Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 20;64(Pt 9):o1785. doi: 10.1107/S1600536808026032

Zwitterionic 6-methyl-2-oxo-3-[1-(ureido­iminio)eth­yl]-2H-pyran-4-olate monohydrate

Amel Djedouani a, Sihem Boufas b,*, Magali Allain c, Gilles Bouet d, Mustayeen Khan d
PMCID: PMC2960563  PMID: 21201765

Abstract

The title compound, C9H11N3O4·H2O, was prepared by the reaction of dehydro­acetic acid and semicarbazide hydro­chloride. It crystallizes in a zwitterionic form with cationic iminium and anionic enolate groups. In the crystal structure, the almost planar mol­ecules are held together by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, some of them involving the water molecules.

Related literature

For related literature, see: Tai et al. (2007); Zu-Pei Liang et al. (2007); Wojciechowski et al. (2003); Petek et al. (2006); Huang et al. (2006); Bernstein et al. (1995); Girija & Begum (2004a ); Girija et al. (2004b ); Gowda et al. (2007)..graphic file with name e-64-o1785-scheme1.jpg

Experimental

Crystal data

  • C9H11N3O4·H2O

  • M r = 243.22

  • Monoclinic, Inline graphic

  • a = 7.1731 (4) Å

  • b = 12.6590 (10) Å

  • c = 12.3698 (3) Å

  • β = 104.603 (6)°

  • V = 1086.95 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 173 (2) K

  • 0.35 × 0.05 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 11787 measured reflections

  • 2485 independent reflections

  • 1699 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.121

  • S = 1.03

  • 2485 reflections

  • 178 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: COLLECT (Nonius, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026032/wk2091sup1.cif

e-64-o1785-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026032/wk2091Isup2.hkl

e-64-o1785-Isup2.hkl (119.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.84 (2) 2.18 (2) 3.015 (2) 176.3 (17)
N1—H1B⋯O1Wii 0.87 (2) 2.30 (2) 3.075 (2) 147.9 (19)
N2—H2⋯O1Wii 0.91 (2) 1.98 (2) 2.839 (2) 158 (2)
N3—H3⋯O3 0.98 (2) 1.60 (3) 2.476 (2) 147 (2)
O1W—H11W⋯O4 0.82 (3) 1.99 (3) 2.796 (2) 171 (3)
O1W—H21W⋯O1iii 0.82 (3) 2.00 (3) 2.823 (2) 178.0 (18)
C3—H3B⋯O1 0.96 2.29 2.812 (3) 114
C7—H7⋯O4iv 0.93 2.49 3.294 (2) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by Université Farhet Abbes de Sétif, Sétif, Algeria.

supplementary crystallographic information

Comment

NLO materials play an important role in the field of fibre optic communications and optical signal processing. In the last two decades, extensive research has shown that organic crystals can exhibit nonlinear optical efficiencies which are two orders of magnitude higher than those of inorganic materials. Semicarbazones of substituted benzaldehydes and acetophenones were reported to be some of the potential organic NLO materials.

In this paper, the structure of the title compound (I), C9H13N3O5 is reported. The asymmetric unit of (I) contains one Dehydroacetic acid semicarbazide molecule and one water molecule (Fig. 1).

It is seen that the structure reported here adopts a zwitterion form, because, among other reasons, its N+—H bond distances [0.98 (3) Å] is comparable with those from similar zwitterions in the literature [1.11 (3) Å; 1.10 (3) Å] (Petek et al., 2006; Wojciechowski et al., 2003).

The bond distances shown in Table 1 indicate that the C2—N3 iminium bond length of 1.303 (2) Å agree with similar bond in related compounds (Girija & Begum, 2004a; Girija et al., 2004b). This distance is slightly longer than a typical C=N bond (1.269 Å); but much shorter than the single carbon-nitrogen (1.409 Å) (Gowda et al. 2007), because of the resonance.

The C8—O3 bond length [1.282 (2) Å] is intermediate between single and double carbon to oxygen bond lengths (1.362 Å, 1.222 Å) the carbon-carbon bond connecting the enol and imine groups exhibit intermediate distances between a single and a double bond, being closer to latter one. C4—C8 = 1.423 (2) Å, C2—C4 = 1.452 (2) Å, indicate the zwitterionic character of the title compound (Wojciechowski et al. 2003). The molecular configuration is determined by the presence of the intramolecular hydrogen bond O-···H—N+ (Table 2).

The main molecule in (I) is essentially planar, with a maximum deviation from the mean plane for the non-hydrogen atoms of 0.022 (2) Å. The iminium atom H3, participates in a strong intramolecular hydrogen bond with the enolate atom, O1 (Table 1), which generates an S(6) ring motif (Bernstein et al. 1995). Similar intramolecular hydrogen bonds were reported in the above-mentioned zwitterionic phenolates (Huang et al. 2006). This six-membered pseudocycle is almost planar, the maximum deviation from the mean plane being 0.012 Å for atom C2. The bond lengths and angles are in usual ranges (E)-1-(4-Hydroxybenzylidene) semicarbazide hemihydrate (Tai et al., 2007) and (E)-1-(4-Methoxybenzylidene) -semicarbazide (Liang et al., 2007).

The crystal structure of (I) is stabilized by N—H···O; O—H···O, and C—H···O hydrogen bonds (Fig. 2 and Table 2).

Experimental

A mixture of dehydroacetic acid (0.01 mol) and semicarbazide hydrochloride (0.01 mol), in ethanol (20 ml) was refluxed for 1 h. After cooling, filtration and drying, the compound dehydroacetic acid semicarbazide was obtained. A small quantity of this compound (10 mg) was dissolved in aqueous ethanol (95 / 12 ml), and the solution was then allowed to evaporate at room temperature. Prismatic yellow single crystals of the title compound were formed after 8 days.

Refinement

The O—H distances of the water molecules were restrained to 0.85 (1) Å, to ensure chemically reasonable geometry, with Uiso fixed at 1.5Ueq(O). The iminium and ammino H atoms was located in a difference Fourier map and were refined isotropically. The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å) with Uiso(H) = 1.2Ueq(C), but were allowed to rotate freely about the C—C bonds. H7 atom was placed in a geometrically idealized position (C—H = 0.93 Å) and constrained to ride on its parent atom with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed down the b axis. Dashed lines indicate the N—H···O and O—H···O interactions.

Crystal data

C9H11N3O4·H2O F000 = 512
Mr = 243.22 Dx = 1.486 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2841 reflections
a = 7.1731 (4) Å θ = 3.1–25.8º
b = 12.6590 (10) Å µ = 0.12 mm1
c = 12.3698 (3) Å T = 173 (2) K
β = 104.603 (6)º Prism, yellow
V = 1086.95 (11) Å3 0.35 × 0.05 × 0.02 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 1699 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.055
Detector resolution: 9 pixels mm-1 θmax = 27.5º
T = 173(2) K θmin = 2.9º
CCD scans h = −9→9
Absorption correction: none k = −16→15
11787 measured reflections l = −15→16
2485 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121   w = 1/[σ2(Fo2) + (0.0289P)2 + 0.445P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2485 reflections Δρmax = 0.33 e Å3
178 parameters Δρmin = −0.26 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5343 (3) −0.25527 (15) 0.37044 (14) 0.0287 (4)
C2 0.7633 (2) −0.06094 (14) 0.56842 (14) 0.0253 (4)
C3 0.8032 (4) −0.11552 (17) 0.67854 (16) 0.0476 (6)
H3A 0.7151 −0.1734 0.6744 0.057*
H3B 0.7871 −0.0666 0.7348 0.057*
H3C 0.9329 −0.1418 0.6974 0.057*
C4 0.8087 (2) 0.04894 (13) 0.55327 (13) 0.0240 (4)
C5 0.9088 (3) 0.11044 (14) 0.64744 (15) 0.0292 (4)
C6 0.8929 (3) 0.26084 (15) 0.52451 (15) 0.0305 (4)
C7 0.8054 (3) 0.20520 (15) 0.43545 (15) 0.0316 (4)
H7 0.7733 0.2375 0.3657 0.038*
C8 0.7593 (2) 0.09564 (14) 0.44518 (14) 0.0269 (4)
C9 0.9441 (3) 0.37503 (16) 0.52619 (18) 0.0422 (5)
H9A 0.9024 0.4034 0.452 0.051*
H9B 1.0812 0.3829 0.5527 0.051*
H9C 0.8817 0.4123 0.5749 0.051*
N1 0.4877 (3) −0.35801 (14) 0.36960 (16) 0.0397 (4)
N2 0.6282 (2) −0.21693 (12) 0.47382 (13) 0.0336 (4)
N3 0.6811 (2) −0.11234 (12) 0.47752 (12) 0.0272 (3)
O1 0.9689 (2) 0.08309 (11) 0.74427 (10) 0.0424 (4)
O3 0.6744 (2) 0.04451 (10) 0.35702 (10) 0.0369 (4)
O2 0.9464 (2) 0.21590 (10) 0.62831 (10) 0.0355 (3)
O4 0.4983 (2) −0.19779 (11) 0.28793 (11) 0.0414 (4)
O1W 0.6521 (3) −0.10956 (13) 0.12207 (12) 0.0470 (4)
H11W 0.597 (4) −0.131 (2) 0.168 (2) 0.071*
H21W 0.763 (4) −0.103 (2) 0.160 (2) 0.071*
H1A 0.440 (3) −0.3872 (19) 0.308 (2) 0.048 (7)*
H1B 0.514 (3) −0.3924 (17) 0.4326 (19) 0.037 (6)*
H2 0.650 (3) −0.2591 (18) 0.5351 (19) 0.042 (6)*
H3 0.656 (4) −0.069 (2) 0.410 (2) 0.075 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0301 (9) 0.0304 (10) 0.0238 (8) −0.0033 (7) 0.0036 (7) −0.0023 (7)
C2 0.0258 (9) 0.0274 (9) 0.0222 (8) 0.0011 (7) 0.0049 (7) 0.0004 (7)
C3 0.0780 (16) 0.0371 (12) 0.0232 (10) −0.0137 (11) 0.0043 (10) 0.0025 (8)
C4 0.0260 (9) 0.0241 (9) 0.0203 (8) 0.0006 (7) 0.0028 (7) −0.0015 (6)
C5 0.0318 (10) 0.0288 (10) 0.0254 (9) −0.0014 (8) 0.0042 (7) −0.0023 (7)
C6 0.0341 (10) 0.0264 (9) 0.0306 (9) −0.0012 (7) 0.0073 (8) 0.0002 (7)
C7 0.0379 (11) 0.0283 (10) 0.0256 (9) 0.0005 (8) 0.0023 (8) 0.0046 (7)
C8 0.0283 (9) 0.0260 (9) 0.0237 (9) 0.0027 (7) 0.0016 (7) −0.0001 (7)
C9 0.0557 (13) 0.0270 (10) 0.0417 (12) −0.0078 (9) 0.0082 (10) −0.0023 (8)
N1 0.0568 (12) 0.0304 (9) 0.0295 (9) −0.0110 (8) 0.0063 (8) −0.0035 (8)
N2 0.0488 (10) 0.0240 (8) 0.0243 (8) −0.0078 (7) 0.0023 (7) 0.0014 (6)
N3 0.0330 (8) 0.0230 (8) 0.0225 (7) −0.0021 (6) 0.0016 (6) 0.0002 (6)
O1 0.0586 (9) 0.0412 (8) 0.0201 (6) −0.0112 (7) −0.0036 (6) 0.0005 (6)
O3 0.0539 (9) 0.0288 (7) 0.0204 (6) −0.0043 (6) −0.0046 (6) 0.0014 (5)
O2 0.0480 (8) 0.0284 (7) 0.0264 (7) −0.0085 (6) 0.0024 (6) −0.0033 (5)
O4 0.0562 (9) 0.0366 (8) 0.0248 (7) −0.0108 (7) −0.0018 (6) 0.0027 (6)
O1W 0.0593 (10) 0.0501 (10) 0.0294 (8) −0.0083 (8) 0.0068 (7) −0.0032 (7)

Geometric parameters (Å, °)

C1—O4 1.227 (2) C6—C9 1.490 (3)
C1—N1 1.342 (2) C7—C8 1.438 (3)
C1—N2 1.375 (2) C7—H7 0.93
C2—N3 1.304 (2) C8—O3 1.282 (2)
C2—C4 1.452 (2) C9—H9A 0.96
C2—C3 1.489 (2) C9—H9B 0.96
C3—H3A 0.96 C9—H9C 0.96
C3—H3B 0.96 N1—H1A 0.84 (3)
C3—H3C 0.96 N1—H1B 0.87 (2)
C4—C8 1.423 (2) N2—N3 1.375 (2)
C4—C5 1.434 (2) N2—H2 0.91 (2)
C5—O1 1.217 (2) N3—H3 0.98 (3)
C5—O2 1.394 (2) O1W—H11W 0.82 (3)
C6—C7 1.325 (3) O1W—H21W 0.82 (3)
C6—O2 1.368 (2)
O4—C1—N1 124.65 (17) C6—C7—H7 119.5
O4—C1—N2 121.02 (17) C8—C7—H7 119.5
N1—C1—N2 114.33 (16) O3—C8—C4 122.81 (16)
N3—C2—C4 115.73 (15) O3—C8—C7 119.05 (15)
N3—C2—C3 119.87 (17) C4—C8—C7 118.13 (15)
C4—C2—C3 124.41 (16) C6—C9—H9A 109.5
C2—C3—H3A 109.5 C6—C9—H9B 109.5
C2—C3—H3B 109.5 H9A—C9—H9B 109.5
H3A—C3—H3B 109.5 C6—C9—H9C 109.5
C2—C3—H3C 109.5 H9A—C9—H9C 109.5
H3A—C3—H3C 109.5 H9B—C9—H9C 109.5
H3B—C3—H3C 109.5 C1—N1—H1A 118.7 (16)
C8—C4—C5 119.53 (16) C1—N1—H1B 118.7 (14)
C8—C4—C2 120.58 (15) H1A—N1—H1B 122 (2)
C5—C4—C2 119.87 (15) N3—N2—C1 115.93 (15)
O1—C5—O2 113.83 (16) N3—N2—H2 123.4 (14)
O1—C5—C4 128.74 (18) C1—N2—H2 120.7 (14)
O2—C5—C4 117.43 (15) C2—N3—N2 124.75 (15)
C7—C6—O2 121.43 (17) C2—N3—H3 113.8 (17)
C7—C6—C9 126.21 (18) N2—N3—H3 121.4 (17)
O2—C6—C9 112.36 (16) C6—O2—C5 122.49 (14)
C6—C7—C8 120.93 (17) H11W—O1W—H21W 102 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O3i 0.84 (2) 2.18 (2) 3.015 (2) 176.3 (17)
N1—H1B···O1Wii 0.87 (2) 2.30 (2) 3.075 (2) 147.9 (19)
N2—H2···O1Wii 0.91 (2) 1.98 (2) 2.839 (2) 158 (2)
N3—H3···O3 0.98 (2) 1.60 (3) 2.476 (2) 147 (2)
O1W—H11W···O4 0.82 (3) 1.99 (3) 2.796 (2) 171 (3)
O1W—H21W···O1iii 0.82 (3) 2.00 (3) 2.823 (2) 178.0 (18)
C3—H3B···O1 0.96 2.29 2.812 (3) 114
C7—H7···O4iv 0.93 2.49 3.294 (2) 145

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y−1/2, z+1/2; (iii) −x+2, −y, −z+1; (iv) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2091).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Girija, C. R. & Begum, N. S. (2004a). Acta Cryst. E60, o535–o536.
  5. Girija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004b). Acta Cryst. E60, o586–o588.
  6. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3087.
  7. Huang, L., Chen, D.-B., Qiu, D. & Zhao, B. (2006). Acta Cryst. E62, o5239–o5240.
  8. Liang, Z.-P., Li, J., Wang, H.-L. & Wang, H.-Q. (2007). Acta Cryst. E63, o2939.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  10. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  11. Nonius (1997). COLLECT Nonius BV, Delft The Netherlands.
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Petek, H., Albayrak, Ç., Ağar, E. & Kalkan, H. (2006). Acta Cryst. E62, o3685–o3687.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Tai, X.-S., Hao, M.-Y., Yin, J. & Liang, Z.-P. (2007). Acta Cryst. E63, o1725–o1726.
  16. Wojciechowski, G., Ratajczak-Sitarz, M., Katrusiak, A., Schilf, W., Przybylski, P. & Brzezinski, B. (2003). J. Mol. Struct.650, 191–199.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026032/wk2091sup1.cif

e-64-o1785-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026032/wk2091Isup2.hkl

e-64-o1785-Isup2.hkl (119.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES