Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 30;64(Pt 9):m1206. doi: 10.1107/S1600536808026329

{μ-6,6′-Dimeth­oxy-2,2′-[propane-1,3-diylbis(nitrilo­methyl­idyne)]diphenolato}trinitratocopper(II)europium(III)

Jing-Chun Xing a,b, Jing-Hua Wang b, Peng-Fei Yan b, Guang-Ming Li b,*
PMCID: PMC2960587  PMID: 21201642

Abstract

In the title complex, [CuEu(C19H20N2O4)(NO3)3], the CuII ion is four-coordinated in a square-planar geometry by two O atoms and two N atoms of the deprotonated Schiff base. The EuIII atom is ten-coordinate, chelated by three nitrate groups and linked to the four O atoms of the deprotonated Schiff base.

Related literature

For copper–lanthanide complexes of the same Schiff base, see: Elmali & Elerman (2003); Elmali & Elerman (2004).graphic file with name e-64-m1206-scheme1.jpg

Experimental

Crystal data

  • [CuEu(C19H20N2O4)(NO3)3]

  • M r = 741.90

  • Monoclinic, Inline graphic

  • a = 11.638 (2) Å

  • b = 14.680 (3) Å

  • c = 14.853 (3) Å

  • β = 101.52 (3)°

  • V = 2486.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.43 mm−1

  • T = 291 (2) K

  • 0.21 × 0.20 × 0.19 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.527, T max = 0.568 (expected range = 0.484–0.521)

  • 23524 measured reflections

  • 5660 independent reflections

  • 5072 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.058

  • S = 1.06

  • 5660 reflections

  • 354 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808026329/fj2142sup1.cif

e-64-m1206-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026329/fj2142Isup2.hkl

e-64-m1206-Isup2.hkl (277.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is supported financially by the National Natural Science Foundation of China (Nos. 20672032 and 20572018), the Key Laboratory of Heilongjiang Province and the Education Department of Heilongjiang Province (Nos. ZJG0504, JC200605, 1152GZD02 and 2006FRFLXG031).

supplementary crystallographic information

Comment

As shown in Fig. 1, the hexadentate Schiff base ligand links Cu and Eu atoms into a dinuclear complex through two phenolate O atoms, which is similar with the bonding reported for another copper-lanthanide complex of the same ligand (Elmali & Elerman, 2003, 2004). The EuIII centre in (I) is ten-coordinated by four oxygen atoms from the ligand and six oxygen atoms from three nitrate ions. The CuII center is four-coordinate by two nitrogen atoms and two oxygen atoms from the ligand.

Experimental

The title complex was obtained by the treatment of copper(II) acetate monohydrate (0.0499 g, 0.25 mmol) with the Schiff base (0.0855 g, 0.25 mmol) in methanol (25 ml)at room temperature. Then the mixture was refluxed for 3 h after the addition of europium (III) nitrate hexahydrate (0.1117 g, 0.25 mmol). The reaction mixture was cooled and filtered; diethyl ether was allowed to diffuse slowly into the solution of the filtrate. Single crystals were obtained after several days. Analysis calculated for C19H20CuN5O13Eu: C, 30.78; H, 2.76; Cu, 8.50; N, 9.38; Eu, 20.58; found: C, 30.73; H, 2.70; Cu, 8.56; N, 9.44; Eu, 20.61%.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methylene C), and with Uiso(H) = 1.2Ueq(C) or C—H = 0.96 Å (methly C) and with Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 40% probability displacement ellipsoids.

Crystal data

[CuEu(C19H20N2O4)(NO3)3] F000 = 1460
Mr = 741.90 Dx = 1.982 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 17062 reflections
a = 11.638 (2) Å θ = 3.0–27.5º
b = 14.680 (3) Å µ = 3.43 mm1
c = 14.853 (3) Å T = 291 (2) K
β = 101.52 (3)º Block, red
V = 2486.5 (9) Å3 0.21 × 0.20 × 0.19 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 5660 independent reflections
Radiation source: fine-focus sealed tube 5072 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.031
Detector resolution: 10.000 pixels mm-1 θmax = 27.5º
T = 291(2) K θmin = 3.1º
ω scans h = −15→13
Absorption correction: multi-scan(ABSCOR; Higashi, 1995) k = −19→19
Tmin = 0.527, Tmax = 0.568 l = −19→19
23524 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024 H-atom parameters constrained
wR(F2) = 0.058   w = 1/[σ2(Fo2) + (0.0213P)2 + 2.281P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.002
5660 reflections Δρmax = 0.72 e Å3
354 parameters Δρmin = −0.44 e Å3
6 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9061 (2) 0.36789 (18) −0.06244 (19) 0.0317 (6)
C2 0.7932 (3) 0.3919 (2) −0.10789 (19) 0.0345 (6)
C3 0.7755 (3) 0.4599 (2) −0.1732 (2) 0.0449 (7)
H1 0.6999 0.4743 −0.2038 0.054*
C4 0.8712 (3) 0.5068 (2) −0.1931 (2) 0.0523 (9)
H2 0.8594 0.5536 −0.2361 0.063*
C5 0.9823 (3) 0.4844 (2) −0.1499 (2) 0.0463 (8)
H3 1.0456 0.5162 −0.1639 0.056*
C6 1.0024 (3) 0.4136 (2) −0.0841 (2) 0.0365 (6)
C7 1.1218 (3) 0.3936 (2) −0.0403 (2) 0.0397 (7)
H4 1.1783 0.4344 −0.0518 0.048*
C8 1.2885 (3) 0.3275 (2) 0.0496 (3) 0.0536 (9)
H5 1.3080 0.3813 0.0876 0.064*
H6 1.3290 0.3320 −0.0013 0.064*
C9 1.3326 (3) 0.2449 (2) 0.1056 (3) 0.0511 (9)
H7 1.3038 0.2462 0.1625 0.061*
H8 1.4176 0.2469 0.1211 0.061*
C10 1.2950 (3) 0.1573 (2) 0.0561 (3) 0.0488 (8)
H9 1.2975 0.1638 −0.0085 0.059*
H10 1.3483 0.1088 0.0815 0.059*
C11 1.1568 (2) 0.05275 (19) 0.09083 (19) 0.0336 (6)
H11 1.2194 0.0126 0.0954 0.040*
C12 1.0502 (2) 0.01617 (18) 0.11234 (18) 0.0304 (6)
C13 1.0533 (3) −0.0754 (2) 0.1430 (2) 0.0380 (7)
H12 1.1202 −0.1105 0.1442 0.046*
C14 0.9582 (3) −0.1123 (2) 0.1709 (2) 0.0458 (8)
H13 0.9602 −0.1727 0.1899 0.055*
C15 0.8589 (3) −0.0602 (2) 0.1710 (2) 0.0413 (7)
H14 0.7953 −0.0853 0.1914 0.050*
C16 0.8541 (2) 0.02870 (19) 0.14095 (19) 0.0321 (6)
C17 0.9492 (2) 0.06820 (17) 0.10940 (17) 0.0282 (5)
C18 0.6700 (3) 0.0552 (3) 0.1857 (3) 0.0560 (9)
H15 0.6339 0.0016 0.1553 0.084*
H16 0.6119 0.1019 0.1839 0.084*
H17 0.7039 0.0408 0.2484 0.084*
C19 0.5899 (3) 0.3491 (3) −0.1377 (3) 0.0647 (11)
H18 0.5650 0.4115 −0.1394 0.097*
H19 0.5363 0.3122 −0.1121 0.097*
H20 0.5913 0.3287 −0.1988 0.097*
Cu1 1.05535 (3) 0.22819 (2) 0.03974 (2) 0.03036 (8)
Eu1 0.762074 (11) 0.247433 (8) 0.068399 (9) 0.02785 (5)
N1 1.1594 (2) 0.32671 (17) 0.01249 (18) 0.0382 (6)
N2 1.1746 (2) 0.13432 (16) 0.06616 (17) 0.0341 (5)
N3 0.6075 (3) 0.12249 (19) −0.0485 (2) 0.0504 (7)
N4 0.8226 (5) 0.2655 (3) 0.2660 (2) 0.0872 (15)
N5 0.6480 (2) 0.42062 (17) 0.09471 (18) 0.0433 (6)
O1 0.91672 (16) 0.30177 (13) 0.00059 (14) 0.0353 (4)
O2 0.70508 (18) 0.34136 (15) −0.08175 (14) 0.0399 (5)
O3 0.93757 (16) 0.15332 (12) 0.07838 (13) 0.0324 (4)
O4 0.76063 (18) 0.08689 (14) 0.13955 (15) 0.0390 (5)
O5 0.7096 (2) 0.13933 (16) −0.06160 (16) 0.0478 (5)
O6 0.5492 (3) 0.0630 (2) −0.0900 (3) 0.1037 (13)
O7 0.57208 (18) 0.17165 (15) 0.01090 (16) 0.0445 (5)
O8 0.7188 (3) 0.25602 (16) 0.2249 (2) 0.0633 (8)
O9 0.8490 (5) 0.2703 (3) 0.3497 (2) 0.1377 (17)
O10 0.8992 (3) 0.2700 (2) 0.2174 (2) 0.0809 (10)
O11 0.58719 (19) 0.35057 (16) 0.07275 (17) 0.0478 (5)
O12 0.6061 (3) 0.49507 (18) 0.1043 (2) 0.0779 (9)
O13 0.75861 (19) 0.41086 (15) 0.10619 (17) 0.0457 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0326 (14) 0.0304 (13) 0.0328 (14) 0.0001 (11) 0.0084 (11) 0.0008 (11)
C2 0.0338 (15) 0.0357 (14) 0.0341 (14) −0.0031 (12) 0.0074 (12) 0.0002 (12)
C3 0.0492 (19) 0.0455 (18) 0.0374 (16) 0.0018 (15) 0.0022 (14) 0.0098 (13)
C4 0.062 (2) 0.052 (2) 0.0429 (18) −0.0013 (17) 0.0104 (16) 0.0185 (15)
C5 0.052 (2) 0.0428 (17) 0.0477 (18) −0.0078 (15) 0.0186 (16) 0.0115 (14)
C6 0.0382 (16) 0.0335 (14) 0.0408 (16) −0.0030 (12) 0.0149 (13) 0.0017 (12)
C7 0.0350 (16) 0.0353 (15) 0.0528 (18) −0.0075 (13) 0.0186 (14) 0.0013 (13)
C8 0.0262 (16) 0.0448 (19) 0.089 (3) −0.0044 (14) 0.0089 (17) −0.0001 (18)
C9 0.0259 (16) 0.059 (2) 0.067 (2) −0.0044 (14) 0.0062 (15) 0.0024 (17)
C10 0.0306 (16) 0.0420 (17) 0.079 (2) 0.0051 (14) 0.0225 (16) 0.0063 (16)
C11 0.0298 (14) 0.0363 (14) 0.0340 (14) 0.0067 (12) 0.0052 (11) 0.0010 (12)
C12 0.0329 (14) 0.0304 (13) 0.0280 (13) 0.0012 (11) 0.0065 (11) −0.0008 (10)
C13 0.0431 (17) 0.0323 (14) 0.0382 (16) 0.0068 (13) 0.0070 (13) 0.0022 (12)
C14 0.057 (2) 0.0283 (14) 0.0526 (19) −0.0006 (14) 0.0135 (16) 0.0089 (13)
C15 0.0448 (18) 0.0352 (15) 0.0463 (17) −0.0081 (13) 0.0145 (14) 0.0057 (13)
C16 0.0310 (14) 0.0312 (14) 0.0343 (14) −0.0015 (11) 0.0072 (11) 0.0011 (11)
C17 0.0323 (14) 0.0268 (12) 0.0254 (12) −0.0026 (11) 0.0054 (10) −0.0005 (10)
C18 0.0374 (18) 0.061 (2) 0.077 (3) −0.0020 (16) 0.0289 (18) 0.0201 (19)
C19 0.0328 (18) 0.084 (3) 0.069 (2) −0.0063 (18) −0.0103 (17) 0.024 (2)
Cu1 0.02206 (16) 0.03009 (16) 0.03997 (18) −0.00026 (13) 0.00866 (14) 0.00474 (14)
Eu1 0.02169 (8) 0.02888 (8) 0.03354 (8) −0.00131 (5) 0.00688 (5) −0.00045 (5)
N1 0.0247 (12) 0.0372 (13) 0.0539 (15) −0.0038 (10) 0.0110 (11) −0.0005 (11)
N2 0.0254 (12) 0.0361 (13) 0.0422 (13) 0.0030 (10) 0.0103 (10) 0.0021 (10)
N3 0.0429 (16) 0.0409 (15) 0.0632 (18) −0.0032 (12) 0.0008 (14) −0.0151 (13)
N4 0.119 (4) 0.100 (3) 0.0346 (16) 0.079 (3) −0.003 (2) −0.0102 (17)
N5 0.0479 (17) 0.0361 (14) 0.0454 (15) 0.0078 (12) 0.0084 (12) 0.0007 (11)
O1 0.0274 (10) 0.0341 (10) 0.0457 (11) 0.0018 (8) 0.0107 (9) 0.0132 (9)
O2 0.0270 (10) 0.0460 (12) 0.0437 (12) −0.0020 (9) 0.0002 (9) 0.0098 (9)
O3 0.0269 (10) 0.0276 (9) 0.0447 (11) 0.0020 (8) 0.0122 (8) 0.0073 (8)
O4 0.0310 (11) 0.0382 (11) 0.0521 (12) −0.0011 (9) 0.0181 (10) 0.0089 (9)
O5 0.0432 (13) 0.0474 (13) 0.0544 (13) −0.0019 (11) 0.0136 (11) −0.0141 (11)
O6 0.068 (2) 0.087 (2) 0.151 (3) −0.0302 (18) 0.010 (2) −0.070 (2)
O7 0.0293 (11) 0.0483 (13) 0.0551 (13) −0.0027 (9) 0.0066 (10) −0.0091 (11)
O8 0.088 (2) 0.0581 (16) 0.0499 (15) 0.0195 (14) 0.0294 (16) 0.0010 (12)
O9 0.166 (4) 0.192 (4) 0.0457 (17) 0.115 (3) −0.003 (2) −0.020 (2)
O10 0.0621 (19) 0.114 (3) 0.0561 (17) 0.0386 (18) −0.0146 (15) −0.0300 (17)
O11 0.0298 (11) 0.0466 (13) 0.0674 (15) 0.0017 (10) 0.0107 (10) −0.0029 (11)
O12 0.089 (2) 0.0437 (14) 0.099 (2) 0.0295 (15) 0.0140 (18) −0.0063 (15)
O13 0.0378 (12) 0.0380 (12) 0.0607 (14) −0.0067 (9) 0.0087 (10) −0.0057 (10)

Geometric parameters (Å, °)

C1—O1 1.337 (3) C16—O4 1.380 (3)
C1—C6 1.398 (4) C16—C17 1.409 (4)
C1—C2 1.398 (4) C17—O3 1.329 (3)
C2—C3 1.378 (4) C18—O4 1.445 (3)
C2—O2 1.383 (3) C18—H15 0.9600
C3—C4 1.392 (5) C18—H16 0.9600
C3—H1 0.9300 C18—H17 0.9600
C4—C5 1.363 (5) C19—O2 1.433 (4)
C4—H2 0.9300 C19—H18 0.9600
C5—C6 1.414 (4) C19—H19 0.9600
C5—H3 0.9300 C19—H20 0.9600
C6—C7 1.441 (4) Cu1—O3 1.9315 (18)
C7—N1 1.278 (4) Cu1—O1 1.9320 (19)
C7—H4 0.9300 Cu1—N2 1.940 (2)
C8—N1 1.494 (4) Cu1—N1 1.980 (2)
C8—C9 1.501 (5) Eu1—O1 2.3694 (19)
C8—H5 0.9700 Eu1—O3 2.4457 (18)
C8—H6 0.9700 Eu1—O13 2.466 (2)
C9—C10 1.502 (5) Eu1—O7 2.470 (2)
C9—H7 0.9700 Eu1—O8 2.478 (3)
C9—H8 0.9700 Eu1—O10 2.478 (3)
C10—N2 1.478 (4) Eu1—O5 2.480 (2)
C10—H9 0.9700 Eu1—O11 2.548 (2)
C10—H10 0.9700 Eu1—O4 2.584 (2)
C11—N2 1.281 (4) Eu1—O2 2.593 (2)
C11—C12 1.445 (4) N3—O6 1.198 (4)
C11—H11 0.9300 N3—O5 1.266 (4)
C12—C17 1.395 (4) N3—O7 1.271 (3)
C12—C13 1.418 (4) N4—O9 1.222 (5)
C13—C14 1.368 (4) N4—O8 1.249 (5)
C13—H12 0.9300 N4—O10 1.256 (6)
C14—C15 1.387 (5) N5—O12 1.216 (3)
C14—H13 0.9300 N5—O11 1.254 (3)
C15—C16 1.376 (4) N5—O13 1.273 (3)
C15—H14 0.9300
O1—C1—C6 122.9 (3) O1—Eu1—O3 61.31 (6)
O1—C1—C2 117.9 (2) O1—Eu1—O13 79.49 (7)
C6—C1—C2 119.2 (3) O3—Eu1—O13 125.96 (7)
C3—C2—O2 124.8 (3) O1—Eu1—O7 135.09 (7)
C3—C2—C1 121.1 (3) O3—Eu1—O7 116.46 (7)
O2—C2—C1 114.0 (2) O13—Eu1—O7 117.56 (7)
C2—C3—C4 119.6 (3) O1—Eu1—O8 134.09 (10)
C2—C3—H1 120.2 O3—Eu1—O8 107.21 (9)
C4—C3—H1 120.2 O13—Eu1—O8 73.82 (8)
C5—C4—C3 120.3 (3) O7—Eu1—O8 90.65 (10)
C5—C4—H2 119.8 O1—Eu1—O10 85.77 (10)
C3—C4—H2 119.8 O3—Eu1—O10 68.91 (8)
C4—C5—C6 120.9 (3) O13—Eu1—O10 72.77 (9)
C4—C5—H3 119.6 O7—Eu1—O10 137.83 (11)
C6—C5—H3 119.6 O8—Eu1—O10 51.04 (12)
C1—C6—C5 118.8 (3) O1—Eu1—O5 88.53 (8)
C1—C6—C7 122.9 (3) O3—Eu1—O5 76.02 (8)
C5—C6—C7 118.2 (3) O13—Eu1—O5 141.92 (8)
N1—C7—C6 127.9 (3) O7—Eu1—O5 51.56 (8)
N1—C7—H4 116.1 O8—Eu1—O5 134.29 (9)
C6—C7—H4 116.1 O10—Eu1—O5 142.67 (9)
N1—C8—C9 113.9 (3) O1—Eu1—O11 119.29 (7)
N1—C8—H5 108.8 O3—Eu1—O11 174.77 (7)
C9—C8—H5 108.8 O13—Eu1—O11 50.70 (7)
N1—C8—H6 108.8 O7—Eu1—O11 67.17 (8)
C9—C8—H6 108.8 O8—Eu1—O11 68.45 (9)
H5—C8—H6 107.7 O10—Eu1—O11 105.86 (9)
C8—C9—C10 112.7 (3) O5—Eu1—O11 109.04 (8)
C8—C9—H7 109.0 O1—Eu1—O4 123.26 (6)
C10—C9—H7 109.0 O3—Eu1—O4 62.20 (6)
C8—C9—H8 109.0 O13—Eu1—O4 142.41 (8)
C10—C9—H8 109.0 O7—Eu1—O4 69.64 (7)
H7—C9—H8 107.8 O8—Eu1—O4 69.12 (7)
N2—C10—C9 109.6 (3) O10—Eu1—O4 79.18 (10)
N2—C10—H9 109.7 O5—Eu1—O4 73.38 (8)
C9—C10—H9 109.7 O11—Eu1—O4 117.46 (7)
N2—C10—H10 109.7 O1—Eu1—O2 62.67 (7)
C9—C10—H10 109.7 O3—Eu1—O2 114.81 (7)
H9—C10—H10 108.2 O13—Eu1—O2 70.45 (8)
N2—C11—C12 127.3 (3) O7—Eu1—O2 83.38 (8)
N2—C11—H11 116.3 O8—Eu1—O2 135.61 (8)
C12—C11—H11 116.3 O10—Eu1—O2 134.86 (10)
C17—C12—C13 119.8 (3) O5—Eu1—O2 71.93 (8)
C17—C12—C11 123.0 (2) O11—Eu1—O2 68.74 (8)
C13—C12—C11 117.1 (3) O4—Eu1—O2 144.61 (7)
C14—C13—C12 120.1 (3) C7—N1—C8 114.6 (3)
C14—C13—H12 120.0 C7—N1—Cu1 122.6 (2)
C12—C13—H12 120.0 C8—N1—Cu1 122.8 (2)
C13—C14—C15 120.5 (3) C11—N2—C10 117.0 (2)
C13—C14—H13 119.7 C11—N2—Cu1 124.85 (19)
C15—C14—H13 119.7 C10—N2—Cu1 118.15 (19)
C16—C15—C14 120.1 (3) O6—N3—O5 121.1 (3)
C16—C15—H14 119.9 O6—N3—O7 122.8 (3)
C14—C15—H14 119.9 O5—N3—O7 116.1 (2)
C15—C16—O4 124.9 (3) O9—N4—O8 121.7 (5)
C15—C16—C17 121.0 (3) O9—N4—O10 121.3 (5)
O4—C16—C17 114.1 (2) O8—N4—O10 117.0 (3)
O3—C17—C12 123.5 (2) O12—N5—O11 123.3 (3)
O3—C17—C16 118.0 (2) O12—N5—O13 120.2 (3)
C12—C17—C16 118.5 (2) O11—N5—O13 116.5 (2)
O4—C18—H15 109.5 C1—O1—Cu1 124.84 (17)
O4—C18—H16 109.5 C1—O1—Eu1 124.78 (16)
H15—C18—H16 109.5 Cu1—O1—Eu1 110.09 (8)
O4—C18—H17 109.5 C2—O2—C19 117.1 (2)
H15—C18—H17 109.5 C2—O2—Eu1 116.77 (17)
H16—C18—H17 109.5 C19—O2—Eu1 126.1 (2)
O2—C19—H18 109.5 C17—O3—Cu1 127.52 (17)
O2—C19—H19 109.5 C17—O3—Eu1 125.29 (16)
H18—C19—H19 109.5 Cu1—O3—Eu1 107.10 (8)
O2—C19—H20 109.5 C16—O4—C18 116.2 (2)
H18—C19—H20 109.5 C16—O4—Eu1 120.07 (15)
H19—C19—H20 109.5 C18—O4—Eu1 123.57 (19)
O3—Cu1—O1 78.94 (8) N3—O5—Eu1 95.64 (17)
O3—Cu1—N2 93.28 (9) N3—O7—Eu1 95.94 (17)
O1—Cu1—N2 168.21 (10) N4—O8—Eu1 96.1 (2)
O3—Cu1—N1 167.44 (9) N4—O10—Eu1 95.9 (3)
O1—Cu1—N1 92.19 (9) N5—O11—Eu1 94.71 (17)
N2—Cu1—N1 96.78 (10) N5—O13—Eu1 98.11 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2142).

References

  1. Elmali, A. & Elerman, Y. (2003). Z. Naturforsch. Teil B, 58, 639–643.
  2. Elmali, A. & Elerman, Y. (2004). Z. Naturforsch. Teil B, 59, 535–540.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  5. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808026329/fj2142sup1.cif

e-64-m1206-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026329/fj2142Isup2.hkl

e-64-m1206-Isup2.hkl (277.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES