Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 6;64(Pt 9):m1128. doi: 10.1107/S1600536808024549

Hexa-μ2-acetato-1:2κ4 O:O′;1:2κ2 O:O;2:3κ4 O:O′;2:3κ2 O:O-bis­(2-amino-7-chloro-5-methyl-1,8-naphthyridine)-1κN 1,3κN 1-trizinc(II)

Xin-Sheng Li a, Juan Mo a,*, Li Yuan a, Jian-Hua Liu a, Su-Mei Zhang a
PMCID: PMC2960502  PMID: 21201587

Abstract

The title complex, [Zn3(C2H3O2)6(C9H8ClN3)2], contains three ZnII atoms bridged by six acetate ligands. The central ZnII ion, located on an inversion centre, is surrounded by six O atoms from acetate ligands in a distorted octa­hedral geometry [Zn—O = 1.9588 (12)–2.1237 (12) Å]. The terminal ZnII ions are coordinated by one N atom of 2-amino-7-chloro-5-methyl-1,8-naphthyridine and three O atoms of three acetate ligands in a distorted tetra­hedral geometry. The separation between the central and terminal ZnII ions is 3.245 (3) Å.

Related literature

For related literature, see: Baker & Norman (2004); Lis et al. (2005); Stadie et al. (2007).graphic file with name e-64-m1128-scheme1.jpg

Experimental

Crystal data

  • [Zn3(C2H3O2)6(C9H8ClN3)2]

  • M r = 937.64

  • Triclinic, Inline graphic

  • a = 9.1978 (12) Å

  • b = 9.2108 (13) Å

  • c = 12.0457 (16) Å

  • α = 93.602 (3)°

  • β = 91.685 (2)°

  • γ = 118.247 (2)°

  • V = 895.2 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 113 (2) K

  • 0.12 × 0.08 × 0.02 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.782, T max = 0.956

  • 11008 measured reflections

  • 4221 independent reflections

  • 3495 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.065

  • S = 1.01

  • 4221 reflections

  • 253 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024549/hg2413sup1.cif

e-64-m1128-sup1.cif (22.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024549/hg2413Isup2.hkl

e-64-m1128-Isup2.hkl (206.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Zn1—O3 2.0724 (12)
Zn1—O5 2.0910 (12)
Zn1—O1 2.1237 (12)
Zn2—O3 1.9588 (12)
Zn2—O2 1.9748 (12)
Zn2—N2 2.0379 (14)
O3—Zn1—O5i 91.21 (5)
O3—Zn1—O5 88.79 (5)
O3—Zn1—O1i 89.96 (5)
O5—Zn1—O1i 93.21 (5)
O3—Zn1—O1 90.04 (5)
O5—Zn1—O1 86.79 (5)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O2 0.85 (2) 2.15 (2) 2.921 (2) 150.0 (17)
N3—H3A⋯O5ii 0.87 (2) 2.09 (2) 2.958 (2) 171.0 (19)

Symmetry code: (ii) Inline graphic.

Acknowledgments

We thank Henan Agricultural University for the generous support of this study.

supplementary crystallographic information

Comment

Acetic acid is versatile ligand which can function in monodentate or bidentate modes in metal complexes (Baker & Norman, 2004; Lis et al., 2005; Stadie et al., 2007). Here, we report the crystal structure of the title compound, (I), in which three ZnII ions are bridged by three acetic acid ligands.

The middle Zn atom in (I) (Fig. 1) has a distorted octahedral coordination geometry involving six O atoms of six acetic acid ligands. The Zn—O bonds lengths are between 1.9588 (12) and 2.1237 (12)Å (Table 1). The End ZnII ion is coordinated by one N atom of 2-amino-4-methyl-7-chloro-1,8-naphthyridine and three O atoms of three acetic acid ligands, and has a distorted tetrahedron coordination geometry. The distance of two neighboring ZnII ions separated by two O atoms of each two acetate bridging ligands and one O atoms of one acetate bridging ligand is 3.245 (3) Å.

Experimental

A 10 ml dichloromethane solution of 2-amino-5-methyl-7-chloro-1,8-naphthyridine (0.039 g, 0.2 mmol) was added to a 20 mL dichloromethane solution of Zn(CH3COO)2 (0.055 g, 0.3 mmol) under an N2 atmosphere. The mixture was stirred for 10 h. Colorless crystals suitable for X-ray diffraction were formed by vapour diffusion of diethyl ethyl ether into dichloromethane solution.

Refinement

All hydrogen atoms were generated geometrically (C—H bond lengths of methyl group fixed at 0.98 Å, C—H bond lengths of naphthyridine fixed at 0.95 Å), assigned appropriated isotropic thermal parameters, Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level. (Symmetry code: 1 - x, 1 - y, 1 - z).

Crystal data

[Zn3(C2H3O2)6(C9H8ClN3)2] Z = 1
Mr = 937.64 F000 = 476
Triclinic, P1 Dx = 1.739 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71070 Å
a = 9.1978 (12) Å Cell parameters from 2625 reflections
b = 9.2108 (13) Å θ = 2.5–25.0º
c = 12.0457 (16) Å µ = 2.21 mm1
α = 93.602 (3)º T = 113 (2) K
β = 91.685 (2)º Prism, colorless
γ = 118.247 (2)º 0.12 × 0.08 × 0.02 mm
V = 895.2 (2) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 4221 independent reflections
Radiation source: fine-focus sealed tube 3495 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.030
T = 113(2) K θmax = 27.9º
φ and ω scans θmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −12→12
Tmin = 0.782, Tmax = 0.956 k = −12→12
11008 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065   w = 1/[σ2(Fo2) + (0.0354P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
4221 reflections Δρmax = 0.36 e Å3
253 parameters Δρmin = −0.65 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.5000 0.5000 0.5000 0.01215 (8)
Zn2 0.81766 (2) 0.76297 (2) 0.660723 (16) 0.01398 (7)
Cl1 0.47109 (6) 0.69320 (6) 0.93855 (4) 0.03122 (13)
N1 0.75010 (17) 0.85718 (17) 0.85071 (12) 0.0158 (3)
N2 0.97997 (17) 0.97283 (17) 0.75522 (12) 0.0136 (3)
N3 1.20715 (19) 1.0819 (2) 0.64915 (13) 0.0181 (3)
H3A 1.299 (3) 1.168 (3) 0.6360 (17) 0.024 (6)*
H3B 1.164 (2) 0.998 (2) 0.6007 (17) 0.018 (5)*
C1 0.6629 (2) 0.8670 (2) 0.93115 (15) 0.0179 (4)
C2 0.7103 (2) 1.0020 (2) 1.01047 (15) 0.0182 (4)
H2 0.6394 0.9999 1.0669 0.022*
C3 0.8637 (2) 1.1386 (2) 1.00414 (14) 0.0163 (4)
C4 0.9626 (2) 1.1348 (2) 0.91812 (14) 0.0143 (3)
C5 0.8998 (2) 0.9917 (2) 0.84338 (14) 0.0138 (3)
C6 1.1288 (2) 1.0979 (2) 0.73619 (14) 0.0140 (4)
C7 1.2028 (2) 1.2477 (2) 0.80965 (15) 0.0174 (4)
H7 1.3084 1.3350 0.7962 0.021*
C8 1.1228 (2) 1.2645 (2) 0.89753 (15) 0.0170 (4)
H8 1.1731 1.3632 0.9462 0.020*
C9 0.9208 (2) 1.2883 (2) 1.08722 (16) 0.0222 (4)
H9A 0.9206 1.3797 1.0499 0.033*
H9B 1.0331 1.3213 1.1178 0.033*
H9C 0.8458 1.2608 1.1478 0.033*
C10 0.8902 (2) 0.6534 (2) 0.45903 (14) 0.0152 (4)
C11 1.0029 (2) 0.6306 (2) 0.38019 (16) 0.0206 (4)
H11A 1.0654 0.5849 0.4187 0.031*
H11B 1.0799 0.7376 0.3545 0.031*
H11C 0.9369 0.5543 0.3160 0.031*
C12 0.5768 (2) 0.8498 (2) 0.60578 (15) 0.0195 (4)
C13 0.4045 (2) 0.8233 (3) 0.59278 (19) 0.0314 (5)
H13A 0.3986 0.9177 0.6303 0.047*
H13B 0.3298 0.7220 0.6261 0.047*
H13C 0.3714 0.8128 0.5134 0.047*
C14 0.3533 (2) 0.5867 (2) 0.29542 (14) 0.0132 (3)
C15 0.3642 (2) 0.7221 (2) 0.22734 (15) 0.0200 (4)
H15A 0.3524 0.8054 0.2753 0.030*
H15B 0.2755 0.6755 0.1677 0.030*
H15C 0.4716 0.7738 0.1946 0.030*
O1 0.73730 (14) 0.56434 (14) 0.44255 (10) 0.0174 (3)
O2 0.95980 (15) 0.76262 (15) 0.54110 (10) 0.0191 (3)
O3 0.59970 (14) 0.72059 (14) 0.60042 (10) 0.0170 (3)
O4 0.69633 (18) 0.98977 (17) 0.62159 (15) 0.0385 (4)
O5 0.46887 (14) 0.62359 (14) 0.36908 (10) 0.0165 (3)
O6 0.22937 (14) 0.44604 (14) 0.27489 (10) 0.0178 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.01022 (14) 0.01115 (14) 0.01260 (15) 0.00360 (11) −0.00109 (10) −0.00257 (11)
Zn2 0.01081 (11) 0.01109 (11) 0.01601 (12) 0.00248 (8) −0.00174 (8) −0.00236 (8)
Cl1 0.0224 (2) 0.0204 (2) 0.0333 (3) −0.0039 (2) 0.0130 (2) −0.0047 (2)
N1 0.0152 (7) 0.0122 (7) 0.0145 (8) 0.0023 (6) −0.0001 (6) −0.0009 (6)
N2 0.0133 (7) 0.0104 (7) 0.0141 (7) 0.0034 (6) 0.0006 (6) 0.0003 (6)
N3 0.0130 (8) 0.0141 (8) 0.0220 (9) 0.0021 (7) 0.0041 (6) 0.0008 (7)
C1 0.0159 (9) 0.0140 (9) 0.0173 (9) 0.0017 (7) 0.0027 (7) 0.0013 (7)
C2 0.0204 (9) 0.0165 (9) 0.0155 (9) 0.0070 (8) 0.0031 (7) 0.0012 (7)
C3 0.0204 (9) 0.0144 (9) 0.0145 (9) 0.0091 (8) −0.0036 (7) −0.0009 (7)
C4 0.0143 (8) 0.0112 (8) 0.0153 (9) 0.0049 (7) −0.0038 (7) −0.0006 (6)
C5 0.0134 (8) 0.0128 (8) 0.0135 (9) 0.0051 (7) −0.0013 (7) 0.0009 (7)
C6 0.0128 (8) 0.0110 (8) 0.0170 (9) 0.0049 (7) −0.0020 (7) 0.0011 (7)
C7 0.0118 (8) 0.0103 (8) 0.0248 (10) 0.0012 (7) −0.0015 (7) 0.0002 (7)
C8 0.0159 (9) 0.0097 (8) 0.0214 (9) 0.0036 (7) −0.0039 (7) −0.0024 (7)
C9 0.0241 (10) 0.0176 (9) 0.0215 (10) 0.0081 (8) −0.0021 (8) −0.0053 (8)
C10 0.0165 (8) 0.0127 (8) 0.0164 (9) 0.0065 (7) 0.0019 (7) 0.0038 (7)
C11 0.0164 (9) 0.0215 (9) 0.0231 (10) 0.0083 (8) 0.0052 (7) 0.0011 (8)
C12 0.0227 (9) 0.0160 (9) 0.0190 (10) 0.0091 (8) −0.0009 (7) −0.0018 (7)
C13 0.0235 (10) 0.0231 (11) 0.0490 (14) 0.0136 (9) −0.0034 (10) −0.0060 (9)
C14 0.0136 (8) 0.0141 (8) 0.0128 (8) 0.0073 (7) 0.0042 (6) −0.0010 (7)
C15 0.0206 (9) 0.0181 (9) 0.0201 (10) 0.0078 (8) 0.0021 (7) 0.0058 (7)
O1 0.0117 (6) 0.0176 (6) 0.0191 (7) 0.0044 (5) 0.0018 (5) −0.0026 (5)
O2 0.0139 (6) 0.0172 (6) 0.0195 (7) 0.0027 (5) 0.0008 (5) −0.0041 (5)
O3 0.0150 (6) 0.0134 (6) 0.0223 (7) 0.0079 (5) −0.0053 (5) −0.0076 (5)
O4 0.0261 (8) 0.0178 (7) 0.0673 (11) 0.0077 (6) −0.0081 (7) 0.0025 (7)
O5 0.0133 (6) 0.0132 (6) 0.0179 (7) 0.0022 (5) −0.0016 (5) 0.0020 (5)
O6 0.0151 (6) 0.0125 (6) 0.0214 (7) 0.0037 (5) −0.0038 (5) −0.0014 (5)

Geometric parameters (Å, °)

Zn1—O3 2.0724 (12) C7—C8 1.349 (2)
Zn1—O3i 2.0724 (12) C7—H7 0.9500
Zn1—O5i 2.0910 (12) C8—H8 0.9500
Zn1—O5 2.0910 (12) C9—H9A 0.9800
Zn1—O1i 2.1237 (12) C9—H9B 0.9800
Zn1—O1 2.1237 (12) C9—H9C 0.9800
Zn2—O3 1.9588 (12) C10—O1 1.249 (2)
Zn2—O2 1.9748 (12) C10—O2 1.275 (2)
Zn2—O6i 1.9783 (12) C10—C11 1.504 (2)
Zn2—N2 2.0379 (14) C11—H11A 0.9800
Cl1—C1 1.7428 (18) C11—H11B 0.9800
N1—C1 1.302 (2) C11—H11C 0.9800
N1—C5 1.358 (2) C12—O4 1.234 (2)
N2—C6 1.346 (2) C12—O3 1.301 (2)
N2—C5 1.359 (2) C12—C13 1.487 (2)
N3—C6 1.329 (2) C13—H13A 0.9800
N3—H3A 0.87 (2) C13—H13B 0.9800
N3—H3B 0.85 (2) C13—H13C 0.9800
C1—C2 1.401 (2) C14—O6 1.259 (2)
C2—C3 1.385 (2) C14—O5 1.264 (2)
C2—H2 0.9500 C14—C15 1.502 (2)
C3—C4 1.408 (2) C15—H15A 0.9800
C3—C9 1.512 (2) C15—H15B 0.9800
C4—C5 1.407 (2) C15—H15C 0.9800
C4—C8 1.433 (2) O6—Zn2i 1.9783 (12)
C6—C7 1.439 (2)
O3—Zn1—O3i 180.0 C8—C7—C6 120.23 (16)
O3—Zn1—O5i 91.21 (5) C8—C7—H7 119.9
O3i—Zn1—O5i 88.79 (5) C6—C7—H7 119.9
O3—Zn1—O5 88.79 (5) C7—C8—C4 120.55 (16)
O3i—Zn1—O5 91.21 (5) C7—C8—H8 119.7
O5i—Zn1—O5 180.000 (1) C4—C8—H8 119.7
O3—Zn1—O1i 89.96 (5) C3—C9—H9A 109.5
O3i—Zn1—O1i 90.04 (5) C3—C9—H9B 109.5
O5i—Zn1—O1i 86.79 (5) H9A—C9—H9B 109.5
O5—Zn1—O1i 93.21 (5) C3—C9—H9C 109.5
O3—Zn1—O1 90.04 (5) H9A—C9—H9C 109.5
O3i—Zn1—O1 89.96 (5) H9B—C9—H9C 109.5
O5i—Zn1—O1 93.21 (5) O1—C10—O2 124.22 (16)
O5—Zn1—O1 86.79 (5) O1—C10—C11 119.27 (15)
O1i—Zn1—O1 180.0 O2—C10—C11 116.48 (15)
O3—Zn2—O2 111.65 (5) C10—C11—H11A 109.5
O3—Zn2—O6i 103.18 (5) C10—C11—H11B 109.5
O2—Zn2—O6i 100.45 (5) H11A—C11—H11B 109.5
O3—Zn2—N2 124.29 (5) C10—C11—H11C 109.5
O2—Zn2—N2 99.92 (5) H11A—C11—H11C 109.5
O6i—Zn2—N2 115.01 (6) H11B—C11—H11C 109.5
C1—N1—C5 116.26 (15) O4—C12—O3 120.09 (17)
C6—N2—C5 118.94 (14) O4—C12—C13 121.64 (17)
C6—N2—Zn2 132.49 (12) O3—C12—C13 118.27 (16)
C5—N2—Zn2 107.49 (10) C12—C13—H13A 109.5
C6—N3—H3A 117.2 (13) C12—C13—H13B 109.5
C6—N3—H3B 122.8 (13) H13A—C13—H13B 109.5
H3A—N3—H3B 119.2 (19) C12—C13—H13C 109.5
N1—C1—C2 125.99 (16) H13A—C13—H13C 109.5
N1—C1—Cl1 115.41 (13) H13B—C13—H13C 109.5
C2—C1—Cl1 118.60 (14) O6—C14—O5 125.42 (16)
C3—C2—C1 117.92 (16) O6—C14—C15 117.28 (16)
C3—C2—H2 121.0 O5—C14—C15 117.30 (15)
C1—C2—H2 121.0 C14—C15—H15A 109.5
C2—C3—C4 118.36 (16) C14—C15—H15B 109.5
C2—C3—C9 120.18 (16) H15A—C15—H15B 109.5
C4—C3—C9 121.44 (16) C14—C15—H15C 109.5
C5—C4—C3 118.00 (15) H15A—C15—H15C 109.5
C5—C4—C8 115.72 (15) H15B—C15—H15C 109.5
C3—C4—C8 126.28 (16) C10—O1—Zn1 146.79 (11)
N1—C5—N2 112.32 (14) C10—O2—Zn2 116.68 (11)
N1—C5—C4 123.46 (15) C12—O3—Zn2 114.47 (11)
N2—C5—C4 124.21 (15) C12—O3—Zn1 134.69 (11)
N3—C6—N2 119.47 (15) Zn2—O3—Zn1 107.19 (5)
N3—C6—C7 120.21 (16) C14—O5—Zn1 133.41 (11)
N2—C6—C7 120.32 (15) C14—O6—Zn2i 128.40 (12)
O3—Zn2—N2—C6 −112.51 (15) C11—C10—O1—Zn1 177.44 (14)
O2—Zn2—N2—C6 12.43 (16) O3—Zn1—O1—C10 18.1 (2)
O6i—Zn2—N2—C6 118.98 (15) O3i—Zn1—O1—C10 −161.9 (2)
O3—Zn2—N2—C5 55.10 (13) O5i—Zn1—O1—C10 −73.1 (2)
O2—Zn2—N2—C5 −179.96 (11) O5—Zn1—O1—C10 106.9 (2)
O6i—Zn2—N2—C5 −73.41 (12) O1—C10—O2—Zn2 10.3 (2)
C5—N1—C1—C2 −0.7 (3) C11—C10—O2—Zn2 −168.04 (12)
C5—N1—C1—Cl1 179.79 (13) O3—Zn2—O2—C10 −39.80 (14)
N1—C1—C2—C3 −0.1 (3) O6i—Zn2—O2—C10 69.02 (13)
Cl1—C1—C2—C3 179.40 (14) N2—Zn2—O2—C10 −173.03 (12)
C1—C2—C3—C4 0.5 (3) O4—C12—O3—Zn2 16.8 (2)
C1—C2—C3—C9 179.64 (16) C13—C12—O3—Zn2 −163.00 (14)
C2—C3—C4—C5 −0.1 (2) O4—C12—O3—Zn1 −138.26 (16)
C9—C3—C4—C5 −179.27 (16) C13—C12—O3—Zn1 41.9 (3)
C2—C3—C4—C8 179.11 (17) O2—Zn2—O3—C12 −106.56 (12)
C9—C3—C4—C8 0.0 (3) O6i—Zn2—O3—C12 146.38 (12)
C1—N1—C5—N2 −178.05 (15) N2—Zn2—O3—C12 13.12 (15)
C1—N1—C5—C4 1.1 (3) O2—Zn2—O3—Zn1 55.16 (7)
C6—N2—C5—N1 178.72 (15) O6i—Zn2—O3—Zn1 −51.90 (7)
Zn2—N2—C5—N1 9.14 (17) N2—Zn2—O3—Zn1 174.84 (5)
C6—N2—C5—C4 −0.5 (2) O5i—Zn1—O3—C12 −148.65 (17)
Zn2—N2—C5—C4 −170.03 (14) O5—Zn1—O3—C12 31.35 (17)
C3—C4—C5—N1 −0.7 (3) O1i—Zn1—O3—C12 −61.86 (17)
C8—C4—C5—N1 179.97 (16) O1—Zn1—O3—C12 118.14 (17)
C3—C4—C5—N2 178.36 (15) O5i—Zn1—O3—Zn2 55.03 (6)
C8—C4—C5—N2 −1.0 (3) O5—Zn1—O3—Zn2 −124.97 (6)
C5—N2—C6—N3 −178.89 (16) O1i—Zn1—O3—Zn2 141.82 (6)
Zn2—N2—C6—N3 −12.4 (2) O1—Zn1—O3—Zn2 −38.18 (6)
C5—N2—C6—C7 1.3 (2) O6—C14—O5—Zn1 −10.3 (3)
Zn2—N2—C6—C7 167.75 (12) C15—C14—O5—Zn1 169.19 (11)
N3—C6—C7—C8 179.50 (17) O3—Zn1—O5—C14 −137.70 (15)
N2—C6—C7—C8 −0.7 (3) O3i—Zn1—O5—C14 42.30 (15)
C6—C7—C8—C4 −0.8 (3) O1i—Zn1—O5—C14 −47.81 (15)
C5—C4—C8—C7 1.6 (3) O1—Zn1—O5—C14 132.19 (15)
C3—C4—C8—C7 −177.70 (17) O5—C14—O6—Zn2i −5.4 (3)
O2—C10—O1—Zn1 −0.9 (3) C15—C14—O6—Zn2i 175.15 (11)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3B···O2 0.85 (2) 2.15 (2) 2.921 (2) 150.0 (17)
N3—H3A···O5ii 0.87 (2) 2.09 (2) 2.958 (2) 171.0 (19)

Symmetry codes: (ii) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2413).

References

  1. Baker, R. S. & Norman, R. E. (2004). Acta Cryst. E60, m1761–m1763.
  2. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Lis, T., Kinzhybalo, V. & Zieba, K. (2005). Acta Cryst. E61, m2382–m2384.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Stadie, N. P., Sanchez-Smith, R. & Groy, T. L. (2007). Acta Cryst. E63, m2153–m2154.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024549/hg2413sup1.cif

e-64-m1128-sup1.cif (22.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024549/hg2413Isup2.hkl

e-64-m1128-Isup2.hkl (206.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES