Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 20;64(Pt 9):o1797. doi: 10.1107/S1600536808026226

2,8-Dibromo-4,10-dichloro-6H,12H-5,11-methano­dibenzo[b,f][1,5]diazo­cine

Kai-Xian Zhu a, Donald C Craig b, Andrew C Try a,*
PMCID: PMC2960512  PMID: 21201776

Abstract

The title compound, C15H10Br2Cl2N2, a 2,8-dibromo-4,10-dichloro Tröger’s base analogue derived from 4-bromo-2-chloro­aniline, has a dihedral angle of 110.9 (10)° between the two aryl rings, the largest yet measured for a simple dibenzo analogue.

Related literature

For related literature on the synthesis and crystal structures of dihalogenated Tröger’s base analogues, see: Jensen & Wärnmark (2001); Faroughi et al. (2006a , 2007a ,b ). For Tröger’s base analogues substituted with multiple electron-withdrawing groups, see: Faroughi et al. (2006b ); Bhuiyan et al. (2006, 2007); Vande Velde et al. (2008). For reactions of halogenated Tröger’s base analogues, see: Jensen et al. (2002); Hof et al. (2005). For literature on racemization of Tröger’s base analogues and the effect of substituents ortho to the diazo­cine N atoms, see: Lenev et al. (2006).graphic file with name e-64-o1797-scheme1.jpg

Experimental

Crystal data

  • C15H10Br2Cl2N2

  • M r = 449.0

  • Orthorhombic, Inline graphic

  • a = 7.910 (2) Å

  • b = 12.601 (3) Å

  • c = 15.230 (4) Å

  • V = 1518.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.64 mm−1

  • T = 294 K

  • 0.30 × 0.12 × 0.07 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965) T min = 0.52, T max = 0.69

  • 1394 measured reflections

  • 1394 independent reflections

  • 1028 reflections with I > 2σ(I)

  • 1 standard reflection frequency: 30 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.061

  • S = 1.61

  • 1394 reflections

  • 189 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −1.02 e Å−3

  • Absolute structure: Flack (1983)

  • Flack parameter: 0.09 (2)

Data collection: CAD-4 (Schagen et al., 1989); cell refinement: CAD-4; data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: RAELS (Rae, 1996); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: local programs.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026226/tk2290sup1.cif

e-64-o1797-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026226/tk2290Isup2.hkl

e-64-o1797-Isup2.hkl (51.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Macquarie University for the award of a Macquarie University Research Development Grant to ACT.

supplementary crystallographic information

Comment

Tröger's base analogues bearing electron-withdrawing groups were long thought to be difficult, if not impossible, to prepare. However, the synthesis of dihalogenated (Jensen & Wärnmark, 2001), octafluoro (Vande Velde et al., 2008) and tetranitro (Bhuiyan et al., 2007) Tröger's base analogues highlight the possiblities that now exist in terms of incorporating electron-withdrawing groups on the starting anilines. The synthetic utility of halogen-substituted Tröger's base analogue has been demonstrated with their conversion to alkyne- (Jensen & Wärnmark, 2001; Jensen et al., 2002) and functionalized phenyl- (Hof et al., 2005) substituted analogues, among others. It is noteworthy that crystal structures of several other 2,4,8,10-tetrasubstituted Tröger's base analogues exhibit large dihedral angles that are close to that in (I). Tröger's base analogues are known to undergo racemization in acidic solution, however the presence of a substituent at the ortho-position, relative to the bridge nitrogen atoms, has been shown to increase the racemization barrier (Lenev et al., 2006).

The molecular structure of (I) is shown in Fig. 1 and it was prepared as outlined in Fig. 2.

Experimental

4-Bromo-2-chloroaniline (1 g, 4.84 mmol) and paraformaldehyde (232 mg, 7.74 mmol) were added to an ice-cold solution of trifluoroacetic acid (10 ml). The reaction mixture was then stirred in dark at room temperature for 7 days under an atmosphere of argon. The ice-cold reaction mixture was basified by the dropwise addition of a mixture of ammonia (28%, 20 ml) and water (40 ml), followed by the additon of a saturated sodium hydrogen carbonate solution (20 ml). The resultant mixture was then extracted with dichloromethane (3 x 20 ml) and the combined organic layers were washed with brine (40 ml), dried over anhydrous sodium sulfate, filtered and evaporated to dryness. The crude product was chromatographed (silica gel, dichloromethane:hexane 8:2) to afford 2,8-dibromo-4,10-dichloro-6H,12H-5,11-methanodibenzo [b,f][1,5]diazocine (I) (613 mg, 56%) as a white solid and as a racemic mixture: m.p. 471–472 K; 1H NMR (400 MHz, CDCl3) δ 4.21–4.33 (4H, m), 4.55 (2H, d, J 17.3 Hz), 7.04 (2H, d, J 2.1 Hz), 7.41 (2H, d, J 2.1 Hz); 13C NMR (100 MHz, CDCl3) δ 54.37, 67.32, 117.15, 128.49, 130.17, 131.02, 131.71, 142.33. Analysis found: C 40.46; H 2.22; N 6.46; C15H10Br2Cl2N2 requires C 40.13; H 2.25; N 6.24. Single crystals were obtained from slow evaporation from dichloromethane solution of (I).

Refinement

Hydrogen atoms were included in positions calculated each cycle (C—H = 1.0 Å), and were assigned thermal parameters equal to their bonded atom. The maximum and minimum electron density peaks were located 0.73 and 1.20Å from the Cl2 and Br1 atoms, respectively.

Figures

Fig. 1.

Fig. 1.

ORTEPII (Johnson, 1976) plot of (I), with ellipsoids at the 10% probability level. H atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Synthetic scheme for the synthesis of (I) showing the numbering system used in naming the compound.

Crystal data

C15H10Br2Cl2N2 Dx = 1.96 Mg m3
Mr = 449.0 Melting point: 471 K
Orthorhombic, Pca21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 11 reflections
a = 7.910 (2) Å θ = 10–11º
b = 12.601 (3) Å µ = 5.64 mm1
c = 15.230 (4) Å T = 294 K
V = 1518.0 (7) Å3 Prism, colourless
Z = 4 0.30 × 0.12 × 0.07 mm
F000 = 872.0

Data collection

Enraf–Nonius CAD-4 diffractometer θmax = 25º
ω–2θ scans h = 0→9
Absorption correction: analyticalde Meulenaer & Tompa (1965) k = 0→14
Tmin = 0.52, Tmax = 0.69 l = −18→0
1394 measured reflections 1 standard reflections
1394 independent reflections every 30 min
1028 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F   w = 1/[σ2(F) + 0.0004F2]
R[F2 > 2σ(F2)] = 0.056 (Δ/σ)max = 0.002
wR(F2) = 0.061 Δρmax = 0.98 e Å3
S = 1.61 Δρmin = −1.02 e Å3
1394 reflections Extinction correction: none
189 parameters Absolute structure: Flack (1983), 0 Friedel pairs
H-atom parameters constrained Flack parameter: 0.09 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.8061 (2) 0.6867 (1) 0.3991 (1) 0.0585 (5)
Br2 0.2324 (2) 0.0800 (1) 0.0428 (2) 0.0527 (5)
Cl1 0.9770 (5) 0.5167 (4) 0.0779 (3) 0.057 (1)
Cl2 0.5654 (5) 0.0565 (3) 0.3603 (3) 0.052 (1)
N1 0.9460 (14) 0.3064 (10) 0.1658 (8) 0.041 (3)
N2 0.8319 (15) 0.1842 (9) 0.2739 (8) 0.044 (3)
C1 0.9798 (19) 0.2123 (12) 0.2198 (10) 0.044 (4)
C2 0.8998 (18) 0.3929 (12) 0.2193 (10) 0.043 (4)
C3 0.8445 (18) 0.3790 (11) 0.3054 (8) 0.041 (4)
C4 0.817 (2) 0.2693 (12) 0.3414 (8) 0.049 (4)
C5 0.6842 (19) 0.1696 (11) 0.2226 (9) 0.039 (4)
C6 0.6740 (19) 0.2086 (11) 0.1360 (9) 0.036 (4)
C7 0.8206 (17) 0.2753 (12) 0.0978 (9) 0.040 (4)
C8 0.9155 (17) 0.4984 (13) 0.1855 (9) 0.043 (4)
C9 0.8825 (19) 0.5861 (12) 0.2397 (11) 0.048 (4)
C10 0.839 (2) 0.5684 (13) 0.3247 (11) 0.050 (4)
C11 0.818 (2) 0.4666 (13) 0.3570 (10) 0.056 (4)
C12 0.5565 (17) 0.1082 (10) 0.2538 (8) 0.031 (3)
C13 0.4158 (17) 0.0854 (10) 0.2036 (8) 0.035 (3)
C14 0.4117 (17) 0.1221 (11) 0.1168 (9) 0.040 (4)
C15 0.5433 (19) 0.1819 (10) 0.0853 (9) 0.034 (3)
H1C1 1.0780 0.2273 0.2593 0.044
H2C1 1.0078 0.1513 0.1804 0.044
H1C4 0.7008 0.2660 0.3674 0.049
H2C4 0.9027 0.2559 0.3883 0.049
H1C7 0.7726 0.3410 0.0708 0.040
H2C7 0.8794 0.2326 0.0517 0.040
HC9 0.8906 0.6600 0.2162 0.048
HC11 0.7825 0.4567 0.4195 0.056
HC13 0.3194 0.0438 0.2286 0.035
HC15 0.5411 0.2061 0.0228 0.034

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.060 (1) 0.060 (1) 0.0549 (9) −0.0011 (8) −0.001 (1) −0.0138 (9)
Br2 0.0470 (9) 0.0650 (9) 0.0461 (8) −0.0118 (8) −0.0026 (9) −0.0091 (9)
Cl1 0.061 (3) 0.066 (3) 0.044 (2) −0.019 (2) 0.010 (2) 0.000 (2)
Cl2 0.063 (3) 0.056 (2) 0.037 (2) 0.000 (2) 0.006 (2) 0.018 (2)
N1 0.029 (7) 0.058 (8) 0.037 (7) 0.001 (6) 0.002 (6) −0.003 (6)
N2 0.046 (7) 0.048 (7) 0.038 (7) 0.004 (6) −0.009 (6) 0.020 (6)
C1 0.029 (9) 0.067 (9) 0.036 (8) 0.005 (8) −0.016 (7) 0.012 (8)
C2 0.051 (9) 0.043 (9) 0.034 (8) 0.009 (8) 0.020 (8) −0.006 (7)
C3 0.045 (9) 0.059 (9) 0.019 (8) −0.012 (8) −0.004 (7) −0.005 (7)
C4 0.083 (9) 0.053 (8) 0.013 (7) 0.004 (9) −0.006 (7) 0.007 (7)
C5 0.048 (9) 0.043 (9) 0.026 (7) 0.000 (7) 0.013 (7) 0.007 (7)
C6 0.039 (8) 0.042 (8) 0.026 (8) 0.010 (8) 0.002 (6) −0.006 (7)
C7 0.037 (8) 0.052 (9) 0.030 (8) −0.007 (8) 0.007 (7) −0.002 (7)
C8 0.029 (8) 0.062 (9) 0.039 (9) −0.002 (8) −0.002 (7) 0.004 (9)
C9 0.047 (9) 0.038 (9) 0.059 (9) −0.010 (8) −0.001 (8) −0.007 (8)
C10 0.047 (9) 0.057 (9) 0.046 (9) −0.005 (8) 0.017 (8) −0.007 (8)
C11 0.085 (9) 0.052 (9) 0.029 (8) −0.011 (9) 0.009 (9) −0.007 (8)
C12 0.037 (8) 0.032 (8) 0.024 (7) 0.009 (7) 0.010 (6) −0.002 (6)
C13 0.046 (9) 0.043 (9) 0.016 (6) 0.014 (8) 0.001 (6) 0.000 (7)
C14 0.029 (8) 0.039 (8) 0.052 (9) 0.006 (7) 0.010 (7) −0.015 (8)
C15 0.034 (8) 0.039 (8) 0.027 (7) 0.004 (7) 0.009 (7) −0.004 (7)

Geometric parameters (Å, °)

Br1—C10 1.890 (15) C4—H2C4 1.000
Br2—C14 1.888 (14) C5—C6 1.410 (18)
Cl1—C8 1.724 (14) C5—C12 1.358 (18)
Cl2—C12 1.750 (13) C6—C7 1.546 (20)
N1—C1 1.468 (18) C6—C15 1.333 (19)
N1—C2 1.409 (17) C7—H1C7 1.000
N1—C7 1.487 (18) C7—H2C7 1.000
N2—C1 1.474 (19) C8—C9 1.404 (20)
N2—C4 1.491 (18) C9—C10 1.357 (19)
N2—C5 1.417 (18) C9—HC9 1.000
C1—H1C1 1.000 C10—C11 1.385 (21)
C1—H2C1 1.000 C11—HC11 1.000
C2—C3 1.394 (18) C12—C13 1.381 (17)
C2—C8 1.431 (20) C13—C14 1.402 (18)
C3—C4 1.503 (20) C13—HC13 1.000
C3—C11 1.371 (20) C14—C15 1.371 (19)
C4—H1C4 1.000 C15—HC15 1.000
C1—N1—C2 110.4 (12) N1—C7—C6 112.5 (11)
C1—N1—C7 107.4 (11) N1—C7—H1C7 108.7
C2—N1—C7 115.7 (11) N1—C7—H2C7 108.7
C1—N2—C4 106.0 (11) C6—C7—H1C7 108.7
C1—N2—C5 112.2 (11) C6—C7—H2C7 108.7
C4—N2—C5 114.1 (12) H1C7—C7—H2C7 109.5
N1—C1—N2 111.3 (11) Cl1—C8—C2 119.3 (11)
N1—C1—H1C1 109.0 Cl1—C8—C9 120.4 (12)
N1—C1—H2C1 109.0 C2—C8—C9 120.2 (12)
N2—C1—H1C1 109.0 C8—C9—C10 118.6 (15)
N2—C1—H2C1 109.0 C8—C9—HC9 120.7
H1C1—C1—H2C1 109.5 C10—C9—HC9 120.7
N1—C2—C3 121.9 (14) Br1—C10—C9 118.5 (13)
N1—C2—C8 119.2 (12) Br1—C10—C11 120.0 (11)
C3—C2—C8 118.8 (13) C9—C10—C11 121.4 (15)
C2—C3—C4 120.3 (13) C3—C11—C10 121.6 (14)
C2—C3—C11 119.1 (14) C3—C11—HC11 119.2
C4—C3—C11 120.6 (12) C10—C11—HC11 119.2
N2—C4—C3 113.5 (10) Cl2—C12—C5 120.5 (12)
N2—C4—H1C4 108.4 Cl2—C12—C13 117.9 (10)
N2—C4—H2C4 108.4 C5—C12—C13 121.6 (13)
C3—C4—H1C4 108.4 C12—C13—C14 118.2 (13)
C3—C4—H2C4 108.4 C12—C13—HC13 120.9
H1C4—C4—H2C4 109.5 C14—C13—HC13 120.9
N2—C5—C6 121.2 (13) Br2—C14—C13 119.2 (11)
N2—C5—C12 119.6 (13) Br2—C14—C15 121.0 (11)
C6—C5—C12 118.9 (15) C13—C14—C15 119.6 (13)
C5—C6—C7 119.8 (13) C6—C15—C14 121.6 (13)
C5—C6—C15 119.9 (14) C6—C15—HC15 119.2
C7—C6—C15 120.1 (12) C14—C15—HC15 119.2
C2—N1—C1—N2 57.5 (15) C2—C3—C11—C10 2.3 (24)
C2—N1—C1—H1C1 −62.8 C2—C3—C11—HC11 −177.7
C2—N1—C1—H2C1 177.8 C4—C3—C11—C10 −178.6 (16)
C7—N1—C1—N2 −69.4 (15) C4—C3—C11—HC11 1.4
C7—N1—C1—H1C1 170.3 N2—C5—C6—C7 −4.4 (20)
C7—N1—C1—H2C1 50.8 N2—C5—C6—C15 171.2 (13)
C1—N1—C2—C3 −18.2 (18) C12—C5—C6—C7 −177.9 (12)
C1—N1—C2—C8 159.5 (13) C12—C5—C6—C15 −2.3 (20)
C7—N1—C2—C3 103.9 (16) N2—C5—C12—Cl2 5.4 (18)
C7—N1—C2—C8 −78.3 (17) N2—C5—C12—C13 −175.2 (12)
C1—N1—C7—C6 44.6 (15) C6—C5—C12—Cl2 179.1 (10)
C1—N1—C7—H1C7 165.1 C6—C5—C12—C13 −1.6 (20)
C1—N1—C7—H2C7 −75.8 C5—C6—C7—N1 −10.2 (17)
C2—N1—C7—C6 −79.1 (15) C5—C6—C7—H1C7 −130.7
C2—N1—C7—H1C7 41.3 C5—C6—C7—H2C7 110.2
C2—N1—C7—H2C7 160.4 C15—C6—C7—N1 174.2 (13)
C4—N2—C1—N1 −69.8 (13) C15—C6—C7—H1C7 53.8
C4—N2—C1—H1C1 50.5 C15—C6—C7—H2C7 −65.3
C4—N2—C1—H2C1 169.9 C5—C6—C15—C14 3.9 (21)
C5—N2—C1—N1 55.3 (16) C5—C6—C15—HC15 −176.1
C5—N2—C1—H1C1 175.6 C7—C6—C15—C14 179.5 (12)
C5—N2—C1—H2C1 −65.0 C7—C6—C15—HC15 −0.5
C1—N2—C4—C3 42.4 (15) Cl1—C8—C9—C10 −178.1 (12)
C1—N2—C4—H1C4 163.0 Cl1—C8—C9—HC9 1.9
C1—N2—C4—H2C4 −78.2 C2—C8—C9—C10 1.4 (23)
C5—N2—C4—C3 −81.5 (16) C2—C8—C9—HC9 −178.6
C5—N2—C4—H1C4 39.1 C8—C9—C10—Br1 176.8 (11)
C5—N2—C4—H2C4 157.9 C8—C9—C10—C11 −3.7 (25)
C1—N2—C5—C6 −17.3 (19) HC9—C9—C10—Br1 −3.2
C1—N2—C5—C12 156.2 (13) HC9—C9—C10—C11 176.3
C4—N2—C5—C6 103.2 (14) Br1—C10—C11—C3 −178.6 (12)
C4—N2—C5—C12 −83.3 (16) Br1—C10—C11—HC11 1.4
N1—C2—C3—C4 −5.9 (21) C9—C10—C11—C3 1.9 (26)
N1—C2—C3—C11 173.3 (14) C9—C10—C11—HC11 −178.1
C8—C2—C3—C4 176.4 (14) Cl2—C12—C13—C14 −176.9 (10)
C8—C2—C3—C11 −4.4 (21) Cl2—C12—C13—HC13 3.1
N1—C2—C8—Cl1 4.3 (19) C5—C12—C13—C14 3.7 (19)
N1—C2—C8—C9 −175.2 (13) C5—C12—C13—HC13 −176.3
C3—C2—C8—Cl1 −177.9 (11) C12—C13—C14—Br2 173.5 (9)
C3—C2—C8—C9 2.6 (21) C12—C13—C14—C15 −2.1 (18)
C2—C3—C4—N2 −7.5 (20) HC13—C13—C14—Br2 −6.5
C2—C3—C4—H1C4 −128.1 HC13—C13—C14—C15 177.9
C2—C3—C4—H2C4 113.1 Br2—C14—C15—C6 −177.3 (11)
C11—C3—C4—N2 173.3 (14) Br2—C14—C15—HC15 2.7
C11—C3—C4—H1C4 52.7 C13—C14—C15—C6 −1.7 (20)
C11—C3—C4—H2C4 −66.1 C13—C14—C15—HC15 178.3

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2290).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Bhuiyan, M. D. H., Jensen, P. & Try, A. C. (2007). Acta Cryst. E63, o4393.
  3. Bhuiyan, M. D. H., Try, A. C., Klepetko, J. & Turner, P. (2006). Acta Cryst. E62, o4887–o4888.
  4. Faroughi, M., Try, A. C., Klepetko, J. & Turner, P. (2007a). Tetrahedron Lett.48, 6548–6551.
  5. Faroughi, M., Try, A. C. & Turner, P. (2006a). Acta Cryst. E62, o3674–o3675.
  6. Faroughi, M., Try, A. C. & Turner, P. (2006b). Acta Cryst. E62, o3893–o3894.
  7. Faroughi, M., Try, A. C. & Turner, P. (2007b). Acta Cryst. E63, o2695.
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Hof, F., Schar, M., Scofield, D. M., Fischer, F., Diederich, F. & Sergeyev, S. (2005). Helv. Chim. Acta, 88, 2333–2344.
  10. Jensen, J., Strozyk, M. & Wärnmark, K. (2002). Synthesis, pp. 2761–2765.
  11. Jensen, J. & Wärnmark, K. (2001). Synthesis, pp. 1873–1877.
  12. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  13. Lenev, D. A., Lyssenko, K. A., Golovanov, D. G., Buss, V. & Kostyanovsky, R. G. (2006). Chem. Eur. J.12, 6412–6418. [DOI] [PubMed]
  14. Meulenaer, J. de & Tompa, H. (1965). Acta Cryst.19, 1014–1018.
  15. Rae, A. D. (1996). RAELS University of New South Wales, Australia.
  16. Schagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Manual Enraf–Nonius, Delft, The Netherlands.
  17. Vande Velde, C. M. L., Didier, D., Blockhuys, F. & Sergeyev, S. (2008). Acta Cryst. E64, o538. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026226/tk2290sup1.cif

e-64-o1797-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026226/tk2290Isup2.hkl

e-64-o1797-Isup2.hkl (51.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES