3) 0.012 (3) 0.012 (3) −0.002 (2) 0.003 (3) −0.001 (2)
C15 0.007 (3) 0.017 (3) 0.015 (3) 0.003 (2) 0.001 (2) 0.003 (3)
C16 0.016 (3) 0.018 (3) 0.017 (3) 0.002 (3) −0.001 (3) 0.002 (3)
C17 0.021 (4) 0.015 (3) 0.022 (3) −0.001 (3) 0.006 (3) 0.000 (3)
C18 0.019 (4) 0.016 (3) 0.026 (4) −0.001 (3) 0.005 (3) −0.001 (3)
C19 0.019 (3) 0.024 (4) 0.016 (3) −0.001 (3) 0.005 (3) −0.001 (3)
C20 0.018 (3) 0.018 (3) 0.010 (3) −0.001 (2) 0.008 (3) −0.001 (2)
C21 0.017 (3) 0.016 (3) 0.018 (3) 0.002 (2) 0.009 (3) −0.001 (3)
C22 0.024 (4) 0.016 (3) 0.013 (3) 0.004 (3) 0.008 (3) 0.002 (3)
C23 0.018 (3) 0.017 (3) 0.005 (3) 0.003 (3) 0.004 (2) −0.004 (3)
C24 0.015 (3) 0.009 (3) 0.011 (3) −0.006 (2) 0.007 (2) 0.001 (2)

Geometric parameters (Å, °)

Au1—N2 2.032 (6) C10—C11 1.442 (10)
Au1—N1 2.039 (7) C11—C12 1.367 (10)
Au1—Cl2 2.2546 (19) C11—H11 0.9300
Au1—Cl1 2.257 (2) C12—C13 1.444 (10)
Au2—Cl4 2.281 (2) C12—H12 0.9300
Au2—Cl5 2.281 (2) C13—C23 1.401 (9)
Au2—Cl6 2.284 (2) C13—C14 1.417 (10)
Au2—Cl3 2.285 (2) C14—C21 1.400 (10)
C1—N1 1.335 (10) C14—C15 1.494 (10)
C1—C2 1.379 (11) C15—C20 1.398 (9)
C1—H1 0.9300 C15—C16 1.412 (11)
C2—C3 1.399 (10) C16—C17 1.395 (11)
C2—H2 0.9300 C16—H16 0.9300
C3—C10 1.403 (10) C17—C18 1.378 (12)
C3—C4 1.502 (10) C17—H17 0.9300
C4—C9 1.381 (11) C18—C19 1.411 (11)
C4—C5 1.404 (11) C18—H18 0.9300
C5—C6 1.389 (11) C19—C20 1.361 (10)
C5—H5 0.9300 C19—H19 0.9300
C6—C7 1.373 (14) C20—H20 0.9300
C6—H6 0.9300 C21—C22 1.405 (11)
C7—C8 1.383 (13) C21—H21 0.9300
C7—H7 0.9300 C22—N2 1.320 (10)
C8—C9 1.390 (11) C22—H22 0.9300
C8—H8 0.9300 C23—N2 1.352 (9)
C9—H9 0.9300 C23—C24 1.454 (9)
C10—C24 1.399 (9) C24—N1 1.359 (9)
N2—Au1—N1 81.1 (3) C11—C12—C13 120.6 (7)
N2—Au1—Cl2 175.42 (19) C11—C12—H12 119.7
N1—Au1—Cl2 94.3 (2) C13—C12—H12 119.7
N2—Au1—Cl1 94.92 (19) C23—C13—C14 116.9 (7)
N1—Au1—Cl1 175.95 (19) C23—C13—C12 118.3 (6)
Cl2—Au1—Cl1 89.62 (8) C14—C13—C12 124.8 (6)
Cl4—Au2—Cl5 90.26 (10) C21—C14—C13 118.2 (7)
Cl4—Au2—Cl6 178.77 (8) C21—C14—C15 118.3 (7)
Cl5—Au2—Cl6 89.67 (9) C13—C14—C15 123.5 (7)
Cl4—Au2—Cl3 89.96 (10) C20—C15—C16 120.2 (7)
Cl5—Au2—Cl3 178.75 (7) C20—C15—C14 119.4 (7)
Cl6—Au2—Cl3 90.14 (9) C16—C15—C14 120.2 (6)
N1—C1—C2 120.1 (7) C17—C16—C15 118.3 (7)
N1—C1—H1 119.9 C17—C16—H16 120.8
C2—C1—H1 119.9 C15—C16—H16 120.9
C1—C2—C3 121.9 (7) C18—C17—C16 121.5 (8)
C1—C2—H2 119.0 C18—C17—H17 119.2
C3—C2—H2 119.0 C16—C17—H17 119.2
C2—C3—C10 117.7 (7) C17—C18—C19 118.9 (8)
C2—C3—C4 118.9 (7) C17—C18—H18 120.6
C10—C3—C4 123.5 (7) C19—C18—H18 120.5
C9—C4—C5 120.3 (7) C20—C19—C18 120.9 (7)
C9—C4—C3 119.3 (7) C20—C19—H19 119.5
C5—C4—C3 120.2 (7) C18—C19—H19 119.6
C6—C5—C4 118.5 (8) C19—C20—C15 120.1 (7)
C6—C5—H5 120.7 C19—C20—H20 119.9
C4—C5—H5 120.8 C15—C20—H20 120.0
C7—C6—C5 120.9 (8) C14—C21—C22 120.7 (7)
C7—C6—H6 119.6 C14—C21—H21 119.6
C5—C6—H6 119.5 C22—C21—H21 119.7
C6—C7—C8 120.6 (8) N2—C22—C21 120.7 (7)
C6—C7—H7 119.7 N2—C22—H22 119.7
C8—C7—H7 119.7 C21—C22—H22 119.6
C7—C8—C9 119.4 (8) N2—C23—C13 123.6 (6)
C7—C8—H8 120.3 N2—C23—C24 116.2 (6)
C9—C8—H8 120.3 C13—C23—C24 120.2 (6)
C4—C9—C8 120.2 (8) N1—C24—C10 123.2 (7)
C4—C9—H9 119.9 N1—C24—C23 116.0 (6)
C8—C9—H9 119.9 C10—C24—C23 120.8 (6)
C24—C10—C3 117.3 (7) C1—N1—C24 119.5 (7)
C24—C10—C11 117.3 (6) C1—N1—Au1 127.4 (5)
C3—C10—C11 125.4 (7) C24—N1—Au1 113.1 (5)
C12—C11—C10 122.4 (7) C22—N2—C23 119.9 (6)
C12—C11—H11 118.8 C22—N2—Au1 126.6 (5)
C10—C11—H11 118.8 C23—N2—Au1 113.5 (5)
N1—C1—C2—C3 −1.3 (13) C18—C19—C20—C15 0.2 (12)
C1—C2—C3—C10 5.0 (12) C16—C15—C20—C19 0.0 (11)
C1—C2—C3—C4 −175.9 (8) C14—C15—C20—C19 −175.1 (7)
C2—C3—C4—C9 133.5 (8) C13—C14—C21—C22 −0.7 (10)
C10—C3—C4—C9 −47.4 (10) C15—C14—C21—C22 179.4 (7)
C2—C3—C4—C5 −41.7 (10) C14—C21—C22—N2 −0.1 (11)
C10—C3—C4—C5 137.4 (8) C14—C13—C23—N2 −2.9 (10)
C9—C4—C5—C6 3.2 (12) C12—C13—C23—N2 174.8 (7)
C3—C4—C5—C6 178.3 (7) C14—C13—C23—C24 178.0 (6)
C4—C5—C6—C7 −0.7 (12) C12—C13—C23—C24 −4.3 (10)
C5—C6—C7—C8 −1.6 (13) C3—C10—C24—N1 3.9 (10)
C6—C7—C8—C9 1.5 (13) C11—C10—C24—N1 −175.0 (6)
C5—C4—C9—C8 −3.3 (12) C3—C10—C24—C23 −175.0 (6)
C3—C4—C9—C8 −178.5 (8) C11—C10—C24—C23 6.1 (10)
C7—C8—C9—C4 0.9 (13) N2—C23—C24—N1 −0.2 (9)
C2—C3—C10—C24 −6.1 (10) C13—C23—C24—N1 179.0 (6)
C4—C3—C10—C24 174.8 (7) N2—C23—C24—C10 178.9 (6)
C2—C3—C10—C11 172.7 (7) C13—C23—C24—C10 −2.0 (10)
C4—C3—C10—C11 −6.4 (11) C2—C1—N1—C24 −1.2 (12)
C24—C10—C11—C12 −4.0 (11) C2—C1—N1—Au1 176.9 (6)
C3—C10—C11—C12 177.2 (7) C10—C24—N1—C1 −0.2 (11)
C10—C11—C12—C13 −2.3 (11) C23—C24—N1—C1 178.8 (7)
C11—C12—C13—C23 6.5 (11) C10—C24—N1—Au1 −178.6 (5)
C11—C12—C13—C14 −176.1 (7) C23—C24—N1—Au1 0.4 (7)
C23—C13—C14—C21 2.1 (10) N2—Au1—N1—C1 −178.6 (7)
C12—C13—C14—C21 −175.4 (7) Cl2—Au1—N1—C1 0.7 (7)
C23—C13—C14—C15 −178.1 (6) N2—Au1—N1—C24 −0.4 (5)
C12—C13—C14—C15 4.4 (11) Cl2—Au1—N1—C24 179.0 (5)
C21—C14—C15—C20 42.6 (10) C21—C22—N2—C23 −0.6 (10)
C13—C14—C15—C20 −137.3 (7) C21—C22—N2—Au1 −178.9 (5)
C21—C14—C15—C16 −132.5 (7) C13—C23—N2—C22 2.2 (10)
C13—C14—C15—C16 47.7 (10) C24—C23—N2—C22 −178.7 (6)
C20—C15—C16—C17 1.0 (11) C13—C23—N2—Au1 −179.3 (5)
C14—C15—C16—C17 176.0 (7) C24—C23—N2—Au1 −0.2 (7)
C15—C16—C17—C18 −2.1 (12) N1—Au1—N2—C22 178.7 (6)
C16—C17—C18—C19 2.2 (13) N1—Au1—N2—C23 0.3 (5)
C17—C18—C19—C20 −1.2 (12) Cl1—Au1—N2—C23 179.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···Cl2 0.93 2.68 3.244 (9) 120
C1—H1···Cl6i 0.93 2.79 3.668 (8) 159
C18—H18···Cl2ii 0.93 2.79 3.653 (8) 155
C22—H22···Cl1 0.93 2.66 3.239 (8) 121
C22—H22···Cl4iii 0.93 2.76 3.555 (9) 143

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x+1/2, y+1/2, z; (iii) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2509).

References

  1. Abbate, F., Orioli, P., Bruni, B., Marcon, G. & Messori, L. (2000). Inorg. Chim. Acta, 311, 1–5.
  2. Adams, H. N. & Strahle, J. (1982). Z. Anorg. Allg. Chem.485, 65–80.
  3. Bjernemose, J. K., Raithby, P. R. & Toftlund, H. (2004). Acta Cryst. E60, m1719–m1721.
  4. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Hayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem.45, 6120–6122. [DOI] [PubMed]
  8. Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840–m841. [DOI] [PMC free article] [PubMed]
  9. McInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023–2025.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Stoe & Cie (2005). X-RED and X-SHAPE Stoe & Cie, Darmstadt, Germany

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808025476/hk2509sup1.cif

e-64-m1156-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025476/hk2509Isup2.hkl

e-64-m1156-Isup2.hkl (329.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES