Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 16;64(Pt 9):m1173–m1174. doi: 10.1107/S160053680802566X

Bis(2,4,6-triamino-1,3,5-triazin-1-ium) bis­(4-hydroxy­pyridine-2,6-carboxyl­ato)­cuprate(II) hexa­hydrate

Manuela Ramos Silva a,*, Elham Motyeian b, Hossein Aghabozorg c, Mohammad Ghadermazi d
PMCID: PMC2960606  PMID: 21201618

Abstract

In the title compound, (C3H7N6)2[Cu(C7H3NO5)2]·6H2O, the coordination geometry of the CuII atom can be described as distorted octa­hedral. The equatorial plane is defined by four O atoms from two 4-hydroxy­pyridine-2,6-dicarboxyl­ate ligands. The axial positions are occupied by the N atoms of the same ligands. There is an extensive three-dimensional hydrogen-bond network reinforcing crystal cohesion.

Related literature

For related literature, see: Aghabozorg, Motyeian, Attar Gharamaleki et al. (2008); Aghabozorg, Motyeian, Soleimannejad et al. (2008); Aghabozorg, Saadaty et al. (2008).graphic file with name e-64-m1173-scheme1.jpg

Experimental

Crystal data

  • (C3H7N6)2[Cu(C7H3NO5)2]·6H2O

  • M r = 788.14

  • Monoclinic, Inline graphic

  • a = 11.2894 (3) Å

  • b = 37.7699 (12) Å

  • c = 7.3414 (2) Å

  • β = 94.016 (2)°

  • V = 3122.68 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 293 (2) K

  • 0.28 × 0.20 × 0.10 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000) T min = 0.714, T max = 0.919

  • 22082 measured reflections

  • 7390 independent reflections

  • 5112 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.116

  • S = 1.02

  • 7390 reflections

  • 508 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802566X/bt2763sup1.cif

e-64-m1173-sup1.cif (31.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802566X/bt2763Isup2.hkl

e-64-m1173-Isup2.hkl (361.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O7i 0.74 (3) 1.84 (3) 2.573 (3) 169 (4)
O1B—H1B⋯O6ii 0.76 (4) 1.83 (4) 2.579 (3) 173 (4)
N5A—H5A⋯O10ii 0.77 (2) 2.06 (3) 2.787 (3) 159 (3)
N6A—H7⋯O4Biii 0.86 2.13 2.980 (3) 173
N6A—H8⋯O11 0.86 2.13 2.962 (4) 162
N7A—H11⋯O1Biii 0.86 2.25 3.106 (3) 172
N7A—H12⋯O9iv 0.86 2.11 2.910 (4) 155
N8A—H9⋯N3Av 0.86 2.11 2.973 (4) 177
N8A—H10⋯O10ii 0.86 2.25 2.986 (4) 144
N8A—H10⋯O11v 0.86 2.56 3.202 (4) 133
N5B—H5B⋯O2Avi 0.78 (2) 1.96 (3) 2.698 (3) 157 (3)
N6B—H5⋯O1Ai 0.86 2.28 3.131 (3) 170
N6B—H6⋯O9 0.86 2.38 2.905 (3) 120
N7B—H1⋯O5Bvii 0.86 2.24 3.021 (3) 151
N7B—H2⋯O2Avi 0.86 2.11 2.852 (3) 144
N8B—H3⋯O4Ai 0.86 2.10 2.930 (3) 163
N8B—H4⋯O8vi 0.86 2.01 2.857 (3) 169
O6—H61⋯O5A 0.83 (2) 1.87 (2) 2.706 (3) 177 (4)
O6—H62⋯O2Bviii 0.81 (2) 1.97 (2) 2.756 (3) 163 (4)
O7—H71⋯O3Bviii 0.82 (2) 1.94 (2) 2.741 (3) 163 (4)
O7—H72⋯O5B 0.82 (2) 1.95 (2) 2.766 (3) 171 (4)
O8—H81⋯O4Biii 0.86 (2) 1.86 (2) 2.714 (3) 173 (4)
O8—H82⋯O3A 0.83 (2) 1.90 (2) 2.701 (3) 162 (4)
O9—H91⋯O3B 0.88 (2) 1.97 (2) 2.839 (3) 172 (4)
O9—H92⋯O4Aiii 0.88 (2) 2.13 (2) 3.005 (3) 176 (4)
O10—H101⋯O8ix 0.84 (4) 2.24 (3) 3.030 (4) 157 (5)
O10—H102⋯O4A 0.89 (4) 2.39 (5) 2.695 (3) 101 (4)
O11—H111⋯O10x 0.85 (2) 2.44 (4) 3.196 (5) 149 (7)
O11—H112⋯N4Bx 0.83 (6) 2.53 (7) 2.996 (4) 116 (6)
O11—H112⋯O8 0.83 (6) 2.60 (8) 3.090 (5) 118 (7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic.

supplementary crystallographic information

Comment

Following our research on the synthesis of proton transfer compounds that can function as suitable ligands in the synthesis of metal complexes (Aghabozorg, Motyeian, Attar Gharamaleki et al., 2008; Aghabozorg, Motyeian, Soleimannejad et al., 2008; Aghabozorg, Saadaty et al., 2008), we have obtained the title compound dimelaminium bis(4-hydroxypyridine-2,6-carboxylato)cuprate(II) hexahydrated. 4-hydroxypyridine-2,6-carboxylic acid (hypydcH2) was chosen as a proton donor and melamine (tata) as the proton acceptor.

The asymmetric unit of (I) consists of two melaminium (tataH) residues protonated at one ring N atom, two (hypydc) residues coordinating a CuII ion and six water molecules (Fig. 1). The melaminium cations are essentially planar with the weighted average absolute torsion angle equal to 0.67 (23) for ring A and 1.20 (33)° for ring B. Both rings exhibit a significant distortion from the ideal hexagonal form. The internal C—N—C angle of the protonated N atom (N5A, N5B) is significantly larger than the other two ring C—N—C angles (Table 1). The angle between the least-squares plane of the two independent cations is 87.97 (12)°. The anions also assemble perpendicularly to each other. The angle between the mean planes of the two independent pyridil rings is 89.51 (12)°. Thus the molecules form a square grid with channels along the b axis (Fig. 2). The CuII ion is coordinated octahedrally by two ligands of (hypydc). The N atoms of the two independent anions occupy the axial positions while four oxygen atoms form the equatorial plane. There is an extensive network of hydrogen bonds proportionated by the large amount of water molecules. All the water molecules share their hydrogen atoms with another strong acceptor (N,O). The (hypydc) anions have similar H-bonds, but the two independent melaminium cations have different roles in the web of H-bonds. While B molecules only establish H-bonds to neighbouring water or (hypydc) molecules, the A molecules are also joined in dimers (Fig.3, Table 2).

Experimental

The proton transfer compound, (tata)2(hypydc), was prepared by the reaction of 4-hydroxypyridinee-2,6-dicarboxylic acid, hypydcH2, with melamine, (tata). The reaction between Cu(NO3)2.6H2O (143 mg, 0.5 mmol) in water (20 ml) and proton transfer compound, (phenH)2(hypydc) (253 mg, 1.0 mmol) in water (20 ml), in a 1:2 molar ratio was carried out and a blue crystalline compound was obtained by the slow evaporation of the solvent at room temperature.

Refinement

All H-atoms could be located in difference Fourier maps. The H atoms of water molecules were refined with an O—H distance restraint of 0.85 (2) Å and Uiso(H) = 1.5Ueq(O). Short contacts between the H atoms of the water O10 and neighbouring H atoms are observed at the final refinement, an indication that these H atoms are probably disordered. The coordinates of the H atoms of the hydroxyl groups were freely refined with Uiso(H) = 1.5Ueq(O), the H atoms bonded to the N atoms of the melaminium rings were restrained to have equal N—H distances and Uiso(H) = 1.2Ueq(N). The remaining H atoms were placed at calculated positions and refined as riding on their parent atoms with Uiso(H) = 1.2Ueq(N,C)

Figures

Fig. 1.

Fig. 1.

ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.

Fig. 2.

Fig. 2.

Packing diagram of the title compound. Water molecules were excluded for clarity.

Fig. 3.

Fig. 3.

A part of the extensive three-dimensional H-bond network. H-bonds are depicted as dashed lines.

Crystal data

(C3H7N6)2[Cu(C7H3N1O5)2]·6H2O F000 = 1628
Mr = 788.14 Dx = 1.676 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
a = 11.2894 (3) Å Cell parameters from 4074 reflections
b = 37.7699 (12) Å θ = 2.4–24.5º
c = 7.3414 (2) Å µ = 0.80 mm1
β = 94.016 (2)º T = 293 (2) K
V = 3122.68 (15) Å3 Prism, green
Z = 4 0.28 × 0.20 × 0.10 mm

Data collection

Bruker APEX CCD area-detector diffractometer 7390 independent reflections
Radiation source: fine-focus sealed tube 5112 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.054
T = 293(2) K θmax = 28.3º
φ and ω scans θmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 2000) h = −15→14
Tmin = 0.714, Tmax = 0.919 k = −50→50
22082 measured reflections l = −7→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116   w = 1/[σ2(Fo2) + (0.0572P)2 + 0.0192P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.014
7390 reflections Δρmax = 0.44 e Å3
508 parameters Δρmin = −0.46 e Å3
13 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.43767 (3) 0.864573 (8) 0.43487 (5) 0.02540 (10)
O1A 0.62393 (18) 0.71521 (5) 0.5449 (3) 0.0339 (5)
H1A 0.584 (3) 0.7012 (9) 0.503 (5) 0.051*
O1B 0.31432 (19) 1.01748 (5) 0.5212 (3) 0.0363 (5)
H1B 0.335 (3) 1.0291 (9) 0.446 (5) 0.054*
O2A 0.26377 (16) 0.77504 (5) 0.2033 (3) 0.0382 (5)
O2B 0.5124 (2) 0.93825 (6) 0.0457 (3) 0.0532 (7)
O3A 0.29856 (16) 0.83148 (5) 0.2762 (3) 0.0321 (4)
O3B 0.50694 (17) 0.88676 (5) 0.1949 (3) 0.0339 (5)
O4A 0.75786 (16) 0.83882 (5) 0.7359 (3) 0.0356 (5)
O4B 0.2249 (2) 0.89919 (5) 0.8309 (3) 0.0524 (7)
O5A 0.61471 (17) 0.87161 (5) 0.5943 (3) 0.0368 (5)
O5B 0.32894 (17) 0.86291 (5) 0.6639 (3) 0.0313 (4)
N1A 0.50099 (18) 0.81629 (5) 0.4577 (3) 0.0218 (4)
N1B 0.38376 (18) 0.91274 (5) 0.4434 (3) 0.0235 (5)
C1A 0.6033 (2) 0.80997 (6) 0.5575 (4) 0.0218 (5)
C1B 0.3243 (2) 0.92336 (7) 0.5850 (4) 0.0255 (6)
C2A 0.6461 (2) 0.77631 (6) 0.5867 (4) 0.0245 (6)
H2A 0.7177 0.7726 0.6548 0.029*
C2B 0.2994 (2) 0.95844 (7) 0.6138 (4) 0.0299 (6)
H2B 0.2580 0.9655 0.7129 0.036*
C3A 0.5813 (2) 0.74770 (6) 0.5132 (4) 0.0239 (5)
C3B 0.3381 (2) 0.98330 (6) 0.4897 (4) 0.0272 (6)
C4A 0.4744 (2) 0.75443 (7) 0.4131 (4) 0.0248 (6)
H4A 0.4283 0.7358 0.3646 0.030*
C4B 0.3979 (2) 0.97189 (7) 0.3412 (4) 0.0272 (6)
H4B 0.4226 0.9880 0.2558 0.033*
C5A 0.4376 (2) 0.78907 (6) 0.3866 (4) 0.0222 (5)
C5B 0.4196 (2) 0.93624 (7) 0.3236 (4) 0.0249 (6)
C6A 0.3237 (2) 0.79909 (7) 0.2795 (4) 0.0257 (6)
C6B 0.4848 (2) 0.91968 (7) 0.1720 (4) 0.0303 (6)
C7A 0.6650 (2) 0.84270 (6) 0.6363 (4) 0.0250 (6)
C7B 0.2893 (2) 0.89329 (7) 0.7058 (4) 0.0305 (6)
N3A 0.0763 (2) 0.99122 (6) 0.2789 (3) 0.0325 (5)
N4A 0.1682 (2) 0.99282 (6) −0.0069 (3) 0.0342 (6)
N5A 0.1108 (2) 1.04478 (6) 0.1332 (4) 0.0341 (6)
H5A 0.099 (3) 1.0648 (7) 0.133 (5) 0.041*
N6A 0.1337 (2) 0.94103 (6) 0.1355 (4) 0.0390 (6)
H7 0.1647 0.9304 0.0467 0.047*
H8 0.1079 0.9289 0.2237 0.047*
N7A 0.1989 (2) 1.04682 (7) −0.1378 (4) 0.0460 (7)
H11 0.2294 1.0367 −0.2284 0.055*
H12 0.1934 1.0695 −0.1344 0.055*
N8A 0.0229 (2) 1.04431 (7) 0.4041 (4) 0.0476 (7)
H9 −0.0045 1.0334 0.4949 0.057*
H10 0.0195 1.0670 0.3983 0.057*
C8A 0.1257 (2) 0.97605 (7) 0.1365 (4) 0.0306 (6)
C9A 0.1607 (2) 1.02764 (7) −0.0048 (4) 0.0342 (7)
C10A 0.0699 (2) 1.02625 (7) 0.2739 (4) 0.0336 (7)
N3B 0.88638 (18) 0.76048 (6) 0.3504 (3) 0.0289 (5)
N4B 1.0116 (2) 0.80888 (6) 0.4584 (3) 0.0321 (5)
N5B 1.06806 (18) 0.75026 (6) 0.5151 (3) 0.0266 (5)
H5B 1.114 (2) 0.7379 (7) 0.567 (4) 0.032*
N6B 0.8337 (2) 0.81741 (6) 0.2915 (4) 0.0395 (6)
H5 0.7703 0.8094 0.2338 0.047*
H6 0.8458 0.8399 0.2990 0.047*
N7B 1.1849 (2) 0.79554 (6) 0.6287 (3) 0.0347 (6)
H1 1.2006 0.8177 0.6442 0.042*
H2 1.2329 0.7798 0.6758 0.042*
N8B 0.95084 (19) 0.70392 (6) 0.4094 (3) 0.0330 (6)
H3 0.8879 0.6957 0.3518 0.040*
H4 1.0036 0.6897 0.4577 0.040*
C8B 0.9664 (2) 0.73824 (7) 0.4237 (4) 0.0255 (6)
C9B 1.0871 (2) 0.78572 (7) 0.5325 (4) 0.0262 (6)
C10B 0.9134 (2) 0.79486 (7) 0.3697 (4) 0.0286 (6)
O6 0.6260 (2) 0.93858 (5) 0.7253 (3) 0.0433 (6)
H61 0.620 (3) 0.9180 (6) 0.684 (5) 0.065*
H62 0.580 (3) 0.9381 (10) 0.805 (4) 0.065*
O7 0.4746 (2) 0.83354 (6) 0.9426 (3) 0.0472 (6)
H71 0.469 (3) 0.8491 (8) 1.020 (4) 0.071*
H72 0.429 (3) 0.8401 (10) 0.857 (4) 0.071*
O8 0.1197 (2) 0.84896 (6) 0.0289 (4) 0.0508 (6)
H81 0.150 (3) 0.8641 (9) −0.041 (5) 0.076*
H82 0.168 (3) 0.8391 (10) 0.104 (5) 0.076*
O9 0.7422 (2) 0.87866 (6) 0.0878 (4) 0.0527 (6)
H91 0.672 (2) 0.8828 (11) 0.127 (6) 0.079*
H92 0.750 (4) 0.8675 (10) −0.015 (4) 0.079*
O10 0.9382 (2) 0.88564 (6) 0.7704 (5) 0.0662 (8)
H101 0.984 (4) 0.8704 (10) 0.821 (6) 0.099*
H102 0.894 (4) 0.8820 (13) 0.864 (5) 0.099*
O11 0.0445 (5) 0.88589 (8) 0.3782 (7) 0.1234 (17)
H111 0.030 (7) 0.878 (2) 0.481 (5) 0.185*
H112 0.088 (6) 0.8685 (13) 0.362 (12) 0.185*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.02778 (17) 0.01879 (16) 0.0296 (2) 0.00051 (12) 0.00170 (13) −0.00093 (13)
O1A 0.0396 (12) 0.0164 (9) 0.0439 (13) 0.0007 (8) −0.0101 (9) −0.0015 (8)
O1B 0.0498 (12) 0.0172 (10) 0.0435 (14) 0.0027 (8) 0.0149 (10) 0.0008 (8)
O2A 0.0343 (11) 0.0276 (10) 0.0501 (14) −0.0027 (8) −0.0156 (10) −0.0076 (9)
O2B 0.0761 (16) 0.0373 (12) 0.0501 (16) 0.0082 (11) 0.0337 (13) 0.0108 (11)
O3A 0.0336 (10) 0.0225 (9) 0.0390 (13) 0.0026 (8) −0.0065 (9) 0.0010 (8)
O3B 0.0428 (11) 0.0214 (10) 0.0382 (13) 0.0037 (8) 0.0069 (10) −0.0046 (8)
O4A 0.0291 (10) 0.0250 (10) 0.0502 (14) −0.0024 (8) −0.0150 (9) −0.0037 (9)
O4B 0.0794 (16) 0.0281 (11) 0.0549 (16) 0.0079 (10) 0.0410 (14) 0.0079 (10)
O5A 0.0377 (11) 0.0191 (9) 0.0518 (14) 0.0035 (8) −0.0100 (10) −0.0060 (9)
O5B 0.0417 (11) 0.0202 (9) 0.0323 (12) 0.0045 (8) 0.0037 (9) 0.0014 (8)
N1A 0.0245 (11) 0.0182 (10) 0.0227 (12) 0.0002 (8) 0.0017 (9) −0.0011 (8)
N1B 0.0254 (11) 0.0198 (10) 0.0254 (13) 0.0028 (8) 0.0027 (9) 0.0027 (9)
C1A 0.0229 (12) 0.0201 (12) 0.0224 (15) 0.0000 (9) 0.0015 (10) −0.0030 (10)
C1B 0.0246 (12) 0.0234 (13) 0.0287 (16) 0.0009 (10) 0.0038 (11) 0.0015 (11)
C2A 0.0220 (12) 0.0212 (12) 0.0302 (16) 0.0006 (9) 0.0000 (11) −0.0023 (11)
C2B 0.0301 (14) 0.0250 (13) 0.0351 (17) 0.0031 (11) 0.0067 (12) 0.0001 (12)
C3A 0.0292 (13) 0.0183 (12) 0.0245 (15) 0.0009 (10) 0.0030 (11) −0.0001 (10)
C3B 0.0262 (13) 0.0193 (12) 0.0360 (17) 0.0021 (10) 0.0019 (12) 0.0022 (11)
C4A 0.0262 (13) 0.0190 (12) 0.0289 (16) −0.0027 (10) −0.0002 (11) −0.0036 (10)
C4B 0.0276 (13) 0.0224 (13) 0.0318 (17) −0.0022 (10) 0.0037 (12) 0.0043 (11)
C5A 0.0229 (12) 0.0206 (12) 0.0232 (15) −0.0019 (9) 0.0012 (11) −0.0022 (10)
C5B 0.0245 (13) 0.0226 (13) 0.0275 (16) 0.0005 (10) 0.0017 (11) 0.0003 (11)
C6A 0.0271 (13) 0.0246 (13) 0.0253 (16) −0.0013 (10) 0.0012 (11) 0.0010 (11)
C6B 0.0327 (14) 0.0274 (14) 0.0311 (17) −0.0013 (11) 0.0051 (12) −0.0003 (12)
C7A 0.0260 (13) 0.0176 (12) 0.0314 (16) −0.0025 (10) 0.0029 (11) −0.0035 (10)
C7B 0.0362 (15) 0.0222 (13) 0.0335 (18) 0.0020 (11) 0.0044 (13) 0.0031 (11)
N3A 0.0371 (13) 0.0240 (12) 0.0367 (15) 0.0024 (10) 0.0031 (11) −0.0027 (10)
N4A 0.0379 (13) 0.0278 (12) 0.0371 (16) 0.0018 (10) 0.0047 (11) −0.0040 (10)
N5A 0.0375 (13) 0.0211 (11) 0.0445 (16) −0.0004 (10) 0.0073 (12) −0.0027 (11)
N6A 0.0495 (15) 0.0254 (12) 0.0430 (17) 0.0028 (10) 0.0098 (13) −0.0018 (11)
N7A 0.0574 (17) 0.0341 (14) 0.0485 (18) −0.0038 (12) 0.0171 (14) −0.0009 (13)
N8A 0.0653 (18) 0.0277 (13) 0.0522 (19) 0.0046 (12) 0.0208 (15) −0.0060 (12)
C8A 0.0267 (14) 0.0267 (14) 0.0375 (18) 0.0016 (11) −0.0036 (12) −0.0017 (12)
C9A 0.0279 (14) 0.0334 (15) 0.0410 (19) −0.0029 (11) 0.0008 (13) −0.0005 (13)
C10A 0.0313 (14) 0.0299 (15) 0.0396 (19) −0.0003 (11) 0.0022 (13) −0.0051 (13)
N3B 0.0258 (11) 0.0269 (12) 0.0334 (14) 0.0040 (9) −0.0026 (10) 0.0041 (10)
N4B 0.0325 (12) 0.0230 (11) 0.0409 (15) 0.0012 (9) 0.0030 (11) 0.0018 (10)
N5B 0.0228 (11) 0.0196 (11) 0.0364 (15) 0.0029 (8) −0.0044 (10) 0.0044 (9)
N6B 0.0369 (13) 0.0314 (13) 0.0493 (17) 0.0109 (10) −0.0036 (12) 0.0092 (12)
N7B 0.0344 (13) 0.0228 (12) 0.0458 (17) −0.0043 (10) −0.0054 (11) −0.0004 (10)
N8B 0.0282 (12) 0.0222 (11) 0.0469 (17) −0.0009 (9) −0.0087 (11) 0.0000 (10)
C8B 0.0223 (12) 0.0265 (14) 0.0280 (16) −0.0016 (10) 0.0032 (11) 0.0007 (11)
C9B 0.0260 (13) 0.0231 (13) 0.0296 (16) −0.0020 (10) 0.0036 (11) 0.0012 (11)
C10B 0.0296 (14) 0.0273 (14) 0.0293 (16) 0.0039 (11) 0.0041 (12) 0.0043 (11)
O6 0.0679 (16) 0.0225 (10) 0.0415 (15) −0.0086 (10) 0.0179 (11) −0.0008 (10)
O7 0.0685 (16) 0.0315 (12) 0.0393 (15) 0.0207 (11) −0.0129 (12) −0.0065 (10)
O8 0.0402 (13) 0.0409 (13) 0.0688 (19) −0.0105 (10) −0.0137 (12) 0.0193 (12)
O9 0.0477 (14) 0.0393 (13) 0.071 (2) 0.0071 (11) 0.0057 (13) 0.0026 (12)
O10 0.0493 (16) 0.0298 (13) 0.119 (3) −0.0038 (11) −0.0005 (16) 0.0053 (14)
O11 0.201 (5) 0.0406 (18) 0.139 (4) −0.011 (2) 0.086 (3) 0.004 (2)

Geometric parameters (Å, °)

Cu1—N1B 1.921 (2) N4A—C8A 1.346 (4)
Cu1—N1A 1.962 (2) N5A—C10A 1.355 (4)
Cu1—O3B 2.147 (2) N5A—C9A 1.357 (4)
Cu1—O5B 2.1508 (19) N5A—H5A 0.77 (2)
Cu1—O5A 2.260 (2) N6A—C8A 1.326 (3)
Cu1—O3A 2.2648 (19) N6A—H7 0.8600
O1A—C3A 1.333 (3) N6A—H8 0.8600
O1A—H1A 0.74 (3) N7A—C9A 1.313 (4)
O1B—C3B 1.342 (3) N7A—H11 0.8600
O1B—H1B 0.76 (4) N7A—H12 0.8600
O2A—C6A 1.242 (3) N8A—C10A 1.316 (4)
O2B—C6B 1.221 (3) N8A—H9 0.8600
O3A—C6A 1.256 (3) N8A—H10 0.8600
O3B—C6B 1.277 (3) N3B—C8B 1.321 (3)
O4A—C7A 1.244 (3) N3B—C10B 1.339 (3)
O4B—C7B 1.231 (3) N4B—C9B 1.312 (3)
O5A—C7A 1.259 (3) N4B—C10B 1.353 (4)
O5B—C7B 1.277 (3) N5B—C9B 1.361 (3)
N1A—C5A 1.338 (3) N5B—C8B 1.365 (3)
N1A—C1A 1.345 (3) N5B—H5B 0.78 (2)
N1B—C5B 1.332 (3) N6B—C10B 1.339 (3)
N1B—C1B 1.338 (3) N6B—H5 0.8600
C1A—C2A 1.372 (3) N6B—H6 0.8600
C1A—C7A 1.514 (3) N7B—C9B 1.322 (3)
C1B—C2B 1.374 (4) N7B—H1 0.8600
C1B—C7B 1.510 (4) N7B—H2 0.8600
C2A—C3A 1.393 (3) N8B—C8B 1.311 (3)
C2A—H2A 0.9300 N8B—H3 0.8600
C2B—C3B 1.400 (4) N8B—H4 0.8600
C2B—H2B 0.9300 O6—H61 0.834 (18)
C3A—C4A 1.391 (4) O6—H62 0.808 (18)
C3B—C4B 1.390 (4) O7—H71 0.821 (18)
C4A—C5A 1.382 (3) O7—H72 0.821 (19)
C4A—H4A 0.9300 O8—H81 0.86 (4)
C4B—C5B 1.377 (3) O8—H82 0.84 (4)
C4B—H4B 0.9300 O9—H91 0.877 (18)
C5A—C6A 1.507 (4) O9—H92 0.876 (19)
C5B—C6B 1.512 (4) O10—H101 0.84 (4)
N3A—C10A 1.325 (3) O10—H102 0.89 (4)
N3A—C8A 1.347 (4) O11—H111 0.85 (2)
N4A—C9A 1.318 (3) O11—H112 0.83 (6)
N1B—Cu1—N1A 172.83 (10) O2B—C6B—C5B 119.0 (2)
N1B—Cu1—O3B 77.96 (8) O3B—C6B—C5B 114.0 (2)
N1A—Cu1—O3B 106.34 (8) O4A—C7A—O5A 126.4 (2)
N1B—Cu1—O5B 78.63 (8) O4A—C7A—C1A 118.3 (2)
N1A—Cu1—O5B 97.51 (8) O5A—C7A—C1A 115.3 (2)
O3B—Cu1—O5B 155.97 (7) O4B—C7B—O5B 125.3 (3)
N1B—Cu1—O5A 98.19 (8) O4B—C7B—C1B 119.6 (2)
N1A—Cu1—O5A 76.19 (8) O5B—C7B—C1B 115.1 (2)
O3B—Cu1—O5A 91.11 (8) C10A—N3A—C8A 115.3 (2)
O5B—Cu1—O5A 97.53 (8) C9A—N4A—C8A 115.7 (2)
N1B—Cu1—O3A 109.24 (8) C10A—N5A—C9A 120.3 (2)
N1A—Cu1—O3A 76.48 (8) C10A—N5A—H5A 116 (2)
O3B—Cu1—O3A 94.16 (7) C9A—N5A—H5A 123 (2)
O5B—Cu1—O3A 88.44 (7) C8A—N6A—H7 120.0
O5A—Cu1—O3A 152.56 (6) C8A—N6A—H8 120.0
C3A—O1A—H1A 112 (3) H7—N6A—H8 120.0
C3B—O1B—H1B 111 (3) C9A—N7A—H11 120.0
C6A—O3A—Cu1 112.32 (16) C9A—N7A—H12 120.0
C6B—O3B—Cu1 114.11 (17) H11—N7A—H12 120.0
C7A—O5A—Cu1 113.08 (16) C10A—N8A—H9 120.0
C7B—O5B—Cu1 113.01 (17) C10A—N8A—H10 120.0
C5A—N1A—C1A 119.4 (2) H9—N8A—H10 120.0
C5A—N1A—Cu1 119.96 (17) N6A—C8A—N4A 115.9 (3)
C1A—N1A—Cu1 120.37 (16) N6A—C8A—N3A 117.4 (3)
C5B—N1B—C1B 120.4 (2) N4A—C8A—N3A 126.7 (2)
C5B—N1B—Cu1 119.86 (17) N7A—C9A—N4A 121.1 (3)
C1B—N1B—Cu1 119.10 (17) N7A—C9A—N5A 117.8 (3)
N1A—C1A—C2A 122.0 (2) N4A—C9A—N5A 121.0 (3)
N1A—C1A—C7A 114.7 (2) N8A—C10A—N3A 121.4 (3)
C2A—C1A—C7A 123.3 (2) N8A—C10A—N5A 117.5 (3)
N1B—C1B—C2B 121.9 (2) N3A—C10A—N5A 121.0 (3)
N1B—C1B—C7B 113.4 (2) C8B—N3B—C10B 115.4 (2)
C2B—C1B—C7B 124.7 (2) C9B—N4B—C10B 115.2 (2)
C1A—C2A—C3A 119.2 (2) C9B—N5B—C8B 119.7 (2)
C1A—C2A—H2A 120.4 C9B—N5B—H5B 117 (2)
C3A—C2A—H2A 120.4 C8B—N5B—H5B 123 (2)
C1B—C2B—C3B 118.0 (2) C10B—N6B—H5 120.0
C1B—C2B—H2B 121.0 C10B—N6B—H6 120.0
C3B—C2B—H2B 121.0 H5—N6B—H6 120.0
O1A—C3A—C4A 123.4 (2) C9B—N7B—H1 120.0
O1A—C3A—C2A 118.2 (2) C9B—N7B—H2 120.0
C4A—C3A—C2A 118.4 (2) H1—N7B—H2 120.0
O1B—C3B—C4B 123.2 (2) C8B—N8B—H3 120.0
O1B—C3B—C2B 117.2 (2) C8B—N8B—H4 120.0
C4B—C3B—C2B 119.6 (2) H3—N8B—H4 120.0
C5A—C4A—C3A 119.2 (2) N8B—C8B—N3B 120.8 (2)
C5A—C4A—H4A 120.4 N8B—C8B—N5B 118.1 (2)
C3A—C4A—H4A 120.4 N3B—C8B—N5B 121.1 (2)
C5B—C4B—C3B 118.5 (2) N4B—C9B—N7B 121.9 (2)
C5B—C4B—H4B 120.8 N4B—C9B—N5B 121.5 (2)
C3B—C4B—H4B 120.8 N7B—C9B—N5B 116.5 (2)
N1A—C5A—C4A 121.7 (2) N3B—C10B—N6B 115.5 (3)
N1A—C5A—C6A 115.1 (2) N3B—C10B—N4B 127.1 (2)
C4A—C5A—C6A 123.2 (2) N6B—C10B—N4B 117.4 (2)
N1B—C5B—C4B 121.7 (2) H61—O6—H62 101 (3)
N1B—C5B—C6B 113.4 (2) H71—O7—H72 104 (4)
C4B—C5B—C6B 125.0 (2) H81—O8—H82 116 (4)
O2A—C6A—O3A 126.0 (3) H91—O9—H92 121 (4)
O2A—C6A—C5A 118.0 (2) H101—O10—H102 85 (4)
O3A—C6A—C5A 116.0 (2) H111—O11—H112 89 (6)
O2B—C6B—O3B 126.9 (3)
N1B—Cu1—O3A—C6A −174.06 (18) C1A—N1A—C5A—C4A 0.1 (4)
N1A—Cu1—O3A—C6A 1.43 (18) Cu1—N1A—C5A—C4A −174.41 (19)
O3B—Cu1—O3A—C6A 107.24 (18) C1A—N1A—C5A—C6A 179.2 (2)
O5B—Cu1—O3A—C6A −96.68 (18) Cu1—N1A—C5A—C6A 4.7 (3)
O5A—Cu1—O3A—C6A 6.7 (3) C3A—C4A—C5A—N1A −1.3 (4)
N1B—Cu1—O3B—C6B 1.61 (19) C3A—C4A—C5A—C6A 179.7 (2)
N1A—Cu1—O3B—C6B −172.46 (19) C1B—N1B—C5B—C4B 0.4 (4)
O5B—Cu1—O3B—C6B 14.9 (3) Cu1—N1B—C5B—C4B −170.2 (2)
O5A—Cu1—O3B—C6B −96.53 (19) C1B—N1B—C5B—C6B −179.7 (2)
O3A—Cu1—O3B—C6B 110.41 (19) Cu1—N1B—C5B—C6B 9.8 (3)
N1B—Cu1—O5A—C7A 169.77 (19) C3B—C4B—C5B—N1B 0.8 (4)
N1A—Cu1—O5A—C7A −5.67 (19) C3B—C4B—C5B—C6B −179.2 (3)
O3B—Cu1—O5A—C7A −112.23 (19) Cu1—O3A—C6A—O2A −179.5 (2)
O5B—Cu1—O5A—C7A 90.25 (19) Cu1—O3A—C6A—C5A 0.5 (3)
O3A—Cu1—O5A—C7A −11.0 (3) N1A—C5A—C6A—O2A 176.8 (2)
N1B—Cu1—O5B—C7B −5.00 (19) C4A—C5A—C6A—O2A −4.1 (4)
N1A—Cu1—O5B—C7B 168.87 (19) N1A—C5A—C6A—O3A −3.2 (3)
O3B—Cu1—O5B—C7B −18.3 (3) C4A—C5A—C6A—O3A 175.9 (2)
O5A—Cu1—O5B—C7B 91.90 (19) Cu1—O3B—C6B—O2B −178.7 (3)
O3A—Cu1—O5B—C7B −114.98 (19) Cu1—O3B—C6B—C5B 2.8 (3)
N1B—Cu1—N1A—C5A 140.1 (6) N1B—C5B—C6B—O2B 173.5 (3)
O3B—Cu1—N1A—C5A −93.80 (19) C4B—C5B—C6B—O2B −6.5 (4)
O5B—Cu1—N1A—C5A 83.18 (19) N1B—C5B—C6B—O3B −7.8 (3)
O5A—Cu1—N1A—C5A 179.1 (2) C4B—C5B—C6B—O3B 172.1 (3)
O3A—Cu1—N1A—C5A −3.38 (18) Cu1—O5A—C7A—O4A −173.7 (2)
N1B—Cu1—N1A—C1A −34.3 (8) Cu1—O5A—C7A—C1A 5.5 (3)
O3B—Cu1—N1A—C1A 91.79 (19) N1A—C1A—C7A—O4A 177.3 (2)
O5B—Cu1—N1A—C1A −91.23 (19) C2A—C1A—C7A—O4A −1.6 (4)
O5A—Cu1—N1A—C1A 4.72 (18) N1A—C1A—C7A—O5A −2.0 (3)
O3A—Cu1—N1A—C1A −177.8 (2) C2A—C1A—C7A—O5A 179.1 (2)
N1A—Cu1—N1B—C5B 121.0 (6) Cu1—O5B—C7B—O4B 179.7 (3)
O3B—Cu1—N1B—C5B −6.50 (19) Cu1—O5B—C7B—C1B 1.3 (3)
O5B—Cu1—N1B—C5B 179.0 (2) N1B—C1B—C7B—O4B −173.3 (3)
O5A—Cu1—N1B—C5B 82.9 (2) C2B—C1B—C7B—O4B 6.8 (5)
O3A—Cu1—N1B—C5B −96.7 (2) N1B—C1B—C7B—O5B 5.2 (4)
N1A—Cu1—N1B—C1B −49.6 (7) C2B—C1B—C7B—O5B −174.7 (3)
O3B—Cu1—N1B—C1B −177.1 (2) C9A—N4A—C8A—N6A −179.6 (3)
O5B—Cu1—N1B—C1B 8.34 (19) C9A—N4A—C8A—N3A 0.4 (4)
O5A—Cu1—N1B—C1B −87.8 (2) C10A—N3A—C8A—N6A −179.8 (3)
O3A—Cu1—N1B—C1B 92.6 (2) C10A—N3A—C8A—N4A 0.1 (4)
C5A—N1A—C1A—C2A 1.1 (4) C8A—N4A—C9A—N7A −179.7 (3)
Cu1—N1A—C1A—C2A 175.49 (19) C8A—N4A—C9A—N5A −1.2 (4)
C5A—N1A—C1A—C7A −177.9 (2) C10A—N5A—C9A—N7A 180.0 (3)
Cu1—N1A—C1A—C7A −3.5 (3) C10A—N5A—C9A—N4A 1.4 (4)
C5B—N1B—C1B—C2B −0.7 (4) C8A—N3A—C10A—N8A 179.5 (3)
Cu1—N1B—C1B—C2B 169.8 (2) C8A—N3A—C10A—N5A 0.0 (4)
C5B—N1B—C1B—C7B 179.4 (2) C9A—N5A—C10A—N8A 179.7 (3)
Cu1—N1B—C1B—C7B −10.0 (3) C9A—N5A—C10A—N3A −0.8 (4)
N1A—C1A—C2A—C3A −0.9 (4) C10B—N3B—C8B—N8B −178.3 (2)
C7A—C1A—C2A—C3A 178.0 (2) C10B—N3B—C8B—N5B 1.1 (4)
N1B—C1B—C2B—C3B 0.0 (4) C9B—N5B—C8B—N8B −180.0 (2)
C7B—C1B—C2B—C3B 179.9 (3) C9B—N5B—C8B—N3B 0.5 (4)
C1A—C2A—C3A—O1A −179.3 (2) C10B—N4B—C9B—N7B −177.6 (2)
C1A—C2A—C3A—C4A −0.3 (4) C10B—N4B—C9B—N5B 1.9 (4)
C1B—C2B—C3B—O1B −179.1 (2) C8B—N5B—C9B—N4B −2.2 (4)
C1B—C2B—C3B—C4B 1.2 (4) C8B—N5B—C9B—N7B 177.4 (2)
O1A—C3A—C4A—C5A −179.7 (2) C8B—N3B—C10B—N6B 178.4 (2)
C2A—C3A—C4A—C5A 1.4 (4) C8B—N3B—C10B—N4B −1.5 (4)
O1B—C3B—C4B—C5B 178.8 (3) C9B—N4B—C10B—N3B 0.0 (4)
C2B—C3B—C4B—C5B −1.5 (4) C9B—N4B—C10B—N6B −179.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1A—H1A···O7i 0.74 (3) 1.84 (3) 2.573 (3) 169 (4)
O1B—H1B···O6ii 0.76 (4) 1.83 (4) 2.579 (3) 173 (4)
N5A—H5A···O10ii 0.77 (2) 2.06 (3) 2.787 (3) 159 (3)
N6A—H7···O4Biii 0.86 2.13 2.980 (3) 173
N6A—H8···O11 0.86 2.13 2.962 (4) 162
N7A—H11···O1Biii 0.86 2.25 3.106 (3) 172
N7A—H12···O9iv 0.86 2.11 2.910 (4) 155
N8A—H9···N3Av 0.86 2.11 2.973 (4) 177
N8A—H10···O10ii 0.86 2.25 2.986 (4) 144
N8A—H10···O11v 0.86 2.56 3.202 (4) 133
N5B—H5B···O2Avi 0.78 (2) 1.96 (3) 2.698 (3) 157 (3)
N6B—H5···O1Ai 0.86 2.28 3.131 (3) 170
N6B—H6···O9 0.86 2.38 2.905 (3) 120
N7B—H1···O5Bvii 0.86 2.24 3.021 (3) 151
N7B—H2···O2Avi 0.86 2.11 2.852 (3) 144
N8B—H3···O4Ai 0.86 2.10 2.930 (3) 163
N8B—H4···O8vi 0.86 2.01 2.857 (3) 169
O6—H61···O5A 0.83 (2) 1.87 (2) 2.706 (3) 177 (4)
O6—H62···O2Bviii 0.81 (2) 1.97 (2) 2.756 (3) 163 (4)
O7—H71···O3Bviii 0.82 (2) 1.94 (2) 2.741 (3) 163 (4)
O7—H72···O5B 0.82 (2) 1.95 (2) 2.766 (3) 171 (4)
O8—H81···O4Biii 0.86 (2) 1.86 (2) 2.714 (3) 173 (4)
O8—H82···O3A 0.83 (2) 1.90 (2) 2.701 (3) 162 (4)
O9—H91···O3B 0.88 (2) 1.97 (2) 2.839 (3) 172 (4)
O9—H92···O4Aiii 0.88 (2) 2.13 (2) 3.005 (3) 176 (4)
O10—H101···O8ix 0.84 (4) 2.24 (3) 3.030 (4) 157 (5)
O10—H102···O4A 0.89 (4) 2.39 (5) 2.695 (3) 101 (4)
O11—H111···O10x 0.85 (2) 2.44 (4) 3.196 (5) 149 (7)
O11—H112···N4Bx 0.83 (6) 2.53 (7) 2.996 (4) 116 (6)
O11—H112···O8 0.83 (6) 2.60 (8) 3.090 (5) 118 (7)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+2, −z+1; (iii) x, y, z−1; (iv) −x+1, −y+2, −z; (v) −x, −y+2, −z+1; (vi) x+1, −y+3/2, z+1/2; (vii) x+1, y, z; (viii) x, y, z+1; (ix) x+1, y, z+1; (x) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2763).

References

  1. Aghabozorg, H., Motyeian, E., Attar Gharamaleki, J., Soleimannejad, J., Ghadermazi, M. & Spey Sharon, E. (2008). Acta Cryst. E64, m144–m145. [DOI] [PMC free article] [PubMed]
  2. Aghabozorg, H., Motyeian, E., Soleimannejad, J., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, m252–m253. [DOI] [PMC free article] [PubMed]
  3. Aghabozorg, H., Saadaty, S., Motyeian, E., Ghadermazi, M. & Manteghi, F. (2008). Acta Cryst. E64, m466–m467. [DOI] [PMC free article] [PubMed]
  4. Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  6. Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802566X/bt2763sup1.cif

e-64-m1173-sup1.cif (31.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802566X/bt2763Isup2.hkl

e-64-m1173-Isup2.hkl (361.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES