Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 20;64(Pt 9):o1783. doi: 10.1107/S160053680802374X

Tri-p-tolyl­phosphine

Hao Wang a, Yi-Bin Wang a, Bo-Nian Liu b, Shi-Gui Tang a, Ping Wei a,*
PMCID: PMC2960611  PMID: 21201763

Abstract

In the title compound C21H21P, the P atom is situated on a crystallographic threefold rotatory-inversion axis, resulting in threefold rotation symmetry of the title compound. The dihedral angles between the symmetry-related benzene rings are 87.40 (18)°.

Related literature

For related literature, see: Brown et al. (1988).graphic file with name e-64-o1783-scheme1.jpg

Experimental

Crystal data

  • C21H21P

  • M r = 304.35

  • Trigonal, Inline graphic

  • a = 12.6562 (18) Å

  • c = 19.696 (4) Å

  • V = 2732.2 (8) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.958, T max = 0.971

  • 3464 measured reflections

  • 1095 independent reflections

  • 790 reflections with I > 2σ(I)

  • R int = 0.050

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.171

  • S = 1.03

  • 1095 reflections

  • 67 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802374X/kj2091sup1.cif

e-64-o1783-sup1.cif (13.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802374X/kj2091Isup2.hkl

e-64-o1783-Isup2.hkl (54.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some organophosphorus derivatives are important chemical materials, which are primarily used as intermediates of organic phosphorus flame retardants and phosphorus ligands in biphasic water soluble catalysts. The P atom is situated on a crystallographic threefold rotatory-inversion axis, resulting in threefold rotation symmetry of the title compound.

The dihedral angles between the symmetry-related benzene rings are 87.40 (18)°.

Experimental

20 g Sodium (0.870 mol) was added to 125 ml toluene, then the mixture was heated up to 383 K and stirred to form fine particles of sodium, which subsequently melted. Then the temperature was lowered to 323 K. P-chlorotoluene (55.2 g / 0.436 mol) and phosphorus trichloride (19.8 g / 0.144 mol) were added, keeping the temperature between 323 K and 333 K for two hours. The product was concentrated in a vacuum to gain a white solid (35.0 g, 80%) (Brown et al., 1988). The pure title compound was obtained by crystallizing from methanol. Crystals suitable for X-ray diffraction were obtained by slow evaporation of an methanol solution.

Refinement

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97 Å, and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5 Ueq of the carrier atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. Symmetry codes: (i) 1 - x + y,1 - x,z (ii) 1 - y + 1,x-y,z

Crystal data

C21H21P Z = 6
Mr = 304.35 F000 = 972
Trigonal, R3 Dx = 1.110 Mg m3
Hall symbol: -R 3 Mo Kα radiation λ = 0.71073 Å
a = 12.6562 (18) Å Cell parameters from 25 reflections
b = 12.6562 (18) Å θ = 10–13º
c = 19.696 (4) Å µ = 0.15 mm1
α = 90º T = 293 (2) K
β = 90º Block, colourless
γ = 120º 0.40 × 0.30 × 0.20 mm
V = 2732.2 (8) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.050
Radiation source: fine-focus sealed tube θmax = 25.2º
Monochromator: graphite θmin = 2.1º
T = 293(2) K h = −15→7
ω/2θ scans k = 0→15
Absorption correction: ψ scan(North et al., 1968) l = 0→23
Tmin = 0.958, Tmax = 0.971 3 standard reflections
3464 measured reflections every 200 reflections
1095 independent reflections intensity decay: none
790 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063 H-atom parameters constrained
wR(F2) = 0.171   w = 1/[σ2(Fo2) + (0.05P)2 + 4P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
1095 reflections Δρmax = 0.26 e Å3
67 parameters Δρmin = −0.34 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P 0.6667 0.3333 0.01046 (7) 0.0705 (5)
C1 0.8153 (4) 0.8316 (3) −0.1198 (2) 0.0992 (12)
H1A 0.7776 0.8686 −0.0944 0.149*
H1B 0.7882 0.8209 −0.1661 0.149*
H1C 0.9024 0.8832 −0.1182 0.149*
C2 0.7805 (3) 0.7091 (3) −0.08924 (18) 0.0710 (8)
C3 0.8232 (3) 0.6365 (3) −0.11520 (14) 0.0647 (8)
H3A 0.8752 0.6636 −0.1525 0.078*
C4 0.7903 (3) 0.5238 (3) −0.08689 (15) 0.0644 (7)
H4A 0.8205 0.4768 −0.1058 0.077*
C5 0.7147 (3) 0.4803 (2) −0.03192 (14) 0.0609 (7)
C6 0.6732 (3) 0.5549 (3) −0.0040 (2) 0.0811 (10)
H6A 0.6247 0.5301 0.0348 0.097*
C7 0.7050 (3) 0.6663 (3) −0.03445 (19) 0.0809 (10)
H7A 0.6735 0.7130 −0.0167 0.097*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P 0.0791 (6) 0.0791 (6) 0.0533 (8) 0.0396 (3) 0.000 0.000
C1 0.096 (3) 0.076 (2) 0.128 (4) 0.044 (2) 0.000 (2) 0.008 (2)
C2 0.0533 (16) 0.0599 (17) 0.097 (2) 0.0259 (14) −0.0093 (15) −0.0109 (16)
C3 0.0609 (16) 0.0699 (18) 0.0587 (17) 0.0294 (14) 0.0003 (13) −0.0060 (13)
C4 0.0648 (17) 0.0653 (17) 0.0666 (18) 0.0353 (14) −0.0009 (14) −0.0129 (14)
C5 0.0607 (16) 0.0677 (17) 0.0530 (16) 0.0312 (13) −0.0028 (12) −0.0109 (13)
C6 0.069 (2) 0.083 (2) 0.091 (2) 0.0377 (17) 0.0151 (17) −0.0131 (18)
C7 0.074 (2) 0.076 (2) 0.100 (3) 0.0436 (17) 0.0036 (18) −0.0164 (18)

Geometric parameters (Å, °)

P—C5i 1.843 (3) C3—C4 1.388 (4)
P—C5ii 1.843 (3) C3—H3A 0.9300
P—C5 1.843 (3) C4—C5 1.366 (4)
C1—C2 1.508 (4) C4—H4A 0.9300
C1—H1A 0.9600 C5—C6 1.401 (4)
C1—H1B 0.9600 C6—C7 1.394 (5)
C1—H1C 0.9600 C6—H6A 0.9300
C2—C7 1.361 (5) C7—H7A 0.9300
C2—C3 1.377 (4)
C5i—P—C5ii 101.08 (11) C4—C3—H3A 119.3
C5i—P—C5 101.08 (11) C5—C4—C3 121.5 (3)
C5ii—P—C5 101.08 (11) C5—C4—H4A 119.3
C2—C1—H1A 109.5 C3—C4—H4A 119.3
C2—C1—H1B 109.5 C4—C5—C6 117.6 (3)
H1A—C1—H1B 109.5 C4—C5—P 125.2 (2)
C2—C1—H1C 109.5 C6—C5—P 117.1 (2)
H1A—C1—H1C 109.5 C7—C6—C5 119.8 (3)
H1B—C1—H1C 109.5 C7—C6—H6A 120.1
C7—C2—C3 117.4 (3) C5—C6—H6A 120.1
C7—C2—C1 120.8 (3) C2—C7—C6 122.3 (3)
C3—C2—C1 121.8 (3) C2—C7—H7A 118.8
C2—C3—C4 121.4 (3) C6—C7—H7A 118.8
C2—C3—H3A 119.3
C7—C2—C3—C4 0.3 (5) C5i—P—C5—C6 −169.0 (2)
C1—C2—C3—C4 −179.8 (3) C5ii—P—C5—C6 87.2 (3)
C2—C3—C4—C5 −0.3 (5) C4—C5—C6—C7 3.0 (5)
C3—C4—C5—C6 −1.4 (5) P—C5—C6—C7 −179.0 (3)
C3—C4—C5—P −179.2 (2) C3—C2—C7—C6 1.5 (5)
C5i—P—C5—C4 8.8 (3) C1—C2—C7—C6 −178.4 (3)
C5ii—P—C5—C4 −95.0 (2) C5—C6—C7—C2 −3.2 (5)

Symmetry codes: (i) −x+y+1, −x+1, z; (ii) −y+1, xy, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2091).

References

  1. Brown, S. J., Clark, J. H. & Macquarrie, D. J. (1988). J. Chem. Soc. Dalton Trans. pp. 277–80.
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802374X/kj2091sup1.cif

e-64-o1783-sup1.cif (13.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802374X/kj2091Isup2.hkl

e-64-o1783-Isup2.hkl (54.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES