Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 6;64(Pt 9):o1681. doi: 10.1107/S1600536808024318

9-Ethyl-2,3-dihydro-9H-carbazol-4(1H)-one

S Murugavel a, G Ganesh b, A Subbiah Pandi c,*, Ramalingam Murugan d, S Sriman Narayanan d
PMCID: PMC2960498  PMID: 21201671

Abstract

In the title compound, C28H30N2O2, the cyclo­hexene ring system adopts a sofa conformation. The crystal structure is stabilized by C—H⋯O inter­actions between methyl H atoms of the ethyl substituents and the O atoms of carbonyl groups of adjacent mol­ecules, and by an inter­molecular carbon­yl–carbonyl inter­actions [3.207 (2) Å]

Related literature

For related literature, see: Abraham (1975); Govindasamy et al. (1999); Hewlins et al. (1984); Kansal et al. (1986); Mi et al. (2003); Nardelli (1983); Phillipson & Zenk (1980); Saxton (1983); Allen et al. (1998); Cremer & Pople (1975); Mohanakrishnan & Srinivasasan (1995 , 1995 ).graphic file with name e-64-o1681-scheme1.jpg

Experimental

Crystal data

  • C14H15NO

  • M r = 213.27

  • Monoclinic, Inline graphic

  • a = 8.3742 (6) Å

  • b = 17.033 (1) Å

  • c = 8.6083 (5) Å

  • β = 116.432 (3)°

  • V = 1099.51 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.21 × 0.19 × 0.17 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 11070 measured reflections

  • 2334 independent reflections

  • 1898 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.105

  • S = 1.03

  • 2334 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024318/lx2064sup1.cif

e-64-o1681-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024318/lx2064Isup2.hkl

e-64-o1681-Isup2.hkl (112.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O1i 0.96 2.60 3.549 (2) 170

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are greatful to Dr S. Pandi, Head of the Department of Physics, Presidency College (Autonomous), Chennai, for providing the necessary facilities. Dr Babu Varghese, SAIF, IIT, Madras, India, is thanked for collecting the X-ray intensity data.

supplementary crystallographic information

Comment

Carbazole derivatives exhibit good charge transfer and hole transporting properties, which are being explored for a multitude of optoelectronic and photocatalytic applications, including organic light emitting diodes (OLEDs) (Mi et al., 2003). In carbazole derivatives, the preliminary study shows that the presence of oxygenated substituents increases their biological activity (Hewlins, Oliveira-Campos & Shannon, 1984). The 2,3-disubstituted indoles have been used as bidentate synthons for the synthesis of various medicinally important carbazole alkaloids (Mohanakrishnan & Srinivasan, 1995). Intercalation between the base pairs in DNA has been implicated for their anticancer activity. It was conceived that the benzo[b] carbazoles as isosteric analogs of pyrido[4,3-b]carbazoles, with oxygenated D-ring could mimic the anti-cancer activity of ellipticine. So it was of interest to study the anticancer activity of D-ring oxygenated benzo[b]carbazoles as it is believed that these molecules could form a stable intercalation complex with DNA (Kansal & Potier, 1986). Tetrahydrocarbazole derivatives are present in the framework of indole-type alkaloids of biological interest (Phillipson & Zenk, 1980; Saxton, 1983; Abraham, 1975). Here we report the crystal and molecular structure of the title compound, 9-ethyl-1,2,3-trihydrocarbazol-4(2H)-one (Fig. 1).

The planarities of rings A and C are fairly good. The bond lengths C8—O1, N1—C5 and N1—C12 are normal and comparable with the corresponding values observed in the related structure. (Govindasamy et al., 1999). The atom O1 deviates by -0.033 (1) Å from the least-squares plane of the ring C. The cyclohexane ring of the carbazole moiety adopts sofa conformation, with lowest displacement asymmetric parameter (Nardelli, 1983), ΔCs(C7) = 2.26 (1) °, and puckering parameter (Cremer & Popple, 1975) q2 = 0.373 (2) Å and φ = 359.1 (2) °. The crystal packing (Fig. 2) is stabilized by a C—H···O interaction between a methyl H atom of the ethyl substituent and the oxygen of the carbonyl group of an adjacent molecule, with a C14—H14A···O1i separation of 2.60 Å (Fig. 2 and Table 1; symmetry code as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by a type-II carbonyl-carbonyl interaction (Allen et al., 1998), with C8···O1ii and O1···C8ii distance of 3.207 (2) Å (symmetry code as in Fig. 2).

Experimental

A mixture of (0.5 g, 1.0 mol), ethyl bromide (0.18 g, 1.0 mol) and potassium carbonate (2.0 g) in 1,4-dioxane (10 ml) was refluxed for ca. 5.0 h. Then the reaction mixture was poured in water and then the crude solid was filtered. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

C—H···O and C···O interaction(dotted lines) in the title compound. [Symmetry code: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x, y, z-1.]

Crystal data

C14H15NO F000 = 456
Mr = 213.27 Dx = 1.288 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2850 reflections
a = 8.3742 (6) Å θ = 20.0–26.8º
b = 17.033 (1) Å µ = 0.08 mm1
c = 8.6083 (5) Å T = 293 (2) K
β = 116.432 (3)º Block, colourless
V = 1099.51 (12) Å3 0.21 × 0.19 × 0.17 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 2334 independent reflections
Radiation source: fine-focus sealed tube 1898 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.029
Detector resolution: 10 pixels mm-1 θmax = 26.8º
T = 293(2) K θmin = 2.4º
ω scans h = −10→10
Absorption correction: none k = −21→21
11070 measured reflections l = −10→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.105   w = 1/[σ2(Fo2) + (0.0497P)2 + 0.2126P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2334 reflections Δρmax = 0.15 e Å3
146 parameters Δρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.41850 (18) 0.62548 (8) 0.62150 (18) 0.0419 (3)
H1 0.5200 0.6388 0.7217 0.050*
C2 0.3279 (2) 0.68137 (8) 0.4981 (2) 0.0506 (4)
H2 0.3685 0.7330 0.5160 0.061*
C3 0.1766 (2) 0.66211 (9) 0.3472 (2) 0.0527 (4)
H3 0.1186 0.7011 0.2659 0.063*
C4 0.11103 (19) 0.58687 (8) 0.31534 (17) 0.0457 (3)
H4 0.0102 0.5741 0.2140 0.055*
C5 0.20092 (16) 0.53077 (8) 0.44009 (15) 0.0359 (3)
C6 0.35512 (16) 0.54847 (7) 0.59327 (15) 0.0343 (3)
C7 0.40707 (16) 0.47683 (7) 0.69054 (15) 0.0350 (3)
C8 0.55752 (16) 0.45924 (8) 0.85455 (16) 0.0392 (3)
C9 0.56815 (19) 0.37540 (9) 0.91598 (19) 0.0490 (4)
H9A 0.6218 0.3752 1.0417 0.059*
H9B 0.6462 0.3461 0.8811 0.059*
C10 0.38967 (19) 0.33358 (9) 0.84713 (19) 0.0509 (4)
H10A 0.3178 0.3574 0.8970 0.061*
H10B 0.4091 0.2790 0.8832 0.061*
C11 0.28888 (19) 0.33744 (8) 0.65050 (19) 0.0465 (3)
H11A 0.3476 0.3049 0.5989 0.056*
H11B 0.1682 0.3182 0.6123 0.056*
C12 0.28502 (16) 0.42042 (7) 0.59547 (16) 0.0364 (3)
C13 0.01251 (17) 0.41064 (8) 0.30768 (17) 0.0431 (3)
H13A −0.0791 0.4483 0.2400 0.052*
H13B −0.0388 0.3740 0.3593 0.052*
C14 0.0697 (2) 0.36655 (11) 0.1896 (2) 0.0595 (4)
H14A 0.1250 0.4022 0.1418 0.089*
H14B −0.0326 0.3429 0.0973 0.089*
H14C 0.1534 0.3264 0.2543 0.089*
N1 0.16080 (13) 0.45195 (6) 0.44527 (13) 0.0372 (3)
O1 0.67261 (13) 0.50731 (6) 0.93817 (12) 0.0530 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0411 (7) 0.0438 (7) 0.0420 (7) −0.0052 (6) 0.0196 (6) −0.0026 (6)
C2 0.0601 (9) 0.0400 (7) 0.0568 (9) −0.0026 (7) 0.0307 (8) 0.0030 (6)
C3 0.0602 (9) 0.0474 (8) 0.0506 (8) 0.0113 (7) 0.0248 (7) 0.0144 (7)
C4 0.0426 (8) 0.0533 (8) 0.0364 (7) 0.0082 (6) 0.0134 (6) 0.0042 (6)
C5 0.0341 (6) 0.0409 (7) 0.0335 (6) 0.0027 (5) 0.0158 (5) −0.0019 (5)
C6 0.0321 (6) 0.0397 (7) 0.0331 (6) 0.0006 (5) 0.0164 (5) −0.0013 (5)
C7 0.0314 (6) 0.0387 (7) 0.0336 (6) 0.0000 (5) 0.0133 (5) −0.0012 (5)
C8 0.0312 (6) 0.0514 (8) 0.0344 (6) 0.0007 (6) 0.0140 (5) −0.0014 (6)
C9 0.0422 (8) 0.0549 (9) 0.0430 (7) 0.0080 (6) 0.0128 (6) 0.0090 (6)
C10 0.0509 (9) 0.0447 (8) 0.0546 (8) 0.0030 (6) 0.0213 (7) 0.0113 (6)
C11 0.0443 (8) 0.0370 (7) 0.0535 (8) −0.0003 (6) 0.0176 (6) −0.0008 (6)
C12 0.0327 (6) 0.0393 (7) 0.0362 (6) 0.0019 (5) 0.0145 (5) −0.0018 (5)
C13 0.0311 (7) 0.0491 (8) 0.0415 (7) −0.0042 (6) 0.0093 (5) −0.0086 (6)
C14 0.0462 (9) 0.0782 (11) 0.0497 (8) −0.0101 (8) 0.0172 (7) −0.0251 (8)
N1 0.0318 (5) 0.0389 (6) 0.0346 (6) −0.0001 (4) 0.0092 (4) −0.0041 (4)
O1 0.0399 (5) 0.0643 (7) 0.0420 (5) −0.0092 (5) 0.0067 (4) −0.0038 (5)

Geometric parameters (Å, °)

C1—C2 1.376 (2) C9—H9A 0.9700
C1—C6 1.395 (2) C9—H9B 0.9700
C1—H1 0.9300 C10—C11 1.520 (2)
C2—C3 1.391 (2) C10—H10A 0.9700
C2—H2 0.9300 C10—H10B 0.9700
C3—C4 1.373 (2) C11—C12 1.486 (2)
C3—H3 0.9300 C11—H11A 0.9700
C4—C5 1.383 (2) C11—H11B 0.9700
C4—H4 0.9300 C12—N1 1.358 (2)
C5—N1 1.390 (2) C13—N1 1.460 (2)
C5—C6 1.408 (2) C13—C14 1.503 (2)
C6—C7 1.434 (2) C13—H13A 0.9700
C7—C12 1.376 (2) C13—H13B 0.9700
C7—C8 1.445 (2) C14—H14A 0.9600
C8—O1 1.225 (2) C14—H14B 0.9600
C8—C9 1.512 (2) C14—H14C 0.9600
C9—C10 1.518 (2)
C2—C1—C6 118.67 (13) C9—C10—C11 112.13 (12)
C2—C1—H1 120.7 C9—C10—H10A 109.2
C6—C1—H1 120.7 C11—C10—H10A 109.2
C1—C2—C3 121.19 (14) C9—C10—H10B 109.2
C1—C2—H2 119.4 C11—C10—H10B 109.2
C3—C2—H2 119.4 H10A—C10—H10B 107.9
C4—C3—C2 121.57 (13) C12—C11—C10 108.58 (11)
C4—C3—H3 119.2 C12—C11—H11A 110.0
C2—C3—H3 119.2 C10—C11—H11A 110.0
C3—C4—C5 117.31 (13) C12—C11—H11B 110.0
C3—C4—H4 121.3 C10—C11—H11B 110.0
C5—C4—H4 121.3 H11A—C11—H11B 108.4
C4—C5—N1 129.54 (12) N1—C12—C7 109.97 (11)
C4—C5—C6 122.31 (12) N1—C12—C11 125.32 (11)
N1—C5—C6 108.12 (10) C7—C12—C11 124.71 (11)
C1—C6—C5 118.94 (12) N1—C13—C14 112.16 (11)
C1—C6—C7 134.87 (12) N1—C13—H13A 109.2
C5—C6—C7 106.15 (11) C14—C13—H13A 109.2
C12—C7—C6 107.16 (11) N1—C13—H13B 109.2
C12—C7—C8 122.03 (12) C14—C13—H13B 109.2
C6—C7—C8 130.79 (12) H13A—C13—H13B 107.9
O1—C8—C7 123.48 (13) C13—C14—H14A 109.5
O1—C8—C9 121.17 (12) C13—C14—H14B 109.5
C7—C8—C9 115.32 (11) H14A—C14—H14B 109.5
C8—C9—C10 114.35 (11) C13—C14—H14C 109.5
C8—C9—H9A 108.7 H14A—C14—H14C 109.5
C10—C9—H9A 108.7 H14B—C14—H14C 109.5
C8—C9—H9B 108.7 C12—N1—C5 108.60 (10)
C10—C9—H9B 108.7 C12—N1—C13 126.60 (11)
H9A—C9—H9B 107.6 C5—N1—C13 124.77 (11)
C6—C1—C2—C3 −0.4 (2) C7—C8—C9—C10 −26.10 (17)
C1—C2—C3—C4 0.3 (2) C8—C9—C10—C11 53.43 (17)
C2—C3—C4—C5 0.3 (2) C9—C10—C11—C12 −50.05 (16)
C3—C4—C5—N1 177.12 (13) C6—C7—C12—N1 0.19 (14)
C3—C4—C5—C6 −0.9 (2) C8—C7—C12—N1 −178.24 (11)
C2—C1—C6—C5 −0.11 (18) C6—C7—C12—C11 −179.46 (12)
C2—C1—C6—C7 −177.39 (13) C8—C7—C12—C11 2.1 (2)
C4—C5—C6—C1 0.80 (18) C10—C11—C12—N1 −155.43 (12)
N1—C5—C6—C1 −177.59 (11) C10—C11—C12—C7 24.16 (19)
C4—C5—C6—C7 178.79 (12) C7—C12—N1—C5 0.06 (14)
N1—C5—C6—C7 0.40 (13) C11—C12—N1—C5 179.71 (12)
C1—C6—C7—C12 177.16 (14) C7—C12—N1—C13 178.10 (11)
C5—C6—C7—C12 −0.36 (13) C11—C12—N1—C13 −2.2 (2)
C1—C6—C7—C8 −4.6 (2) C4—C5—N1—C12 −178.53 (13)
C5—C6—C7—C8 177.88 (12) C6—C5—N1—C12 −0.29 (13)
C12—C7—C8—O1 176.58 (12) C4—C5—N1—C13 3.4 (2)
C6—C7—C8—O1 −1.4 (2) C6—C5—N1—C13 −178.38 (11)
C12—C7—C8—C9 −1.59 (18) C14—C13—N1—C12 −80.84 (17)
C6—C7—C8—C9 −179.60 (13) C14—C13—N1—C5 96.90 (16)
O1—C8—C9—C10 155.68 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C14—H14A···O1i 0.96 2.60 3.549 (2) 170

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2064).

References

  1. Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, ch. 7 and 8. New York: Marcel Decker.
  2. Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Govindasamy, L., Velmurugan, D. & Ramasubbu, N. (1999). Cryst. Res. Technol 34, 1229–1234.
  7. Hewlins, J. M. E., Oliveira- Campos, A. M. & Shannon, P. V. R. (1984). Synthesis, 289–302.
  8. Kansal, V. K. & Potier, P. (1986). Tetrahedron, 42, 2389–2408.
  9. Mi, B. X., Wang, P. F., Liu, M. W., Kwong, H. L., Wong, N. B., Lee, C. S. & Lee, S. T. (2003). Chem Mater.15, 3148–3151.
  10. Mohanakrishnan, A. K. & Srinivasasan, P. C. (1995). Indian J. Chem. Sect. B, 35, 838–841.
  11. Mohanakrishnan, A. K. & Srinivasasan, P. C. (1995). J. Org. Chem 60, 1939–1946.
  12. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  13. Phillipson, J. D. & Zenk, M. H. (1980). Editors. Indole and Biogenitically Related Alkaloids, Ch. 3. New York: Academic Press.
  14. Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024318/lx2064sup1.cif

e-64-o1681-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024318/lx2064Isup2.hkl

e-64-o1681-Isup2.hkl (112.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES