Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 9;64(Pt 9):o1730. doi: 10.1107/S1600536808025105

1-[1-(4-Nitro­phen­yl)ethyl­idene]thio­semicarbazide

Jian-Gang Wang a, Fang-Fang Jian b,*, Yu-Feng Ding c
PMCID: PMC2960583  PMID: 21201713

Abstract

The title compound, C9H10N4O2S, was prepared by the reaction of 1-(4-nitro­phen­yl)ethanone and thio­semicarbazide in ethanol at 367 K. There are weak inter­molecular N—H⋯S and N—H⋯O hydrogen-bonding inter­actions in the crystal structure involving the amine and nitrile groups, respectively, as donors.

Related literature

For related literature, see: Jian et al. (2006); Qin et al. (2006); Rozwadowski et al. (1999).graphic file with name e-64-o1730-scheme1.jpg

Experimental

Crystal data

  • C9H10N4O2S

  • M r = 238.27

  • Triclinic, Inline graphic

  • a = 7.4450 (15) Å

  • b = 9.3180 (19) Å

  • c = 9.4050 (19) Å

  • α = 62.08 (3)°

  • β = 76.41 (3)°

  • γ = 69.02 (3)°

  • V = 536.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 (2) K

  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 2493 measured reflections

  • 2307 independent reflections

  • 1776 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.140

  • S = 1.08

  • 2307 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808025105/at2598sup1.cif

e-64-o1730-sup1.cif (14.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025105/at2598Isup2.hkl

e-64-o1730-Isup2.hkl (113.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯S1i 0.86 2.74 3.581 (2) 166
N4—H4A⋯O1ii 0.86 2.35 3.101 (3) 146
N4—H4B⋯O2iii 0.86 2.29 3.133 (3) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Jian et al., 2006). Schiff bases show biochemical and pharmacological applications. The growing interest in Schiff bases lately is also due to their ability to form intramolecular hydrogen bonds by electron coupling between acid-base centers (Rozwadowski et al.,1999). The title compound (I), was synthesized and we report here its crystal structure

In the crystal structure of (I) (Fig. 1). The C6–C9/N2/N3/S1 plane makes a dihedral angle of 19.78 (127)° with the benzene ring (C1—C6). The C═N bond length [1.281 (3) Å] and C═S bond length [1.685 (2) Å] are in agreement with those observed before (Jian et al., 2006; Qin et al., 2006). There are intermolecular N–H···S and N–H···O hydrogen-bond interactions to stabilize the crystal structure (Table 1).

Experimental

A mixture of hydrochloric acid 0.6 mL (0.02 mol) and thiosemicarbazide 1.8 g (0.02 mol) was stirred with ethanol (50 mL) at 293 K for 2 h, then add 1-(4-nitrophenyl)ethanone 3.3 g (0.02 mol), then afford the title compound [4.17 g, yield: 87.6%]. Single crystals suitable for X-ray measurements were obtained by recrystallization from acetone and ethanol(1:1) at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H and N—H distances of 0.93–0.96 and 0.86 Å, and with Uiso=1.2 or 1.5Ueq.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C9H10N4O2S Z = 2
Mr = 238.27 F000 = 248
Triclinic, P1 Dx = 1.475 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.4450 (15) Å Cell parameters from 1776 reflections
b = 9.3180 (19) Å θ = 2.5–27.0º
c = 9.4050 (19) Å µ = 0.29 mm1
α = 62.08 (3)º T = 293 (2) K
β = 76.41 (3)º Block, yellow
γ = 69.02 (3)º 0.20 × 0.15 × 0.10 mm
V = 536.5 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 1776 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.026
Monochromator: graphite θmax = 27.0º
T = 293(2) K θmin = 2.5º
φ and ω scans h = 0→8
Absorption correction: none k = −11→11
2493 measured reflections l = −11→11
2307 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.140   w = 1/[σ2(Fo2) + (0.0802P)2 + 0.1605P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
2307 reflections Δρmax = 0.39 e Å3
145 parameters Δρmin = −0.38 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.18728 (10) 0.97254 (7) 0.38617 (7) 0.0483 (2)
O1 0.2761 (3) −0.3046 (2) 1.2287 (3) 0.0697 (6)
O2 0.4183 (3) −0.2729 (2) 1.3830 (2) 0.0680 (6)
N1 0.3337 (3) −0.2167 (2) 1.2626 (2) 0.0472 (5)
N2 0.0574 (3) 0.5445 (2) 0.7336 (2) 0.0373 (4)
N3 0.0128 (3) 0.7117 (2) 0.6222 (2) 0.0394 (4)
H3A 0.0744 0.7778 0.6144 0.047*
N4 −0.2206 (3) 0.6599 (2) 0.5464 (2) 0.0521 (5)
H4A −0.1876 0.5573 0.6190 0.063*
H4B −0.3121 0.6918 0.4873 0.063*
C1 0.1766 (3) 0.1958 (3) 0.9090 (3) 0.0392 (5)
H1A 0.1182 0.2381 0.8145 0.047*
C2 0.2135 (3) 0.0244 (3) 1.0120 (3) 0.0410 (5)
H2B 0.1813 −0.0485 0.9871 0.049*
C3 0.2990 (3) −0.0353 (2) 1.1521 (3) 0.0364 (5)
C4 0.3527 (3) 0.0684 (3) 1.1924 (3) 0.0415 (5)
H4C 0.4109 0.0249 1.2873 0.050*
C5 0.3167 (3) 0.2400 (3) 1.0864 (3) 0.0397 (5)
H5A 0.3537 0.3112 1.1100 0.048*
C6 0.2260 (3) 0.3065 (2) 0.9453 (2) 0.0337 (4)
C7 0.1848 (3) 0.4909 (2) 0.8317 (3) 0.0371 (5)
C8 0.2907 (4) 0.5977 (3) 0.8389 (4) 0.0631 (8)
H8A 0.2478 0.7120 0.7589 0.095*
H8B 0.4268 0.5521 0.8185 0.095*
H8C 0.2649 0.5972 0.9441 0.095*
C9 −0.1299 (3) 0.7696 (3) 0.5255 (3) 0.0384 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0686 (4) 0.0278 (3) 0.0474 (4) −0.0157 (3) −0.0254 (3) −0.0044 (2)
O1 0.0890 (15) 0.0312 (9) 0.0844 (14) −0.0239 (9) −0.0267 (11) −0.0073 (9)
O2 0.0795 (14) 0.0444 (10) 0.0588 (11) −0.0168 (9) −0.0295 (10) 0.0051 (9)
N1 0.0442 (11) 0.0309 (9) 0.0534 (12) −0.0102 (8) −0.0077 (9) −0.0062 (8)
N2 0.0450 (10) 0.0227 (8) 0.0400 (9) −0.0076 (7) −0.0105 (8) −0.0084 (7)
N3 0.0478 (10) 0.0242 (8) 0.0446 (10) −0.0109 (7) −0.0151 (8) −0.0078 (7)
N4 0.0678 (14) 0.0332 (10) 0.0558 (12) −0.0205 (9) −0.0276 (10) −0.0047 (9)
C1 0.0448 (12) 0.0296 (10) 0.0433 (11) −0.0090 (8) −0.0139 (9) −0.0120 (9)
C2 0.0468 (12) 0.0285 (10) 0.0513 (13) −0.0119 (9) −0.0106 (10) −0.0158 (9)
C3 0.0352 (11) 0.0254 (9) 0.0404 (11) −0.0070 (8) −0.0027 (8) −0.0088 (8)
C4 0.0462 (12) 0.0361 (11) 0.0392 (11) −0.0105 (9) −0.0112 (9) −0.0109 (9)
C5 0.0481 (12) 0.0296 (10) 0.0444 (12) −0.0100 (9) −0.0119 (9) −0.0152 (9)
C6 0.0347 (10) 0.0242 (9) 0.0400 (11) −0.0063 (8) −0.0064 (8) −0.0119 (8)
C7 0.0404 (11) 0.0249 (9) 0.0442 (11) −0.0068 (8) −0.0093 (9) −0.0124 (9)
C8 0.0745 (18) 0.0316 (11) 0.0821 (19) −0.0198 (12) −0.0407 (15) −0.0044 (12)
C9 0.0481 (12) 0.0284 (10) 0.0379 (11) −0.0111 (9) −0.0093 (9) −0.0108 (8)

Geometric parameters (Å, °)

S1—C9 1.685 (2) C1—H1A 0.9300
O1—N1 1.231 (3) C2—C3 1.381 (3)
O2—N1 1.224 (3) C2—H2B 0.9300
N1—C3 1.473 (3) C3—C4 1.389 (3)
N2—C7 1.281 (3) C4—C5 1.395 (3)
N2—N3 1.379 (2) C4—H4C 0.9300
N3—C9 1.353 (3) C5—C6 1.397 (3)
N3—H3A 0.8600 C5—H5A 0.9300
N4—C9 1.336 (3) C6—C7 1.498 (3)
N4—H4A 0.8600 C7—C8 1.506 (3)
N4—H4B 0.8600 C8—H8A 0.9600
C1—C2 1.388 (3) C8—H8B 0.9600
C1—C6 1.406 (3) C8—H8C 0.9600
O2—N1—O1 123.1 (2) C3—C4—H4C 121.0
O2—N1—C3 118.7 (2) C5—C4—H4C 121.0
O1—N1—C3 118.15 (19) C4—C5—C6 121.2 (2)
C7—N2—N3 119.08 (18) C4—C5—H5A 119.4
C9—N3—N2 118.64 (17) C6—C5—H5A 119.4
C9—N3—H3A 120.7 C5—C6—C1 118.60 (18)
N2—N3—H3A 120.7 C5—C6—C7 121.53 (18)
C9—N4—H4A 120.0 C1—C6—C7 119.86 (18)
C9—N4—H4B 120.0 N2—C7—C6 114.93 (18)
H4A—N4—H4B 120.0 N2—C7—C8 125.16 (19)
C2—C1—C6 121.03 (19) C6—C7—C8 119.91 (18)
C2—C1—H1A 119.5 C7—C8—H8A 109.5
C6—C1—H1A 119.5 C7—C8—H8B 109.5
C3—C2—C1 118.5 (2) H8A—C8—H8B 109.5
C3—C2—H2B 120.8 C7—C8—H8C 109.5
C1—C2—H2B 120.8 H8A—C8—H8C 109.5
C2—C3—C4 122.67 (19) H8B—C8—H8C 109.5
C2—C3—N1 118.13 (19) N4—C9—N3 117.19 (18)
C4—C3—N1 119.20 (19) N4—C9—S1 122.63 (17)
C3—C4—C5 118.0 (2) N3—C9—S1 120.19 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···S1i 0.86 2.74 3.581 (2) 166
N4—H4A···O1ii 0.86 2.35 3.101 (3) 146
N4—H4B···O2iii 0.86 2.29 3.133 (3) 166

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, −y, −z+2; (iii) x−1, y+1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2598).

References

  1. Bruker (1997). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Jian, F.-F., Zhuang, R.-R., Wang, K.-F., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, o3198–o3199.
  3. Qin, Y.-Q., Ren, X.-Y., Liang, T.-L. & Jian, F.-F. (2006). Acta Cryst. E62, o5215–o5216.
  4. Rozwadowski, Z., Majewski, E., Dziembowska, T. & Hansen, P. E. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2809–2817.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808025105/at2598sup1.cif

e-64-o1730-sup1.cif (14.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025105/at2598Isup2.hkl

e-64-o1730-Isup2.hkl (113.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES