Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 13;64(Pt 9):o1754. doi: 10.1107/S1600536808025555

Naphthalene-2,3-diol–imidazole (1/1)

Yong-Tao Wang a,*, Gui-Mei Tang a, Wen-Zhu Wan a
PMCID: PMC2960591  PMID: 21201736

Abstract

In the title cocrystal, C10H8O2·C3H4N2, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds connect the naphthalene-2,3-diol and imidazole mol­ecules into a two-dimensional supra­molecular framework.

Related literature

For other cocrystals of naphthalene-2,3-diol, see: Fritchie & Johnston (1975); Wang & Tang (2006); Wang, Tang & Ng (2006); Wang, Tang & Wan (2006); Wells et al. (1974).graphic file with name e-64-o1754-scheme1.jpg

Experimental

Crystal data

  • C10H8O2·C3H4N2

  • M r = 228.25

  • Orthorhombic, Inline graphic

  • a = 12.0003 (17) Å

  • b = 7.7862 (11) Å

  • c = 25.863 (4) Å

  • V = 2416.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 (2) K

  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART diffractometer

  • Absorption correction: none

  • 18637 measured reflections

  • 2777 independent reflections

  • 2142 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.125

  • S = 1.04

  • 2777 reflections

  • 166 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART; cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025555/ng2483sup1.cif

e-64-o1754-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025555/ng2483Isup2.hkl

e-64-o1754-Isup2.hkl (136.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O2i 0.92 (2) 1.78 (2) 2.6877 (14) 166 (2)
O2—H2A⋯N1 1.03 (2) 1.57 (2) 2.5947 (15) 170 (2)
N2—H2B⋯O1ii 0.89 (2) 2.09 (3) 2.9185 (19) 156 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Starting Fund of Shandong Institute of Light Industry (to Y-TW).

supplementary crystallographic information

Comment

During past decade, the field of molecular co-crystals have received considerable attention, for example, the design, construction, properties and the definition of molecular co-crystals, partly because co-crystallization reactions offer unique opportunities for examining the balance between and structural influence of intermolecular interactions. Recently, a lot of co-crystals containing some organic acids and bases, have been successfully synthesized and characterized by our research group. Especially, co-crystals containing naphthalene-2,7-diol with some organic bases have been prepared and reported (Wang & Tang, 2006; Wang, Tang & Ng, 2006; Wang, Tang & Wan, 2006). A series of supramolecular structures of self-assembly with different motifs have been obtained. There are a few co-crystals about naphthalene-2,3-diol (ndo) as organic acid; some interesting structures have been generated through supramolecular self-assemblies (Fritchie & Johnston, 1975; Wells, et al., 1974). To study a series of co-crystals containing ndo and to further explore its properties, we have selected the structure of the co-crystal, (I), of ndo and imidazole.

A view of the title structure is shown in Fig. 1. The asymmetric unit consists of one independent ndo molecule and one independent molecule of imidazole. In the crystal structure of the title compound, intermolecular O—H···O and N—H···O hydrogen bonds connect naphthalene-2,3-diol molecules and imidazole molecules into a linear ribbon motif, which are further extended to two-dimensional supramolecular framwork through N—H···O hydrogen bonds (Table 1, Fig. 2).

Experimental

A mixture of naphthalene-2,3-diol (80 mg, 0.5 mmol) and imidazole (34 mg, 0.5 mmol) was recrystallized from methanol (5 ml) and water (1 ml) (yield: 102 mg, 90%), from which a yellow needle suitable for x-ray diffraction was selected. Analysis found (%): C 68.21; H, 5.33; N, 12.21; requires (%): C, 68.41; H, 5.30; N, 12.27.

Refinement

All H atoms were located in a difference Fourier map. Carbon-bound hydrogen atoms were positioned geometrically (C—H = 0.93 A °), and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C). Oxygen- and nitrogen-bound hydrogen atoms were restrained and refined independently, with isotropic displacement parameters, giving final O—H and N—H distances in the range 0.895 (5)–0.911 (9), 0.897 (10) A °, respectively.

Figures

Fig. 1.

Fig. 1.

A drawing of (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Packing diagram of (I); hydrogen bonds are shown by dashed lines.

Crystal data

C10H8O2·C3H4N2 F000 = 960
Mr = 228.25 Dx = 1.255 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 5055 reflections
a = 12.0003 (17) Å θ = 2.3–26.3º
b = 7.7862 (11) Å µ = 0.09 mm1
c = 25.863 (4) Å T = 296 (2) K
V = 2416.6 (6) Å3 Column, yellow
Z = 8 0.30 × 0.30 × 0.20 mm

Data collection

Bruker SMART diffractometer 2142 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.031
Monochromator: graphite θmax = 27.6º
T = 296(2) K θmin = 1.6º
φ and ω scans h = −13→15
Absorption correction: None k = −10→9
18637 measured reflections l = −33→33
2777 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125   w = 1/[σ2(Fo2) + (0.0675P)2 + 0.2922P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2777 reflections Δρmax = 0.16 e Å3
166 parameters Δρmin = −0.20 e Å3
3 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.75477 (8) 0.63170 (13) 0.59205 (4) 0.0517 (3)
H1B 0.8003 (12) 0.7228 (17) 0.5918 (7) 0.074 (5)*
O2 0.60386 (7) 0.39458 (12) 0.57667 (4) 0.0519 (3)
H2A 0.5427 (12) 0.333 (2) 0.5673 (8) 0.094 (6)*
C1 0.63552 (11) 0.78573 (16) 0.65109 (5) 0.0438 (3)
H1A 0.6909 0.8665 0.6575 0.053*
C2 0.65645 (10) 0.65273 (15) 0.61825 (4) 0.0396 (3)
C3 0.57423 (10) 0.52524 (15) 0.60887 (4) 0.0404 (3)
C4 0.47199 (11) 0.54089 (16) 0.63144 (5) 0.0455 (3)
H4 0.4176 0.4587 0.6247 0.055*
C5 0.44700 (11) 0.67966 (17) 0.66483 (5) 0.0443 (3)
C6 0.34112 (12) 0.6975 (2) 0.68858 (6) 0.0570 (4)
H6 0.2849 0.6194 0.6809 0.068*
C7 0.32087 (14) 0.8271 (2) 0.72241 (6) 0.0671 (5)
H7 0.2514 0.8359 0.7381 0.081*
C8 0.40329 (16) 0.9469 (2) 0.73374 (6) 0.0705 (5)
H8 0.3886 1.0345 0.7572 0.085*
C9 0.50538 (14) 0.9372 (2) 0.71078 (5) 0.0594 (4)
H9 0.5592 1.0195 0.7183 0.071*
C10 0.53038 (11) 0.80258 (16) 0.67555 (4) 0.0435 (3)
C11 0.40496 (13) 0.1697 (2) 0.50288 (5) 0.0577 (4)
H11 0.4295 0.2319 0.4744 0.069*
C12 0.31524 (16) −0.0138 (3) 0.54918 (7) 0.0804 (5)
H12 0.2671 −0.1007 0.5597 0.096*
C13 0.38620 (14) 0.0743 (2) 0.57906 (6) 0.0673 (4)
H13 0.3955 0.0583 0.6144 0.081*
N1 0.44264 (9) 0.19072 (14) 0.54994 (4) 0.0504 (3)
N2 0.32741 (12) 0.0486 (2) 0.50092 (5) 0.0682 (4)
H2B 0.2928 (17) 0.018 (3) 0.4716 (6) 0.113 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0449 (5) 0.0484 (6) 0.0619 (6) −0.0061 (4) 0.0087 (4) −0.0098 (4)
O2 0.0416 (5) 0.0462 (5) 0.0678 (6) 0.0014 (4) −0.0028 (4) −0.0219 (4)
C1 0.0484 (7) 0.0386 (7) 0.0445 (6) −0.0042 (5) −0.0078 (5) −0.0028 (5)
C2 0.0384 (6) 0.0395 (7) 0.0409 (6) 0.0014 (5) −0.0018 (5) 0.0006 (5)
C3 0.0417 (7) 0.0356 (6) 0.0439 (6) 0.0030 (5) −0.0058 (5) −0.0050 (5)
C4 0.0405 (7) 0.0401 (7) 0.0561 (7) −0.0026 (5) −0.0010 (5) −0.0056 (6)
C5 0.0454 (7) 0.0442 (7) 0.0432 (6) 0.0066 (6) −0.0012 (5) 0.0003 (5)
C6 0.0497 (8) 0.0621 (9) 0.0593 (8) 0.0064 (7) 0.0059 (6) −0.0005 (7)
C7 0.0620 (10) 0.0788 (11) 0.0605 (9) 0.0202 (9) 0.0108 (7) −0.0058 (8)
C8 0.0773 (12) 0.0754 (11) 0.0588 (9) 0.0247 (9) −0.0010 (8) −0.0242 (8)
C9 0.0659 (10) 0.0562 (9) 0.0560 (8) 0.0088 (7) −0.0103 (7) −0.0176 (7)
C10 0.0505 (7) 0.0406 (7) 0.0394 (6) 0.0072 (5) −0.0069 (5) −0.0025 (5)
C11 0.0628 (9) 0.0592 (9) 0.0511 (7) 0.0000 (7) −0.0112 (7) −0.0014 (6)
C12 0.0776 (12) 0.0805 (12) 0.0830 (12) −0.0316 (10) 0.0031 (9) −0.0055 (10)
C13 0.0733 (11) 0.0780 (11) 0.0506 (8) −0.0107 (9) −0.0028 (7) −0.0013 (7)
N1 0.0504 (6) 0.0479 (6) 0.0528 (6) 0.0003 (5) −0.0107 (5) −0.0094 (5)
N2 0.0618 (8) 0.0771 (10) 0.0656 (8) −0.0072 (7) −0.0184 (7) −0.0204 (7)

Geometric parameters (Å, °)

O1—C2 1.3705 (15) C7—C8 1.390 (3)
O1—H1B 0.895 (9) C7—H7 0.9300
O2—C3 1.3620 (14) C8—C9 1.363 (2)
O2—H2A 0.911 (9) C8—H8 0.9300
C1—C2 1.3627 (17) C9—C10 1.4207 (18)
C1—C10 1.4176 (18) C9—H9 0.9300
C1—H1A 0.9300 C11—N1 1.3089 (17)
C2—C3 1.4204 (17) C11—N2 1.326 (2)
C3—C4 1.3642 (17) C11—H11 0.9300
C4—C5 1.4154 (18) C12—C13 1.339 (2)
C4—H4 0.9300 C12—N2 1.347 (2)
C5—C10 1.4120 (19) C12—H12 0.9300
C5—C6 1.4180 (18) C13—N1 1.359 (2)
C6—C7 1.358 (2) C13—H13 0.9300
C6—H6 0.9300 N2—H2B 0.897 (10)
C2—O1—H1B 115.7 (11) C9—C8—C7 120.68 (14)
C3—O2—H2A 110.3 (13) C9—C8—H8 119.7
C2—C1—C10 120.83 (11) C7—C8—H8 119.7
C2—C1—H1A 119.6 C8—C9—C10 120.65 (15)
C10—C1—H1A 119.6 C8—C9—H9 119.7
C1—C2—O1 123.90 (11) C10—C9—H9 119.7
C1—C2—C3 120.63 (11) C5—C10—C1 118.71 (11)
O1—C2—C3 115.47 (10) C5—C10—C9 118.44 (13)
O2—C3—C4 124.27 (11) C1—C10—C9 122.85 (13)
O2—C3—C2 116.43 (11) N1—C11—N2 111.53 (14)
C4—C3—C2 119.29 (11) N1—C11—H11 124.2
C3—C4—C5 121.32 (12) N2—C11—H11 124.2
C3—C4—H4 119.3 C13—C12—N2 106.33 (15)
C5—C4—H4 119.3 C13—C12—H12 126.8
C10—C5—C4 119.15 (12) N2—C12—H12 126.8
C10—C5—C6 118.92 (12) C12—C13—N1 109.81 (15)
C4—C5—C6 121.92 (13) C12—C13—H13 125.1
C7—C6—C5 120.81 (15) N1—C13—H13 125.1
C7—C6—H6 119.6 C11—N1—C13 105.05 (12)
C5—C6—H6 119.6 C11—N2—C12 107.28 (12)
C6—C7—C8 120.46 (15) C11—N2—H2B 123.1 (15)
C6—C7—H7 119.8 C12—N2—H2B 129.6 (15)
C8—C7—H7 119.8
C10—C1—C2—O1 177.81 (11) C7—C8—C9—C10 −1.2 (2)
C10—C1—C2—C3 −1.71 (18) C4—C5—C10—C1 2.02 (18)
C1—C2—C3—O2 −178.13 (11) C6—C5—C10—C1 −179.01 (11)
O1—C2—C3—O2 2.31 (16) C4—C5—C10—C9 −177.49 (12)
C1—C2—C3—C4 2.72 (18) C6—C5—C10—C9 1.48 (18)
O1—C2—C3—C4 −176.84 (11) C2—C1—C10—C5 −0.67 (18)
O2—C3—C4—C5 179.59 (12) C2—C1—C10—C9 178.82 (12)
C2—C3—C4—C5 −1.33 (19) C8—C9—C10—C5 0.2 (2)
C3—C4—C5—C10 −1.02 (19) C8—C9—C10—C1 −179.33 (14)
C3—C4—C5—C6 −179.96 (13) N2—C12—C13—N1 −0.1 (2)
C10—C5—C6—C7 −2.1 (2) N2—C11—N1—C13 0.76 (18)
C4—C5—C6—C7 176.80 (14) C12—C13—N1—C11 −0.39 (19)
C5—C6—C7—C8 1.1 (2) N1—C11—N2—C12 −0.8 (2)
C6—C7—C8—C9 0.6 (3) C13—C12—N2—C11 0.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1B···O2i 0.92 (2) 1.78 (2) 2.6877 (14) 166 (2)
O2—H2A···N1 1.03 (2) 1.57 (2) 2.5947 (15) 170 (2)
N2—H2B···O1ii 0.89 (2) 2.09 (3) 2.9185 (19) 156 (2)

Symmetry codes: (i) x+2, −y−1/2, z−1/2; (ii) −x−1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2483).

References

  1. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Fritchie, C. J. & Johnston, R. M. (1975). Acta Cryst. B31, 454–461.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Wang, Y.-T. & Tang, G.-M. (2006). Acta Cryst. E62, o3833–o3834.
  5. Wang, Y.-T., Tang, G.-M. & Ng, S. W. (2006). Acta Cryst. E62, o4429–o4430.
  6. Wang, Y.-T., Tang, G.-M. & Wan, W.-Z. (2006). Acta Cryst. E62, o3396–o3397.
  7. Wells, J. L., Trus, B. L., Johnston, R. M., Marsh, R. E. & Fritchie, C. J. (1974). Acta Cryst. B30, 1127–1134.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025555/ng2483sup1.cif

e-64-o1754-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025555/ng2483Isup2.hkl

e-64-o1754-Isup2.hkl (136.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES