Abstract
In the molecule of the title compound, C14H13NO2, the two aromatic rings are oriented at a dihedral angle of 0.78 (20)°; with the exception of two methyl H atoms the molecule is essentially planar. The intramolecular O—H⋯N hydrogen bond results in the formation of a non-planar, six-membered ring, which adopts a flattened-boat conformation. In the crystal structure, intermolecular C—H⋯O hydrogen bonds link the molecules to form parallel networks. There is a C—H⋯π contact between the methyl group and the benzene ring. A π–π contact between the benzene and phenyl rings [centroid–centroid distance = 4.681 (5) Å] is also observed.
Related literature
For general background, see: Hökelek et al. (2004 ▶); Uçan & Mercimek (2005 ▶); Uçan et al. (2005 ▶); Garg & Kumar (2003 ▶); Mokles & Elzaher (2001 ▶); Amirnasr et al. (2002 ▶); Bella et al. (2004 ▶); Chandra & Kumar (2005 ▶); Ray et al. (2003 ▶); Yang et al. (2000 ▶). For bond-length data, see: Allen et al. (1987 ▶). For ring conformation puckering parameters, see: Cremer & Pople (1975 ▶).
Experimental
Crystal data
C14H13NO2
M r = 227.26
Monoclinic,
a = 20.935 (2) Å
b = 4.7151 (10) Å
c = 12.275 (3) Å
β = 106.623 (14)°
V = 1161.1 (4) Å3
Z = 4
Mo Kα radiation
μ = 0.09 mm−1
T = 294 (2) K
0.40 × 0.20 × 0.10 mm
Data collection
Enraf–Nonius TurboCAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968 ▶) T min = 0.971, T max = 0.990
1653 measured reflections
1560 independent reflections
521 reflections with I > 2σ(I)
R int = 0.048
θmax = 23.1°
3 standard reflections frequency: 120 min intensity decay: 1%
Refinement
R[F 2 > 2σ(F 2)] = 0.064
wR(F 2) = 0.207
S = 0.92
1560 reflections
163 parameters
1 restraint
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.20 e Å−3
Δρmin = −0.20 e Å−3
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 ▶); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶) and PLATON (Spek, 2003 ▶); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999 ▶) and PLATON.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808026883/wn2275sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026883/wn2275Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1⋯N1 | 0.86 (5) | 1.82 (5) | 2.604 (7) | 152 (5) |
| C7—H7⋯O1i | 1.03 (5) | 2.55 (6) | 3.493 (10) | 151 (4) |
| C14—H14A⋯O2ii | 0.96 | 2.57 | 3.500 (6) | 164 |
| C14—H14B⋯Cg2iii | 0.96 | 3.27 | 4.142 (8) | 152 |
Symmetry codes: (i)
; (ii)
; (iii)
. Cg2 is the centroid of ring C8–C13.
Acknowledgments
The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.
supplementary crystallographic information
Comment
Few classes of coordination compounds have been the subject of as much attention as Schiff base complexes formed by the condensation of amines with carbonyl derivatives (Hökelek et al., 2004; Uçan & Mercimek, 2005; Uçan et al., 2005). Schiff bases of diamines and their complexes have a variety of applications including biological, clinical and analytical (Garg & Kumar, 2003; Mokles & Elzaher, 2001; Amirnasr et al., 2002). A great number of Schiff base complexes with metals have provoked wide interest because they possess a diverse spectrum of biological and pharmaceutical activities, such as antitumor and antioxidative activities, as well as the inhibition of lipid peroxidation (Bella et al., 2004; Chandra & Kumar, 2005; Ray et al., 2003; Yang et al., 2000). We report here the crystal structure of the title compound.
In the molecule of the title compound, (Fig. 1) the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Rings A (C1—C6) and B (C8—C13) are, of course, planar, and they are oriented at a dihedral angle of 0.78 (20)°; with the exception of two methyl H atoms the molecule is essentially planar. It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Therefore, one can expect thermochromic properties in the title compound as a result of the planarity of the molecule. The intramolecular O—H···N hydrogen bond (Table 1) results in the formation of a non-planar, six-membered ring C (N1/O1/C7/C8/C13/H1); this adopts a flattened-boat conformation having a total puckering amplitude, QT, of 0.381 (3) Å (Cremer & Pople, 1975).
In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules to form a network structure (Fig. 2), in which they are arranged parallel to each other (Fig. 3). A C—H···π contact (Table 1) between the methyl group and B ring is observed. A π—π contact between the A and B rings Cg1···Cg2i [symmetry code: (i) x, y - 1, z, where Cg1 and Cg2 are the centroids of the rings A and B, respectively, further stabilizes the structure, with a centroid-centroid distance of 4.681 (5) Å.
Experimental
The title compound was prepared by the usual condensation method. Aniline (0.931 g, 10 mmol) was dissolved in methanol (10 ml) and added to a solution of 4-methoxysalicylaldehyde (3.042 g, 20 mmol) in methanol (10 ml). The reaction mixture was stirred for 3 h and left overnight at 298 K. The resulting precipitate was filtered and washed with cold ethanol. It was recrystalized from dichloromethane, dried in a vacuum desiccator and the purity was checked by TLC (yield; 3.854 g, 84%, m.p. 341 K).
Refinement
H1 (attached to O1) and H7 (attached to C7) were located in difference syntheses and refined isotropically [O—H = 0.86 (5) Å and Uiso(H) = 0.05 (3) Å2; C—H = 1.03 (5) Å and Uiso(H) = 0.039 (18) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms. A restraint on the O—H bond was applied.
Figures
Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a double dashed line.
Fig. 2.
A part of the crystal structure of the title compound, showing the formation of the network structure. Hydrogen bonds are shown as dashed lines.
Fig. 3.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Crystal data
| C14H13NO2 | F000 = 480 |
| Mr = 227.26 | Dx = 1.300 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
| a = 20.935 (2) Å | θ = 5.2–17.4º |
| b = 4.7151 (10) Å | µ = 0.09 mm−1 |
| c = 12.276 (3) Å | T = 294 (2) K |
| β = 106.623 (14)º | Rod-shaped, orange |
| V = 1161.1 (4) Å3 | 0.40 × 0.20 × 0.10 mm |
| Z = 4 |
Data collection
| Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.048 |
| Radiation source: fine-focus sealed tube | θmax = 23.1º |
| Monochromator: graphite | θmin = 3.3º |
| T = 294(2) K | h = −22→21 |
| non–profiled ω scans | k = 0→5 |
| Absorption correction: ψ scan(North et al., 1968) | l = 0→13 |
| Tmin = 0.971, Tmax = 0.990 | 3 standard reflections |
| 1653 measured reflections | every 120 min |
| 1560 independent reflections | intensity decay: 1% |
| 521 reflections with I > 2σ(I) |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.064 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.207 | w = 1/[σ2(Fo2) + (0.0803P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 0.92 | (Δ/σ)max < 0.001 |
| 1560 reflections | Δρmax = 0.20 e Å−3 |
| 163 parameters | Δρmin = −0.20 e Å−3 |
| 1 restraint | Extinction correction: none |
| Primary atom site location: structure-invariant direct methods |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.7505 (3) | 0.7726 (12) | 1.0014 (4) | 0.0656 (17) | |
| H1 | 0.725 (3) | 0.879 (11) | 0.951 (4) | 0.05 (3)* | |
| O2 | 0.9196 (2) | 0.2785 (11) | 0.7864 (4) | 0.0649 (16) | |
| N1 | 0.7019 (3) | 1.0588 (12) | 0.8146 (5) | 0.0452 (17) | |
| C1 | 0.6566 (3) | 1.2627 (15) | 0.7496 (6) | 0.043 (2) | |
| C2 | 0.6507 (4) | 1.3416 (17) | 0.6390 (7) | 0.065 (3) | |
| H2 | 0.6792 | 1.2622 | 0.6015 | 0.078* | |
| C3 | 0.6041 (4) | 1.5335 (18) | 0.5837 (7) | 0.079 (3) | |
| H3 | 0.6003 | 1.5789 | 0.5083 | 0.095* | |
| C4 | 0.5626 (4) | 1.6608 (17) | 0.6377 (8) | 0.066 (3) | |
| H4 | 0.5314 | 1.7939 | 0.5997 | 0.079* | |
| C5 | 0.5677 (4) | 1.5897 (17) | 0.7486 (8) | 0.064 (2) | |
| H5 | 0.5399 | 1.6744 | 0.7860 | 0.076* | |
| C6 | 0.6144 (4) | 1.3919 (15) | 0.8039 (6) | 0.055 (2) | |
| H6 | 0.6177 | 1.3443 | 0.8789 | 0.066* | |
| C7 | 0.7415 (4) | 0.9240 (16) | 0.7710 (7) | 0.043 (2) | |
| H7 | 0.742 (2) | 0.943 (11) | 0.688 (5) | 0.039 (18)* | |
| C8 | 0.7886 (3) | 0.7208 (15) | 0.8350 (6) | 0.0397 (19) | |
| C9 | 0.8325 (3) | 0.5868 (15) | 0.7860 (6) | 0.049 (2) | |
| H9 | 0.8306 | 0.6280 | 0.7111 | 0.059* | |
| C10 | 0.8787 (4) | 0.3956 (16) | 0.8450 (7) | 0.048 (2) | |
| C11 | 0.8823 (4) | 0.3314 (16) | 0.9555 (7) | 0.057 (2) | |
| H11 | 0.9139 | 0.2028 | 0.9962 | 0.068* | |
| C12 | 0.8383 (4) | 0.4607 (17) | 1.0059 (6) | 0.056 (2) | |
| H12 | 0.8402 | 0.4159 | 1.0805 | 0.067* | |
| C13 | 0.7918 (4) | 0.6544 (17) | 0.9470 (7) | 0.049 (2) | |
| C14 | 0.9735 (3) | 0.1055 (17) | 0.8484 (7) | 0.077 (3) | |
| H14A | 0.9978 | 0.0375 | 0.7982 | 0.115* | |
| H14B | 0.9563 | −0.0527 | 0.8805 | 0.115* | |
| H14C | 1.0026 | 0.2150 | 0.9082 | 0.115* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.085 (4) | 0.070 (4) | 0.045 (4) | 0.028 (4) | 0.023 (3) | 0.010 (4) |
| O2 | 0.062 (4) | 0.072 (4) | 0.064 (4) | 0.026 (3) | 0.025 (3) | 0.010 (3) |
| N1 | 0.058 (4) | 0.033 (4) | 0.043 (4) | −0.003 (3) | 0.012 (4) | 0.001 (3) |
| C1 | 0.047 (5) | 0.032 (5) | 0.046 (5) | −0.010 (4) | 0.005 (4) | 0.000 (5) |
| C2 | 0.067 (6) | 0.069 (7) | 0.055 (6) | 0.028 (5) | 0.011 (5) | 0.004 (5) |
| C3 | 0.089 (7) | 0.074 (7) | 0.063 (6) | 0.034 (6) | 0.005 (6) | 0.015 (6) |
| C4 | 0.071 (7) | 0.038 (6) | 0.072 (7) | 0.007 (5) | −0.008 (5) | 0.003 (5) |
| C5 | 0.052 (6) | 0.048 (6) | 0.092 (8) | 0.001 (5) | 0.023 (5) | −0.006 (5) |
| C6 | 0.062 (5) | 0.043 (5) | 0.068 (6) | 0.006 (5) | 0.031 (5) | 0.006 (5) |
| C7 | 0.046 (5) | 0.041 (5) | 0.040 (5) | −0.003 (4) | 0.008 (4) | −0.002 (5) |
| C8 | 0.046 (5) | 0.033 (5) | 0.036 (5) | 0.003 (4) | 0.007 (4) | 0.003 (4) |
| C9 | 0.059 (5) | 0.043 (5) | 0.040 (5) | −0.002 (5) | 0.008 (4) | −0.001 (4) |
| C10 | 0.052 (5) | 0.037 (5) | 0.053 (6) | 0.001 (4) | 0.014 (4) | 0.010 (5) |
| C11 | 0.058 (5) | 0.052 (6) | 0.058 (6) | 0.013 (5) | 0.014 (5) | 0.022 (5) |
| C12 | 0.068 (6) | 0.062 (6) | 0.034 (5) | 0.000 (5) | 0.010 (4) | 0.006 (5) |
| C13 | 0.054 (5) | 0.048 (6) | 0.046 (5) | −0.002 (4) | 0.014 (4) | −0.005 (5) |
| C14 | 0.064 (6) | 0.074 (6) | 0.093 (7) | 0.034 (5) | 0.025 (5) | 0.011 (6) |
Geometric parameters (Å, °)
| O1—C13 | 1.355 (8) | C6—H6 | 0.9300 |
| O1—H1 | 0.86 (5) | C7—C8 | 1.437 (9) |
| O2—C10 | 1.381 (8) | C7—H7 | 1.03 (5) |
| O2—C14 | 1.423 (7) | C8—C13 | 1.393 (8) |
| N1—C1 | 1.424 (8) | C9—C8 | 1.387 (9) |
| N1—C7 | 1.277 (8) | C9—C10 | 1.368 (8) |
| C1—C2 | 1.379 (9) | C9—H9 | 0.9300 |
| C2—C3 | 1.362 (9) | C11—C10 | 1.370 (8) |
| C2—H2 | 0.9300 | C11—C12 | 1.390 (9) |
| C3—H3 | 0.9300 | C11—H11 | 0.9300 |
| C4—C3 | 1.372 (10) | C12—C13 | 1.378 (9) |
| C4—C5 | 1.376 (9) | C12—H12 | 0.9300 |
| C4—H4 | 0.9300 | C14—H14A | 0.9600 |
| C5—H5 | 0.9300 | C14—H14B | 0.9600 |
| C6—C1 | 1.390 (9) | C14—H14C | 0.9600 |
| C6—C5 | 1.381 (9) | ||
| C13—O1—H1 | 104 (5) | C9—C8—C13 | 118.3 (7) |
| C10—O2—C14 | 117.7 (6) | C9—C8—C7 | 120.2 (7) |
| C7—N1—C1 | 120.6 (7) | C13—C8—C7 | 121.5 (7) |
| C2—C1—C6 | 117.7 (7) | C10—C9—C8 | 121.8 (7) |
| C2—C1—N1 | 126.2 (7) | C10—C9—H9 | 119.1 |
| C6—C1—N1 | 116.1 (7) | C8—C9—H9 | 119.1 |
| C3—C2—C1 | 121.3 (8) | C9—C10—C11 | 120.1 (8) |
| C3—C2—H2 | 119.3 | C9—C10—O2 | 115.9 (7) |
| C1—C2—H2 | 119.3 | C11—C10—O2 | 124.0 (7) |
| C2—C3—C4 | 120.8 (9) | C10—C11—C12 | 119.2 (7) |
| C2—C3—H3 | 119.6 | C10—C11—H11 | 120.4 |
| C4—C3—H3 | 119.6 | C12—C11—H11 | 120.4 |
| C3—C4—C5 | 119.4 (9) | C13—C12—C11 | 121.0 (8) |
| C3—C4—H4 | 120.3 | C13—C12—H12 | 119.5 |
| C5—C4—H4 | 120.3 | C11—C12—H12 | 119.5 |
| C4—C5—C6 | 119.7 (8) | O1—C13—C12 | 117.9 (8) |
| C4—C5—H5 | 120.2 | O1—C13—C8 | 122.5 (7) |
| C6—C5—H5 | 120.2 | C12—C13—C8 | 119.6 (8) |
| C5—C6—C1 | 121.2 (8) | O2—C14—H14A | 109.5 |
| C5—C6—H6 | 119.4 | O2—C14—H14B | 109.5 |
| C1—C6—H6 | 119.4 | H14A—C14—H14B | 109.5 |
| N1—C7—C8 | 121.9 (8) | O2—C14—H14C | 109.5 |
| N1—C7—H7 | 125 (3) | H14A—C14—H14C | 109.5 |
| C8—C7—H7 | 113 (3) | H14B—C14—H14C | 109.5 |
| C7—N1—C1—C2 | −1.5 (10) | N1—C7—C8—C13 | 2.1 (10) |
| C7—N1—C1—C6 | 178.3 (7) | C9—C8—C13—O1 | −179.3 (7) |
| C1—N1—C7—C8 | 178.8 (6) | C7—C8—C13—O1 | 1.1 (11) |
| C14—O2—C10—C9 | 172.5 (6) | C9—C8—C13—C12 | 0.4 (10) |
| C14—O2—C10—C11 | −7.3 (10) | C7—C8—C13—C12 | −179.2 (7) |
| N1—C1—C2—C3 | 178.0 (7) | C10—C9—C8—C13 | −0.6 (10) |
| C6—C1—C2—C3 | −1.8 (11) | C10—C9—C8—C7 | 179.0 (6) |
| C1—C2—C3—C4 | 1.9 (12) | C8—C9—C10—C11 | 0.1 (11) |
| C5—C4—C3—C2 | −1.0 (12) | C8—C9—C10—O2 | −179.7 (6) |
| C3—C4—C5—C6 | 0.1 (12) | C12—C11—C10—C9 | 0.6 (11) |
| C5—C6—C1—C2 | 0.8 (10) | C12—C11—C10—O2 | −179.6 (7) |
| C5—C6—C1—N1 | −179.0 (6) | C10—C11—C12—C13 | −0.8 (11) |
| C1—C6—C5—C4 | 0.0 (11) | C11—C12—C13—O1 | −179.9 (7) |
| N1—C7—C8—C9 | −177.5 (7) | C11—C12—C13—C8 | 0.4 (11) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1···N1 | 0.86 (5) | 1.82 (5) | 2.604 (7) | 152 (5) |
| C7—H7···O1i | 1.03 (5) | 2.55 (6) | 3.493 (10) | 151 (4) |
| C14—H14A···O2ii | 0.96 | 2.57 | 3.500 (6) | 164 |
| C14—H14B···Cg2iii | 0.96 | 3.27 | 4.142 (8) | 152 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+2, y−1/2, −z+3/2; (iii) x, y+1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2275).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Amirnasr, M., Mahmoudkhani, A. H., Gorji, A., Dehghanpour, S. & Bijanzadeh, H. R. (2002). Polyhedron, 21, 2733–2742.
- Bella, S. D., Fragala, I., Leonardi, N. & Sortino, S. (2004). Inorg. Chim. Acta, 357, 3865–3870.
- Chandra, S. & Kumar, U. (2005). Spectrochim. Acta Part A, 61, 219–224. [DOI] [PubMed]
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
- Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Garg, B. S. & Kumar, D. N. (2003). Spectrochim. Acta Part A, 59, 229–334. [DOI] [PubMed]
- Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
- Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805. [DOI] [PubMed]
- Mokles, M. & Elzaher, A. (2001). J. Chin. Chem. Soc.48, 153–158.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Ray, M. S., Bhattacharya, R., Chaudhuri, S., Righi, L., Bocelli, G., Mukhopadhyay, G. & Ghosh, A. (2003). Polyhedron, 22, 617–624.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
- Uçan, S. Y. & Mercimek, B. (2005). Synth. React. Inorg. Met.-Org. Nanometal Chem.35, 197–201.
- Uçan, S. Y., Uçan, M. & Mercimek, B. (2005). Synth. React. Inorg. Met.-Org. Nanometal Chem.35, 417–421.
- Yang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599–2604.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808026883/wn2275sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026883/wn2275Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



