Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 6;64(Pt 9):o1692. doi: 10.1107/S1600536808024562

N-(2-Methyl­phen­yl)benzene­sulfonamide

B Thimme Gowda a,*, Sabine Foro b, K S Babitha a, Hartmut Fuess b
PMCID: PMC2960504  PMID: 21201681

Abstract

In the title compound, C13H13NO2S, the conformation of the N—H bond is anti to the ortho-methyl group on the aniline ring, in contrast to the syn conformation observed with respect to the ortho-chloro group in N-(2-chloro­phen­yl)benzene­sulfonamide. The dihedral angle between the two benzene rings is 61.5 (1)°. Mol­ecules are linked into chains running along the a axis by N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gelbrich et al., 2007; Gowda et al. (2005, 2007a ,b , 2008); Perlovich et al. (2006).graphic file with name e-64-o1692-scheme1.jpg

Experimental

Crystal data

  • C13H13NO2S

  • M r = 247.30

  • Orthorhombic, Inline graphic

  • a = 6.4840 (6) Å

  • b = 8.6124 (8) Å

  • c = 21.915 (2) Å

  • V = 1223.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 299 (2) K

  • 0.50 × 0.50 × 0.45 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.884, T max = 0.895

  • 4256 measured reflections

  • 2347 independent reflections

  • 2164 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.106

  • S = 1.07

  • 2347 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983), 883 Friedel pairs

  • Flack parameter: 0.02 (10)

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024562/ci2650sup1.cif

e-64-o1692-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024562/ci2650Isup2.hkl

e-64-o1692-Isup2.hkl (115.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.82 (3) 2.11 (3) 2.926 (3) 178 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the crystal structures of N-(aryl)-sulfonamides the structure of N-(2-methylphenyl)-benzenesulfonamide (N2MPBSA) has been determined (Gowda et al., 2007a,b, 2008). The conformations of the N—H and S═O bonds of the SO2—NH—C group are trans to each other (Fig. 1). Further, the conformation of the N—H bond is anti to the ortho-methyl group in the aniline benzene ring, in contrast to the syn conformation observed with respect to the ortho-chloro group in N-(2-chlorophenyl)-benzenesulfonamide (N2CPBSA) (Perlovich et al., 2006). The two benzene rings are rotated relative to each other by 61.5 (1)° compared to the value of 49.1 (1)° in N2CPBSA. The other bond parameters in N2MPBSA are similar to those in N2CPBSA and other N-(aryl)-sulfonamides (Gelbrich et al., 2007; Gowda et al., 2007a,b, 2008).

In the crystal structure of N2MPBSA (Fig. 1), the molecules are linked into chains running along the a axis by N—H···O hydrogen bonds (Table 1).

Experimental

A solution of benzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 273 K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with o-toluidine in the stoichiometric ratio and boiled for 10 min. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(2-methylphenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005). Single crystals of the title compound used for X-ray diffraction studies were grown by slow evaporation of an ethanolic solution at room temperature.

Refinement

H atoms of the methyl group were positioned geometrically and refined using a riding model, with C-H = 0.96 Å and Uiso(H) = 1.5Ueq(C). The remaining H atoms were located in a difference map and their positional parameters were refined [N-H = 0.82 (3) Å, C-H = 0.88 (4)–1.00 (4) Å] with Uiso(H) = 1.2Ueq(C,N). Three most deviating reflections (0 1 1, 0 1 2, 0 1 3) were omitted from the refinement.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H13NO2S F000 = 520
Mr = 247.30 Dx = 1.342 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2747 reflections
a = 6.4840 (6) Å θ = 2.4–28.0º
b = 8.6124 (8) Å µ = 0.25 mm1
c = 21.915 (2) Å T = 299 (2) K
V = 1223.8 (2) Å3 Prism, colourless
Z = 4 0.50 × 0.50 × 0.45 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector 2347 independent reflections
Radiation source: fine-focus sealed tube 2164 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.029
T = 299(2) K θmax = 26.4º
ω and φ scans θmin = 3.3º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007) h = −7→5
Tmin = 0.884, Tmax = 0.895 k = −10→9
4256 measured reflections l = −18→27

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039   w = 1/[σ2(Fo2) + (0.06P)2 + 0.3217P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106 (Δ/σ)max = 0.014
S = 1.08 Δρmax = 0.22 e Å3
2347 reflections Δρmin = −0.35 e Å3
184 parameters Extinction correction: none
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 883 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.02 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.47917 (9) 0.38178 (7) 0.43612 (2) 0.04060 (17)
O1 0.5270 (3) 0.3651 (2) 0.49979 (8) 0.0608 (5)
O2 0.6400 (3) 0.4082 (2) 0.39280 (9) 0.0589 (5)
N1 0.3623 (3) 0.2218 (2) 0.41762 (8) 0.0391 (4)
H1N 0.271 (5) 0.195 (3) 0.4409 (13) 0.047*
C1 0.2996 (3) 0.5346 (2) 0.43031 (10) 0.0362 (5)
C2 0.3264 (5) 0.6510 (3) 0.38754 (11) 0.0493 (6)
H2 0.436 (5) 0.649 (3) 0.3609 (13) 0.059*
C3 0.1819 (6) 0.7692 (3) 0.38473 (14) 0.0617 (8)
H3 0.199 (5) 0.847 (4) 0.3560 (15) 0.074*
C4 0.0157 (5) 0.7710 (3) 0.42368 (14) 0.0600 (7)
H4 −0.075 (5) 0.847 (4) 0.4198 (14) 0.072*
C5 −0.0106 (4) 0.6534 (3) 0.46522 (13) 0.0569 (7)
H5 −0.132 (5) 0.657 (4) 0.4885 (14) 0.068*
C6 0.1308 (4) 0.5347 (3) 0.46890 (11) 0.0462 (6)
H6 0.111 (5) 0.447 (3) 0.4956 (12) 0.055*
C7 0.3086 (4) 0.1940 (3) 0.35437 (10) 0.0378 (5)
C8 0.4396 (4) 0.1005 (3) 0.31992 (10) 0.0455 (5)
C9 0.3803 (6) 0.0680 (4) 0.25957 (12) 0.0601 (7)
H9 0.469 (5) 0.004 (4) 0.2348 (15) 0.072*
C10 0.2019 (6) 0.1273 (4) 0.23580 (13) 0.0689 (9)
H10 0.181 (5) 0.100 (4) 0.1956 (16) 0.083*
C11 0.0750 (6) 0.2190 (4) 0.27027 (14) 0.0668 (9)
H11 −0.059 (6) 0.265 (4) 0.2564 (17) 0.080*
C12 0.1286 (4) 0.2529 (3) 0.33042 (12) 0.0522 (6)
H12 0.043 (5) 0.318 (4) 0.3561 (14) 0.063*
C13 0.6314 (5) 0.0302 (4) 0.34651 (15) 0.0661 (8)
H13A 0.5953 −0.0343 0.3806 0.079*
H13B 0.7222 0.1114 0.3599 0.079*
H13C 0.6994 −0.0314 0.3160 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0369 (3) 0.0429 (3) 0.0419 (3) 0.0025 (2) −0.0041 (2) −0.0025 (2)
O1 0.0723 (13) 0.0611 (11) 0.0490 (9) 0.0122 (11) −0.0249 (9) −0.0039 (8)
O2 0.0390 (9) 0.0623 (12) 0.0755 (12) −0.0041 (9) 0.0128 (9) −0.0048 (9)
N1 0.0410 (10) 0.0420 (10) 0.0342 (9) −0.0013 (9) 0.0041 (8) −0.0002 (7)
C1 0.0388 (11) 0.0359 (11) 0.0338 (10) 0.0002 (9) −0.0040 (9) −0.0036 (9)
C2 0.0624 (16) 0.0477 (14) 0.0377 (11) −0.0049 (12) 0.0043 (11) 0.0037 (10)
C3 0.090 (2) 0.0435 (15) 0.0517 (15) 0.0008 (15) −0.0140 (15) 0.0098 (12)
C4 0.0627 (17) 0.0513 (14) 0.0661 (16) 0.0170 (14) −0.0170 (15) −0.0092 (12)
C5 0.0451 (15) 0.0594 (16) 0.0663 (16) 0.0085 (13) 0.0036 (13) −0.0143 (12)
C6 0.0468 (14) 0.0462 (14) 0.0454 (12) −0.0019 (12) 0.0068 (11) −0.0003 (10)
C7 0.0427 (12) 0.0373 (11) 0.0333 (10) −0.0047 (9) 0.0036 (9) 0.0033 (9)
C8 0.0520 (13) 0.0447 (12) 0.0398 (11) 0.0000 (11) 0.0103 (9) 0.0012 (10)
C9 0.081 (2) 0.0590 (16) 0.0408 (12) −0.0032 (15) 0.0152 (14) −0.0044 (12)
C10 0.095 (2) 0.075 (2) 0.0368 (12) −0.0140 (19) −0.0078 (15) −0.0007 (14)
C11 0.068 (2) 0.077 (2) 0.0549 (16) 0.0008 (16) −0.0181 (15) 0.0022 (15)
C12 0.0490 (15) 0.0592 (15) 0.0484 (13) 0.0050 (14) −0.0045 (12) −0.0036 (11)
C13 0.0553 (17) 0.0716 (19) 0.0713 (18) 0.0198 (16) 0.0099 (15) −0.0114 (15)

Geometric parameters (Å, °)

S1—O2 1.4284 (19) C6—H6 0.96 (3)
S1—O1 1.4365 (17) C7—C12 1.376 (4)
S1—N1 1.624 (2) C7—C8 1.393 (3)
S1—C1 1.762 (2) C8—C9 1.405 (4)
N1—C7 1.449 (3) C8—C13 1.501 (4)
N1—H1N 0.82 (3) C9—C10 1.368 (5)
C1—C6 1.383 (3) C9—H9 0.97 (3)
C1—C2 1.384 (3) C10—C11 1.368 (5)
C2—C3 1.385 (4) C10—H10 0.92 (3)
C2—H2 0.92 (3) C11—C12 1.394 (4)
C3—C4 1.375 (5) C11—H11 1.00 (4)
C3—H3 0.93 (3) C12—H12 0.97 (3)
C4—C5 1.373 (4) C13—H13A 0.96
C4—H4 0.88 (4) C13—H13B 0.96
C5—C6 1.376 (4) C13—H13C 0.96
C5—H5 0.94 (3)
O2—S1—O1 120.26 (13) C1—C6—H6 118.4 (18)
O2—S1—N1 108.05 (11) C12—C7—C8 121.6 (2)
O1—S1—N1 104.97 (11) C12—C7—N1 120.5 (2)
O2—S1—C1 108.38 (11) C8—C7—N1 117.8 (2)
O1—S1—C1 106.73 (11) C7—C8—C9 117.3 (2)
N1—S1—C1 107.90 (10) C7—C8—C13 121.9 (2)
C7—N1—S1 119.41 (15) C9—C8—C13 120.8 (3)
C7—N1—H1N 112 (2) C10—C9—C8 121.0 (3)
S1—N1—H1N 115 (2) C10—C9—H9 120.4 (19)
C6—C1—C2 120.9 (2) C8—C9—H9 118.6 (19)
C6—C1—S1 118.63 (17) C11—C10—C9 121.0 (3)
C2—C1—S1 120.5 (2) C11—C10—H10 126 (2)
C1—C2—C3 118.5 (3) C9—C10—H10 113 (2)
C1—C2—H2 120.8 (19) C10—C11—C12 119.5 (3)
C3—C2—H2 120.7 (19) C10—C11—H11 126 (2)
C4—C3—C2 120.7 (3) C12—C11—H11 115 (2)
C4—C3—H3 120 (2) C7—C12—C11 119.7 (3)
C2—C3—H3 119 (2) C7—C12—H12 118.6 (18)
C5—C4—C3 120.0 (3) C11—C12—H12 121.8 (18)
C5—C4—H4 122 (2) C8—C13—H13A 109.5
C3—C4—H4 118 (2) C8—C13—H13B 109.5
C4—C5—C6 120.3 (3) H13A—C13—H13B 109.5
C4—C5—H5 116 (2) C8—C13—H13C 109.5
C6—C5—H5 123 (2) H13A—C13—H13C 109.5
C5—C6—C1 119.5 (2) H13B—C13—H13C 109.5
C5—C6—H6 122.0 (18)
O2—S1—N1—C7 −45.0 (2) C2—C1—C6—C5 −0.9 (4)
O1—S1—N1—C7 −174.43 (18) S1—C1—C6—C5 179.7 (2)
C1—S1—N1—C7 72.0 (2) S1—N1—C7—C12 −84.6 (3)
O2—S1—C1—C6 −179.00 (18) S1—N1—C7—C8 98.4 (2)
O1—S1—C1—C6 −48.1 (2) C12—C7—C8—C9 −0.2 (4)
N1—S1—C1—C6 64.23 (19) N1—C7—C8—C9 176.8 (2)
O2—S1—C1—C2 1.6 (2) C12—C7—C8—C13 −177.3 (3)
O1—S1—C1—C2 132.5 (2) N1—C7—C8—C13 −0.3 (3)
N1—S1—C1—C2 −115.2 (2) C7—C8—C9—C10 0.6 (4)
C6—C1—C2—C3 0.9 (4) C13—C8—C9—C10 177.7 (3)
S1—C1—C2—C3 −179.7 (2) C8—C9—C10—C11 −0.6 (5)
C1—C2—C3—C4 0.2 (4) C9—C10—C11—C12 0.3 (5)
C2—C3—C4—C5 −1.2 (4) C8—C7—C12—C11 −0.1 (4)
C3—C4—C5—C6 1.2 (4) N1—C7—C12—C11 −177.1 (3)
C4—C5—C6—C1 −0.1 (4) C10—C11—C12—C7 0.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.82 (3) 2.11 (3) 2.926 (3) 178 (3)

Symmetry codes: (i) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2650).

References

  1. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  2. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  3. Gowda, B. T., Babitha, K. S., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007a). Acta Cryst. E63, o3361. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o3325.
  5. Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008). Acta Cryst. E64, o1410. [DOI] [PMC free article] [PubMed]
  6. Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.
  7. Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd, Köln, Germany.
  8. Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd, Köln, Germany.
  9. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024562/ci2650sup1.cif

e-64-o1692-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024562/ci2650Isup2.hkl

e-64-o1692-Isup2.hkl (115.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES