Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 16;64(Pt 9):o1761. doi: 10.1107/S1600536808025786

2-Methyl-3-phenyl­sulfonyl-5-propyl-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC2960507  PMID: 21201743

Abstract

The title compound, C18H18O3S, was prepared by the oxidation of 2-methyl-3-phenyl­sulfanyl-5-propyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The phenyl ring makes a dihedral angle of 81.74 (6)° with the plane of the benzofuran fragment. The crystal structure is stabilized by C—H⋯π inter­actions between a methyl H atom and the phenyl ring of the phenyl­sulfonyl substituent from a neighbouring mol­ecule, and by inter­molecular C—H⋯O inter­actions.

Related literature

For the crystal structures of similar 2-methyl-3-phenyl­sulfonyl-1-benzofuran compounds, see: Choi et al. (2008a ,b ).graphic file with name e-64-o1761-scheme1.jpg

Experimental

Crystal data

  • C18H18O3S

  • M r = 314.38

  • Monoclinic, Inline graphic

  • a = 7.2712 (9) Å

  • b = 17.583 (2) Å

  • c = 12.788 (2) Å

  • β = 102.669 (2)°

  • V = 1595.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 (2) K

  • 0.40 × 0.40 × 0.30 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 8966 measured reflections

  • 3125 independent reflections

  • 2606 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.135

  • S = 1.12

  • 3125 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025786/gw2046sup1.cif

e-64-o1761-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025786/gw2046Isup2.hkl

e-64-o1761-Isup2.hkl (153.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C9–C14 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O3i 0.95 2.60 3.355 (3) 137
C18—H18CCgii 0.98 3.29 3.947 (4) 126

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

This work is related to our communications on the synthesis and structure of 2-methyl-3-phenylsulfonyl-1-benzofuran analogues, viz. 5-ethyl-2-methyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008a) and 5-isopropyl-2-methyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008b). Here we report the crystal structure of the title compound, 2-methyl-3-phenylsulfonyl-5-propyl-1-benzofuran (Fig. 1).

The benzofuran unit is almost planar, with a mean deviation of 0.018 (2) Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9–C14) makes a dihedral angle of 81.74 (6)° with the plane of the benzofuran fragment. The crystal packing (Fig. 2) is stabilized by intermolecular C—H···π interactions between a methyl H atom and the phenyl ring of the phenylsulfonyl substituent, with a C18—H18C···Cgii separation of 3.291 (4) Å (Fig. 2 and Table 1; Cg is the centroid of the C9–C14 phenyl ring, symmetry code as in Fig. 2). The molecular packing is further stabilized by intermolecular C—H···O interactions (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Experimental

77% 3-Chloroperoxybenzoic acid (471 mg, 2.1 mmol) was added in small portions to a stirred solution of 2-methyl-3-phenylsulfanyl-5-propyl-1-benzofuran (282 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 83%, m.p. 388–389 K; Rf = 0.75 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 0.94 (t, J = 7.32 Hz, 3H), 1.62–1.69 (m, 2H), 2,68 (t,J = 7.32 Hz, 2H), 2.79 (s, 3H), 7.12 (d, J = 8.44 Hz, 1H), 7.31 (d, J = 8.44 Hz, 1H), 7.48–7.60 (m, 3H), 7.67 (s, 1H), 8.01 (d, J = 8.44 Hz, 2H); EI-MS 314 [M+].

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms, 0.99 Å for the methylene H atoms, and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

C—H···π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry code: (i) x + 1, y, z; (ii) x + 1/2, -y + 3/2, 1/2 + z+1/2; (iii) x - 1, y, z; (iv) x - 1/2, -y + 3/2, z + 1/2.]

Crystal data

C18H18O3S F000 = 664
Mr = 314.38 Dx = 1.309 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P_2yn Cell parameters from 3769 reflections
a = 7.2712 (9) Å θ = 2.4–28.3º
b = 17.583 (2) Å µ = 0.21 mm1
c = 12.788 (2) Å T = 173 (2) K
β = 102.669 (2)º Block, colourless
V = 1595.1 (4) Å3 0.40 × 0.40 × 0.30 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 3125 independent reflections
Radiation source: fine-focus sealed tube 2606 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.053
Detector resolution: 10.0 pixels mm-1 θmax = 26.0º
T = 173(2) K θmin = 2.0º
φ and ω scans h = −8→5
Absorption correction: none k = −21→21
8966 measured reflections l = −13→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.135   w = 1/[σ2(Fo2) + (0.0731P)2 + 0.5558P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.001
3125 reflections Δρmax = 0.36 e Å3
200 parameters Δρmin = −0.37 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.61553 (7) 0.71791 (3) 0.30885 (4) 0.02750 (18)
O1 0.7452 (2) 0.52071 (8) 0.44838 (12) 0.0335 (4)
O2 0.7324 (2) 0.76700 (8) 0.38556 (12) 0.0367 (4)
O3 0.4196 (2) 0.73668 (9) 0.27128 (12) 0.0359 (4)
C1 0.6276 (3) 0.62641 (11) 0.36076 (15) 0.0258 (4)
C2 0.4937 (3) 0.56569 (11) 0.32516 (16) 0.0266 (4)
C3 0.3214 (3) 0.55783 (13) 0.25182 (16) 0.0310 (5)
H3 0.2625 0.6007 0.2131 0.037*
C4 0.2374 (3) 0.48657 (13) 0.23632 (17) 0.0347 (5)
C5 0.3257 (3) 0.42403 (13) 0.29533 (19) 0.0403 (6)
H5 0.2669 0.3756 0.2839 0.048*
C6 0.4948 (3) 0.43051 (12) 0.36937 (19) 0.0380 (5)
H6 0.5528 0.3880 0.4094 0.046*
C7 0.5749 (3) 0.50211 (12) 0.38205 (16) 0.0300 (5)
C8 0.7750 (3) 0.59641 (12) 0.43314 (16) 0.0304 (5)
C9 0.7172 (3) 0.71003 (11) 0.19608 (16) 0.0276 (4)
C10 0.6070 (3) 0.68438 (12) 0.09947 (17) 0.0327 (5)
H10 0.4781 0.6717 0.0939 0.039*
C11 0.6880 (4) 0.67762 (13) 0.01194 (18) 0.0403 (6)
H11 0.6144 0.6603 −0.0546 0.048*
C12 0.8757 (4) 0.69593 (13) 0.0204 (2) 0.0407 (6)
H12 0.9304 0.6910 −0.0402 0.049*
C13 0.9842 (3) 0.72143 (13) 0.1167 (2) 0.0393 (5)
H13 1.1129 0.7341 0.1218 0.047*
C14 0.9063 (3) 0.72851 (12) 0.20576 (18) 0.0339 (5)
H14 0.9804 0.7457 0.2722 0.041*
C15 0.0537 (3) 0.47675 (16) 0.1550 (2) 0.0445 (6)
H15A 0.0473 0.5158 0.0986 0.053*
H15B 0.0549 0.4264 0.1205 0.053*
C16 −0.1198 (4) 0.4823 (2) 0.1979 (2) 0.0575 (8)
H16A −0.1251 0.5334 0.2296 0.069*
H16B −0.1129 0.4444 0.2558 0.069*
C17 −0.2983 (3) 0.46938 (15) 0.1141 (2) 0.0463 (6)
H17A −0.2957 0.4185 0.0833 0.056*
H17B −0.3080 0.5076 0.0573 0.056*
H17C −0.4074 0.4737 0.1472 0.056*
C18 0.9566 (3) 0.62697 (14) 0.4949 (2) 0.0458 (6)
H18A 1.0596 0.6087 0.4633 0.069*
H18B 0.9770 0.6097 0.5695 0.069*
H18C 0.9532 0.6827 0.4929 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0294 (3) 0.0218 (3) 0.0307 (3) 0.00328 (19) 0.0053 (2) −0.00131 (19)
O1 0.0344 (8) 0.0271 (7) 0.0364 (8) 0.0002 (6) 0.0022 (6) 0.0050 (6)
O2 0.0446 (9) 0.0263 (7) 0.0377 (8) −0.0017 (7) 0.0059 (7) −0.0062 (6)
O3 0.0323 (9) 0.0338 (8) 0.0409 (9) 0.0094 (7) 0.0069 (7) 0.0003 (7)
C1 0.0277 (10) 0.0236 (9) 0.0264 (10) 0.0004 (8) 0.0063 (8) −0.0003 (8)
C2 0.0277 (10) 0.0266 (10) 0.0274 (10) −0.0005 (8) 0.0099 (8) −0.0029 (8)
C3 0.0278 (11) 0.0360 (11) 0.0302 (11) 0.0009 (9) 0.0088 (8) −0.0021 (9)
C4 0.0314 (12) 0.0418 (12) 0.0340 (11) −0.0063 (9) 0.0143 (9) −0.0110 (9)
C5 0.0435 (14) 0.0326 (11) 0.0490 (14) −0.0125 (10) 0.0193 (11) −0.0104 (10)
C6 0.0452 (14) 0.0271 (11) 0.0440 (13) −0.0023 (10) 0.0148 (11) 0.0019 (9)
C7 0.0314 (11) 0.0293 (10) 0.0302 (10) −0.0010 (8) 0.0088 (9) −0.0002 (8)
C8 0.0327 (11) 0.0259 (10) 0.0312 (10) 0.0002 (9) 0.0042 (9) 0.0008 (8)
C9 0.0314 (11) 0.0202 (9) 0.0309 (11) 0.0037 (8) 0.0065 (8) 0.0043 (8)
C10 0.0315 (11) 0.0325 (11) 0.0327 (11) −0.0003 (9) 0.0040 (9) 0.0041 (9)
C11 0.0518 (15) 0.0368 (12) 0.0314 (11) −0.0026 (11) 0.0074 (10) 0.0025 (9)
C12 0.0534 (15) 0.0316 (11) 0.0427 (13) 0.0031 (11) 0.0228 (11) 0.0062 (10)
C13 0.0343 (12) 0.0323 (11) 0.0545 (14) 0.0007 (9) 0.0165 (11) 0.0067 (10)
C14 0.0324 (12) 0.0280 (10) 0.0399 (12) −0.0006 (9) 0.0045 (9) 0.0018 (9)
C15 0.0374 (13) 0.0589 (15) 0.0392 (13) −0.0113 (11) 0.0130 (10) −0.0187 (11)
C16 0.0352 (14) 0.096 (2) 0.0409 (14) 0.0089 (14) 0.0068 (11) −0.0107 (14)
C17 0.0322 (13) 0.0517 (15) 0.0532 (15) 0.0029 (11) 0.0057 (11) −0.0032 (12)
C18 0.0391 (13) 0.0368 (12) 0.0523 (14) −0.0034 (10) −0.0103 (11) 0.0062 (11)

Geometric parameters (Å, °)

S—O2 1.437 (2) C10—C11 1.380 (3)
S—O3 1.438 (2) C10—H10 0.9500
S—C1 1.735 (2) C11—C12 1.384 (4)
S—C9 1.765 (2) C11—H11 0.9500
O1—C8 1.369 (2) C12—C13 1.384 (4)
O1—C7 1.378 (3) C12—H12 0.9500
C1—C8 1.360 (3) C13—C14 1.384 (3)
C1—C2 1.449 (3) C13—H13 0.9500
C2—C7 1.392 (3) C14—H14 0.9500
C2—C3 1.398 (3) C15—C16 1.485 (4)
C3—C4 1.389 (3) C15—H15A 0.9900
C3—H3 0.9500 C15—H15B 0.9900
C4—C5 1.407 (3) C16—C17 1.508 (3)
C4—C15 1.512 (3) C16—H16A 0.9900
C5—C6 1.382 (3) C16—H16B 0.9900
C5—H5 0.9500 C17—H17A 0.9800
C6—C7 1.382 (3) C17—H17B 0.9800
C6—H6 0.9500 C17—H17C 0.9800
C8—C18 1.483 (3) C18—H18A 0.9800
C9—C14 1.391 (3) C18—H18B 0.9800
C9—C10 1.392 (3) C18—H18C 0.9800
O2—S—O3 118.98 (9) C10—C11—C12 120.4 (2)
O2—S—C1 108.86 (9) C10—C11—H11 119.8
O3—S—C1 107.68 (10) C12—C11—H11 119.8
O2—S—C9 108.30 (10) C13—C12—C11 120.4 (2)
O3—S—C9 107.87 (9) C13—C12—H12 119.8
C1—S—C9 104.17 (9) C11—C12—H12 119.8
C8—O1—C7 106.97 (15) C12—C13—C14 120.3 (2)
C8—C1—C2 107.64 (18) C12—C13—H13 119.8
C8—C1—S 125.89 (16) C14—C13—H13 119.8
C2—C1—S 126.07 (15) C13—C14—C9 118.7 (2)
C7—C2—C3 119.09 (19) C13—C14—H14 120.6
C7—C2—C1 104.40 (18) C9—C14—H14 120.6
C3—C2—C1 136.49 (19) C16—C15—C4 115.6 (2)
C4—C3—C2 119.1 (2) C16—C15—H15A 108.4
C4—C3—H3 120.4 C4—C15—H15A 108.4
C2—C3—H3 120.4 C16—C15—H15B 108.4
C3—C4—C5 119.6 (2) C4—C15—H15B 108.4
C3—C4—C15 119.7 (2) H15A—C15—H15B 107.4
C5—C4—C15 120.7 (2) C15—C16—C17 113.4 (2)
C6—C5—C4 122.4 (2) C15—C16—H16A 108.9
C6—C5—H5 118.8 C17—C16—H16A 108.9
C4—C5—H5 118.8 C15—C16—H16B 108.9
C7—C6—C5 116.4 (2) C17—C16—H16B 108.9
C7—C6—H6 121.8 H16A—C16—H16B 107.7
C5—C6—H6 121.8 C16—C17—H17A 109.5
O1—C7—C6 126.0 (2) C16—C17—H17B 109.5
O1—C7—C2 110.60 (18) H17A—C17—H17B 109.5
C6—C7—C2 123.4 (2) C16—C17—H17C 109.5
C1—C8—O1 110.39 (18) H17A—C17—H17C 109.5
C1—C8—C18 134.4 (2) H17B—C17—H17C 109.5
O1—C8—C18 115.24 (18) C8—C18—H18A 109.5
C14—C9—C10 121.3 (2) C8—C18—H18B 109.5
C14—C9—S 119.47 (16) H18A—C18—H18B 109.5
C10—C9—S 119.19 (17) C8—C18—H18C 109.5
C11—C10—C9 118.9 (2) H18A—C18—H18C 109.5
C11—C10—H10 120.6 H18B—C18—H18C 109.5
C9—C10—H10 120.6
O2—S—C1—C8 −27.3 (2) C1—C2—C7—C6 −177.9 (2)
O3—S—C1—C8 −157.57 (18) C2—C1—C8—O1 −0.9 (2)
C9—S—C1—C8 88.1 (2) S—C1—C8—O1 −173.94 (14)
O2—S—C1—C2 160.91 (17) C2—C1—C8—C18 177.5 (2)
O3—S—C1—C2 30.7 (2) S—C1—C8—C18 4.4 (4)
C9—S—C1—C2 −83.72 (19) C7—O1—C8—C1 1.0 (2)
C8—C1—C2—C7 0.4 (2) C7—O1—C8—C18 −177.68 (19)
S—C1—C2—C7 173.44 (15) O2—S—C9—C14 19.23 (19)
C8—C1—C2—C3 −177.8 (2) O3—S—C9—C14 149.23 (16)
S—C1—C2—C3 −4.7 (3) C1—S—C9—C14 −96.53 (17)
C7—C2—C3—C4 −1.1 (3) O2—S—C9—C10 −161.66 (16)
C1—C2—C3—C4 176.9 (2) O3—S—C9—C10 −31.66 (18)
C2—C3—C4—C5 0.7 (3) C1—S—C9—C10 82.58 (17)
C2—C3—C4—C15 −178.30 (18) C14—C9—C10—C11 −0.2 (3)
C3—C4—C5—C6 0.1 (3) S—C9—C10—C11 −179.34 (16)
C15—C4—C5—C6 179.2 (2) C9—C10—C11—C12 0.1 (3)
C4—C5—C6—C7 −0.6 (3) C10—C11—C12—C13 −0.2 (3)
C8—O1—C7—C6 177.3 (2) C11—C12—C13—C14 0.3 (3)
C8—O1—C7—C2 −0.7 (2) C12—C13—C14—C9 −0.4 (3)
C5—C6—C7—O1 −177.6 (2) C10—C9—C14—C13 0.4 (3)
C5—C6—C7—C2 0.2 (3) S—C9—C14—C13 179.49 (16)
C3—C2—C7—O1 178.77 (17) C3—C4—C15—C16 −94.1 (3)
C1—C2—C7—O1 0.2 (2) C5—C4—C15—C16 86.9 (3)
C3—C2—C7—C6 0.6 (3) C4—C15—C16—C17 −178.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C13—H13···O3i 0.95 2.60 3.355 (3) 137
C18—H18C···Cgii 0.98 3.29 3.947 (4) 126

Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2046).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1016. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1257. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025786/gw2046sup1.cif

e-64-o1761-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025786/gw2046Isup2.hkl

e-64-o1761-Isup2.hkl (153.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES