Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 30;64(Pt 9):o1860. doi: 10.1107/S1600536808027268

2,5-Dibromo­terephthalic acid dihydrate

Guang-Liang Song a, Shan Liu a, Hua-Jun Liu a, Tao Zeng a, Hong-Jun Zhu a,*
PMCID: PMC2960662  PMID: 21201829

Abstract

The asymmetric unit of the title compound, C8H4Br2O4·2H2O, contains one half-mol­ecule of 2,5-dibromo­terephthalic acid (DBTA) and one water mol­ecule. The DBTA mol­ecule is centrosymmetric. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules, forming a three-dimensional framework.

Related literature

For general background, see: Yao & Tour (1999). For a related structure, see: Singh & Bedi (1957).graphic file with name e-64-o1860-scheme1.jpg

Experimental

Crystal data

  • C8H4Br2O4·2H2O

  • M r = 359.94

  • Monoclinic, Inline graphic

  • a = 10.670 (2) Å

  • b = 7.413 (1) Å

  • c = 7.074 (1) Å

  • β = 92.74 (3)°

  • V = 558.89 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.26 mm−1

  • T = 293 (2) K

  • 0.10 × 0.10 × 0.08 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.530, T max = 0.594 (expected range = 0.499–0.559)

  • 1003 measured reflections

  • 1003 independent reflections

  • 763 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.117

  • S = 1.05

  • 1003 reflections

  • 67 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.70 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808027268/ez2130sup1.cif

e-64-o1860-sup1.cif (13.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027268/ez2130Isup2.hkl

e-64-o1860-Isup2.hkl (49.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HWA⋯O1i 0.85 2.11 2.903 (9) 155
OW—HWB⋯O1ii 0.85 2.22 2.944 (9) 142
O2—H2A⋯OW 0.82 1.75 2.566 (8) 177

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

2,5-Dibromoterephthalic acid (DBTA) is an important intermediate in the preparation of flame-retardant polymers (Yao et al., 1999). We report herein the crystal structure of the title compound (I).

The asymmetric unit of I (Fig. 1), contains one half of a molecule of 2,5-dibromoterephthalic acid (DBTA), which is related to the other half by a center of symmetry, and one water molecule. Three neighbouring DBTA molecules are linked through one water molecule by intermolecular O—H···O hydrogen bonds, to form a three dimensional framework.

Experimental

The title compound was prepared according to the method described by Singh & Bedi (1957). Crystals of (I) suitable for X-ray analysis were obtained by dissolving DBTA (2.0 g) in water (80 ml) and evaporating slowly at room temperature for about 15 d.

Refinement

Anisotropic parameters of the C atoms in the phenyl ring were restrained to have equal components and approximately isotropic behavior. H atoms were positioned geometrically, with O—H = 0.82 (for OH) and 0.85 (for H2O) and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom labelling scheme. Anisotropic displacement parameters are shown at the 50% probability level.

Crystal data

C8H4Br2O4·2H2O F000 = 348
Mr = 359.94 Dx = 2.139 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
a = 10.670 (2) Å Cell parameters from 25 reflections
b = 7.413 (1) Å θ = 10–13º
c = 7.074 (1) Å µ = 7.26 mm1
β = 92.74 (3)º T = 293 (2) K
V = 558.89 (15) Å3 Block, colorless
Z = 2 0.10 × 0.10 × 0.08 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.0000
Radiation source: fine-focus sealed tube θmax = 25.2º
Monochromator: graphite θmin = 1.9º
T = 293(2) K h = −12→12
ω/2θ scans k = 0→8
Absorption correction: ψ scan(North et al., 1968) l = 0→8
Tmin = 0.530, Tmax = 0.594 3 standard reflections
1003 measured reflections every 200 reflections
1003 independent reflections intensity decay: none
763 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.117   w = 1/[σ2(Fo2) + (0.06P)2 + 1.5P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1003 reflections Δρmax = 0.55 e Å3
67 parameters Δρmin = −0.70 e Å3
21 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br 0.31754 (7) 0.35260 (9) 0.52687 (10) 0.0366 (3)
OW −0.0069 (5) −0.2828 (11) 0.7105 (11) 0.093 (3)
HWA −0.0608 −0.2028 0.6780 0.111*
HWB −0.0299 −0.3786 0.7651 0.111*
O1 0.1532 (5) 0.0220 (6) 0.5124 (8) 0.0495 (14)
O2 0.2259 (5) −0.2252 (7) 0.6570 (9) 0.0554 (15)
H2A 0.1515 −0.2402 0.6767 0.083*
C1 0.5431 (6) 0.1725 (10) 0.4729 (9) 0.034
H1A 0.5725 0.2885 0.4518 0.040*
C2 0.4182 (6) 0.1457 (8) 0.5085 (9) 0.0276 (13)
C3 0.3736 (6) −0.0245 (8) 0.5317 (8) 0.0255 (13)
C4 0.2396 (6) −0.0748 (9) 0.5662 (9) 0.0314 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.0487 (4) 0.0111 (4) 0.0496 (5) 0.0050 (3) −0.0007 (3) 0.0002 (3)
OW 0.030 (3) 0.111 (6) 0.139 (7) 0.008 (3) 0.013 (3) 0.073 (5)
O1 0.045 (3) 0.016 (3) 0.087 (4) −0.004 (2) −0.002 (3) 0.015 (3)
O2 0.051 (3) 0.028 (3) 0.087 (4) −0.006 (3) −0.004 (3) 0.029 (3)
C1 0.034 0.034 0.034 0.000 0.002 0.000
C2 0.043 (3) 0.009 (3) 0.030 (3) 0.002 (3) −0.009 (3) 0.000 (3)
C3 0.038 (3) 0.013 (3) 0.025 (3) −0.002 (3) −0.003 (2) −0.004 (3)
C4 0.035 (3) 0.022 (3) 0.038 (4) 0.003 (3) 0.004 (3) 0.005 (3)

Geometric parameters (Å, °)

Br—C2 1.880 (6) C1—C2 1.383 (8)
OW—HWA 0.8500 C1—C3i 1.413 (9)
OW—HWB 0.8500 C1—H1A 0.9300
O1—C4 1.215 (8) C2—C3 1.361 (8)
O2—C4 1.299 (8) C3—C1i 1.413 (9)
O2—H2A 0.8200 C3—C4 1.508 (9)
HWA—OW—HWB 120.0 C1—C2—Br 117.0 (5)
C4—O2—H2A 109.5 C2—C3—C1i 119.5 (6)
C2—C1—C3i 120.4 (6) C2—C3—C4 126.0 (6)
C2—C1—H1A 119.8 C1i—C3—C4 114.5 (5)
C3i—C1—H1A 119.8 O1—C4—O2 124.1 (6)
C3—C2—C1 120.1 (6) O1—C4—C3 121.0 (6)
C3—C2—Br 122.9 (5) O2—C4—C3 115.0 (6)
C3i—C1—C2—C3 −2.7 (10) Br—C2—C3—C4 2.8 (9)
C3i—C1—C2—Br 176.2 (5) C2—C3—C4—O1 26.1 (10)
C1—C2—C3—C1i 2.7 (10) C1i—C3—C4—O1 −154.9 (6)
Br—C2—C3—C1i −176.2 (5) C2—C3—C4—O2 −153.4 (7)
C1—C2—C3—C4 −178.3 (6) C1i—C3—C4—O2 25.6 (8)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
OW—HWA···O1ii 0.85 2.11 2.903 (9) 155
OW—HWB···O1iii 0.85 2.22 2.944 (9) 142
O2—H2A···OW 0.82 1.75 2.566 (8) 177

Symmetry codes: (ii) −x, −y, −z+1; (iii) −x, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2130).

References

  1. Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  3. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Singh, T. & Bedi, S. N. (1957). J. Indian Chem. Soc.34, 321–323.
  6. Yao, Y. X. & Tour, J. M. (1999). Macromolecules, 32, 2455–2461.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808027268/ez2130sup1.cif

e-64-o1860-sup1.cif (13.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027268/ez2130Isup2.hkl

e-64-o1860-Isup2.hkl (49.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES