Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 6;64(Pt 9):o1667–o1668. doi: 10.1107/S1600536808024380

7,9-Dimethyl-5-phenyl­sulfonyl-5H-benzo[b]carbazole

G Chakkaravarthi a,*, V Dhayalan b, A K Mohanakrishnan b, V Manivannan c
PMCID: PMC2960676  PMID: 21201660

Abstract

In the title compound, C24H19NO2S, the mean plane of the benzo[b]carbazole ring system makes a dihedral angle of 79.26 (5)° with the phenyl ring. The S atom is in a distorted tetra­hedral configuration. The crystal structure exhibits weak C—H⋯O and C—H⋯π inter­actions.

Related literature

For related literature, see: Allen et al. (1987); Chakkaravarthi et al. (2007, 2008); Diaz et al. (2002); Etter et al. (1990); Friend et al. (1999); Govindasamy et al. (1998); Hökelek et al. (1998); Hosomi et al. (2000); Itoigawa et al. (2000); Ramsewak et al. (1999); Rodriguez et al. (1995); Sankaranarayanan et al. (2000); Tachibana et al. (2001); Zhang et al. (2004).graphic file with name e-64-o1667-scheme1.jpg

Experimental

Crystal data

  • C24H19NO2S

  • M r = 385.46

  • Orthorhombic, Inline graphic

  • a = 13.9260 (6) Å

  • b = 10.1995 (5) Å

  • c = 27.3014 (14) Å

  • V = 3877.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 295 (2) K

  • 0.30 × 0.20 × 0.16 mm

Data collection

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.940, T max = 0.971

  • 26413 measured reflections

  • 5626 independent reflections

  • 3490 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.157

  • S = 1.04

  • 5626 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024380/bt2759sup1.cif

e-64-o1667-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024380/bt2759Isup2.hkl

e-64-o1667-Isup2.hkl (270KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1 0.93 2.37 2.945 (3) 120
C21—H21⋯O2 0.93 2.34 2.935 (2) 122
C8—H8⋯Cg1i 0.93 3.00 3.859 155
C11—H11⋯Cg2ii 0.93 2.90 3.693 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 and Cg2 are the centroids of the C7–C12 and C15–C20 rings, respectively.

Acknowledgments

The authors acknowledge the Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Madras, for the data collection.

supplementary crystallographic information

Comment

Carbazole and its derivatives have become quite attractive compounds owing to their applications in pharmacy and molecular electronics. It has been reported that carbazole derivatives possess various biological activities, such as antitumor (Itoigawa et al., 2000), antioxidative (Tachibana et al., 2001), anti-inflammatory and antimutagenic (Ramsewak et al., 1999). Carbazole derivatives also exhibit electroactivity and luminescence properties and are considered to be potential candidates for electronic such as colour displays, organic semiconductor lasers and solar cells (Friend et al., 1999). These compounds are thermally and photochemically stable, which makes them useful materials for technological applications. For instance, the carbazole ring is easily funtionalized and covalently linked to other molecules (Diaz et al., 2002). This enables its use as a convenient building block for the design and synthesis of molecular glasses, which are widely studied as components of electroactive and photoactive materials (Zhang et al., 2004).

Against this background, and in order to obtain detailed information on molecular conformations in the solid state, X-ray studies of the title compounds (I) have been carried out. X-Ray analysis confirms the molecular structure and atom connectivity for (I), as illustrated in Fig. 1. The benzocarbazole ring is planar, with bond distances and angles comparable to those reported similiar structures (Hökelek et al., 1998; Hosomi et al., 2000). The mean planes of the benzo(b)carbazole and phenyl rings form a dihedral angle of 79.26 (5)°. The N1—S1—C1 plane is almost orthogonal to carbazole ring [dihedral angle 87.20 (7)°] and phenyl ring [dihedral angle 88.44 (7)°]. The best plane of pyrrole ring N1/C7/C12/C13/C22 subtends a dihedral angle of 28.11 (11)° with sulfonyl group.

The average S—O, S—C, and S—N distances are 1.418, 1.760 and 1.664 Å, respectively, in (I); these are comparable as observed in similiar structures (Chakkaravarthi et al., 2007; Sankaranarayanan et al., 2000). The N—C bond lengths, namely N1—C7 and N1—C22 [1.430 (2) & 1.434 (2) Å in (I)] deviate slightly from the normal mean value reported in the literature (Allen et al., 1987). This indicates that the substitution of the phenylsulfonyl group at atom N1 results in an lengthening of the C—N bond lengths. This may be due to the electron-withdrawing character of the phenylsulfonyl group (Govindasamy et al., 1998). The S atom exhibits significant deviation from that of a regular tetrahedron, with the largest deviations being seen for the O—S—O [O1—S1—O2 119.66 (7)°] and O—S—N angles [O1—S—N1 106.78 (7)°]. The widening of the angles may be due to repulsive interactions between the two short S=O bonds, similar to what is observed in related structures (Chakkaravarthi et al., 2008; Rodriguez et al., 1995).

The sum of the bond angles around N1 [350.99°] indicate the sp2 hybridized state of the atom N, in the molecule. The benzene ring C15—C20 is almost coplanar with methyl groups [torsion angles C24—C19—C20—C21 and C15—C16—C17—C23 (0.17 (30)° and -179.18 (22)°, respectively] The torsion angles O1—S1—N1—C7 and O1—S1—C1—C6 [43.11 (16)° and 22.47 (20)°, respectively] describe the syn conformation of the phenylsulfonyl group with respect to benzocarbazole ring system. This conformation is influenced by the intramolecular C—H··· O hydrogen bonds (Table 1), C8—H8··· O1 and C21—H21···O2, involving sulfonyl atoms O1 and O2.

In addition, intramolecular C8—H8···O1 and C21—H21···O2 hydrogen bonds form six-membered rings, both with a graph-set motif of S(6) (Etter et al., 1990). The crystal packing exhibits weak intermolecular C—H···π interactions, involving the C7—C12 (centroid Cg1) and C15—C20 (centroid Cg2) rings (Table 1) [Fig. 2].

Experimental

To a solution of diethyl 2-((2-(bromomethyl)-1-(phenylsulfonyl)-1H-indol-3-yl)methylene) malonate (0.57 mmol) in dry 1,2-DCE (10 ml), ZnBr2 (1.15 mmol) and m-xylene (1.15 mmol) were added. The reaction mixture was then refluxed for 1 h under N2 atmosphere. It was then poured over ice-water (30 ml) containing 1 ml of concentrated HCl, extracted with chloroform (2 X 10 ml) and dried (Na2SO4). The solvent was removed under vacuo, then crude products was purified by flash column chromatography (silica gel, 230–420 mesh, n-hexane/ethyl acetate 99:1) afforded the compound (I), suitable for X-ray analysis.

Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labeling scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Intramolecular H-bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

The crystal structure of (I), viewed down the b axis. C—H···π interactions are shown as dashed lines For the sake of clarity, H atoms not involved in interaction have been omitted.

Crystal data

C24H19NO2S F000 = 1616
Mr = 385.46 Dx = 1.320 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 5907 reflections
a = 13.9260 (6) Å θ = 2.6–28.4º
b = 10.1995 (5) Å µ = 0.19 mm1
c = 27.3014 (14) Å T = 295 (2) K
V = 3877.8 (3) Å3 Block, colourless
Z = 8 0.30 × 0.20 × 0.16 mm

Data collection

Bruker Kappa APEXII diffractometer 5626 independent reflections
Radiation source: fine-focus sealed tube 3490 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.038
T = 295(2) K θmax = 30.0º
ω and φ scans θmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −11→19
Tmin = 0.940, Tmax = 0.971 k = −14→11
26413 measured reflections l = −37→38

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.157   w = 1/[σ2(Fo2) + (0.0716P)2 + 1.0437P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
5626 reflections Δρmax = 0.68 e Å3
255 parameters Δρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.53043 (3) 0.01070 (5) 0.179632 (16) 0.04540 (15)
O1 0.57705 (11) 0.10159 (16) 0.21087 (5) 0.0640 (4)
O2 0.58196 (10) −0.09761 (15) 0.16030 (5) 0.0577 (4)
N1 0.49029 (11) 0.09650 (16) 0.13202 (5) 0.0426 (4)
C1 0.42667 (14) −0.0487 (2) 0.20902 (7) 0.0477 (5)
C2 0.38759 (17) −0.1665 (2) 0.19457 (8) 0.0591 (5)
H2 0.4160 −0.2151 0.1696 0.071*
C3 0.30584 (19) −0.2116 (3) 0.21752 (10) 0.0772 (7)
H3 0.2787 −0.2909 0.2079 0.093*
C4 0.2648 (2) −0.1411 (3) 0.25400 (11) 0.0809 (8)
H4 0.2099 −0.1727 0.2694 0.097*
C5 0.30312 (19) −0.0243 (3) 0.26847 (10) 0.0785 (8)
H5 0.2741 0.0228 0.2936 0.094*
C6 0.38543 (18) 0.0250 (2) 0.24591 (8) 0.0627 (6)
H6 0.4117 0.1049 0.2554 0.075*
C7 0.44478 (13) 0.22122 (19) 0.13769 (7) 0.0454 (4)
C8 0.46434 (16) 0.3208 (2) 0.17055 (8) 0.0581 (5)
H8 0.5103 0.3106 0.1950 0.070*
C9 0.4132 (2) 0.4357 (3) 0.16576 (9) 0.0717 (7)
H9 0.4250 0.5042 0.1874 0.086*
C10 0.3448 (2) 0.4517 (3) 0.12961 (10) 0.0745 (7)
H10 0.3115 0.5304 0.1273 0.089*
C11 0.32554 (17) 0.3529 (2) 0.09714 (9) 0.0643 (6)
H11 0.2794 0.3642 0.0729 0.077*
C12 0.37554 (14) 0.2355 (2) 0.10081 (7) 0.0486 (5)
C13 0.37626 (13) 0.1181 (2) 0.07144 (6) 0.0446 (4)
C14 0.32703 (14) 0.0819 (2) 0.02981 (7) 0.0497 (5)
H14 0.2800 0.1367 0.0169 0.060*
C15 0.34814 (13) −0.0379 (2) 0.00694 (7) 0.0491 (5)
C16 0.29952 (16) −0.0775 (3) −0.03650 (7) 0.0600 (6)
H16 0.2513 −0.0243 −0.0492 0.072*
C17 0.32182 (18) −0.1911 (3) −0.05996 (8) 0.0651 (7)
C18 0.39480 (18) −0.2716 (2) −0.04030 (8) 0.0648 (6)
H18 0.4103 −0.3488 −0.0566 0.078*
C19 0.44376 (15) −0.2408 (2) 0.00171 (7) 0.0546 (5)
C20 0.42069 (14) −0.12157 (19) 0.02648 (7) 0.0459 (4)
C21 0.47023 (13) −0.08330 (19) 0.06929 (6) 0.0435 (4)
H21 0.5176 −0.1366 0.0827 0.052*
C22 0.44720 (12) 0.03323 (19) 0.09060 (6) 0.0410 (4)
C23 0.2711 (2) −0.2323 (3) −0.10647 (9) 0.0899 (9)
H23A 0.2321 −0.1613 −0.1182 0.135*
H23B 0.2312 −0.3070 −0.0999 0.135*
H23C 0.3179 −0.2549 −0.1309 0.135*
C24 0.5218 (2) −0.3292 (2) 0.02088 (10) 0.0711 (7)
H24A 0.5012 −0.3687 0.0510 0.107*
H24B 0.5789 −0.2788 0.0266 0.107*
H24C 0.5350 −0.3966 −0.0027 0.107*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0375 (2) 0.0617 (3) 0.0370 (2) 0.0086 (2) −0.00775 (18) 0.0004 (2)
O1 0.0572 (9) 0.0790 (11) 0.0557 (9) 0.0017 (8) −0.0242 (7) −0.0081 (8)
O2 0.0462 (7) 0.0755 (10) 0.0514 (8) 0.0223 (7) −0.0049 (6) −0.0018 (7)
N1 0.0413 (8) 0.0515 (9) 0.0350 (7) −0.0009 (7) −0.0056 (6) 0.0016 (7)
C1 0.0475 (10) 0.0575 (12) 0.0381 (9) 0.0151 (9) 0.0005 (8) 0.0109 (8)
C2 0.0635 (13) 0.0623 (14) 0.0514 (11) 0.0022 (11) 0.0064 (10) 0.0072 (10)
C3 0.0754 (17) 0.0786 (17) 0.0776 (17) −0.0049 (14) 0.0120 (14) 0.0157 (14)
C4 0.0658 (16) 0.095 (2) 0.0812 (18) 0.0141 (15) 0.0191 (14) 0.0270 (16)
C5 0.0709 (16) 0.100 (2) 0.0647 (15) 0.0353 (16) 0.0233 (13) 0.0080 (14)
C6 0.0665 (14) 0.0663 (14) 0.0553 (12) 0.0216 (11) 0.0047 (11) 0.0011 (11)
C7 0.0436 (9) 0.0517 (11) 0.0410 (9) −0.0013 (8) −0.0029 (8) 0.0032 (8)
C8 0.0616 (13) 0.0608 (13) 0.0518 (11) 0.0015 (11) −0.0108 (10) −0.0044 (10)
C9 0.0864 (17) 0.0596 (14) 0.0690 (15) 0.0060 (13) −0.0117 (13) −0.0124 (12)
C10 0.0851 (18) 0.0611 (15) 0.0773 (17) 0.0192 (13) −0.0111 (14) −0.0043 (13)
C11 0.0618 (13) 0.0677 (15) 0.0635 (14) 0.0129 (11) −0.0145 (11) 0.0051 (12)
C12 0.0450 (10) 0.0561 (12) 0.0446 (10) 0.0007 (9) −0.0052 (8) 0.0056 (9)
C13 0.0387 (9) 0.0575 (11) 0.0376 (9) −0.0068 (8) −0.0033 (7) 0.0085 (8)
C14 0.0437 (10) 0.0622 (12) 0.0433 (10) −0.0063 (9) −0.0102 (8) 0.0104 (9)
C15 0.0440 (10) 0.0675 (13) 0.0359 (9) −0.0200 (9) −0.0030 (8) 0.0083 (9)
C16 0.0556 (12) 0.0824 (16) 0.0422 (10) −0.0268 (11) −0.0098 (9) 0.0062 (11)
C17 0.0692 (14) 0.0837 (17) 0.0425 (11) −0.0398 (13) −0.0033 (10) −0.0006 (11)
C18 0.0757 (15) 0.0689 (15) 0.0499 (11) −0.0344 (12) 0.0056 (11) −0.0080 (11)
C19 0.0628 (12) 0.0549 (12) 0.0462 (10) −0.0237 (10) 0.0041 (9) 0.0006 (9)
C20 0.0479 (10) 0.0532 (11) 0.0366 (9) −0.0171 (8) 0.0035 (8) 0.0041 (8)
C21 0.0446 (10) 0.0500 (10) 0.0358 (9) −0.0065 (8) −0.0017 (7) 0.0058 (8)
C22 0.0381 (9) 0.0522 (11) 0.0329 (8) −0.0072 (8) −0.0026 (7) 0.0051 (7)
C23 0.099 (2) 0.117 (2) 0.0532 (13) −0.0450 (19) −0.0173 (13) −0.0105 (15)
C24 0.0975 (19) 0.0495 (13) 0.0662 (15) −0.0065 (13) 0.0034 (13) −0.0067 (11)

Geometric parameters (Å, °)

S1—O1 1.4170 (15) C11—H11 0.9300
S1—O2 1.4190 (15) C12—C13 1.442 (3)
S1—N1 1.6636 (15) C13—C14 1.377 (3)
S1—C1 1.760 (2) C13—C22 1.414 (3)
N1—C7 1.430 (2) C14—C15 1.404 (3)
N1—C22 1.434 (2) C14—H14 0.9300
C1—C2 1.377 (3) C15—C16 1.424 (3)
C1—C6 1.382 (3) C15—C20 1.426 (3)
C2—C3 1.379 (3) C16—C17 1.360 (4)
C2—H2 0.9300 C16—H16 0.9300
C3—C4 1.355 (4) C17—C18 1.412 (4)
C3—H3 0.9300 C17—C23 1.513 (3)
C4—C5 1.363 (4) C18—C19 1.371 (3)
C4—H4 0.9300 C18—H18 0.9300
C5—C6 1.395 (4) C19—C20 1.428 (3)
C5—H5 0.9300 C19—C24 1.506 (3)
C6—H6 0.9300 C20—C21 1.412 (3)
C7—C8 1.382 (3) C21—C22 1.362 (3)
C7—C12 1.402 (3) C21—H21 0.9300
C8—C9 1.378 (3) C23—H23A 0.9600
C8—H8 0.9300 C23—H23B 0.9600
C9—C10 1.381 (4) C23—H23C 0.9600
C9—H9 0.9300 C24—H24A 0.9600
C10—C11 1.368 (3) C24—H24B 0.9600
C10—H10 0.9300 C24—H24C 0.9600
C11—C12 1.388 (3)
O1—S1—O2 120.10 (9) C7—C12—C13 107.97 (17)
O1—S1—N1 106.26 (9) C14—C13—C22 119.30 (19)
O2—S1—N1 106.79 (8) C14—C13—C12 132.68 (19)
O1—S1—C1 109.07 (10) C22—C13—C12 107.91 (16)
O2—S1—C1 108.47 (10) C13—C14—C15 119.73 (18)
N1—S1—C1 105.14 (8) C13—C14—H14 120.1
C7—N1—C22 107.48 (14) C15—C14—H14 120.1
C7—N1—S1 122.17 (12) C14—C15—C16 121.2 (2)
C22—N1—S1 121.34 (13) C14—C15—C20 120.20 (17)
C2—C1—C6 121.3 (2) C16—C15—C20 118.6 (2)
C2—C1—S1 119.61 (16) C17—C16—C15 121.7 (2)
C6—C1—S1 119.11 (19) C17—C16—H16 119.2
C1—C2—C3 119.2 (2) C15—C16—H16 119.2
C1—C2—H2 120.4 C16—C17—C18 118.7 (2)
C3—C2—H2 120.4 C16—C17—C23 121.7 (3)
C4—C3—C2 120.3 (3) C18—C17—C23 119.5 (3)
C4—C3—H3 119.8 C19—C18—C17 122.9 (2)
C2—C3—H3 119.8 C19—C18—H18 118.6
C3—C4—C5 120.8 (3) C17—C18—H18 118.6
C3—C4—H4 119.6 C18—C19—C20 118.6 (2)
C5—C4—H4 119.6 C18—C19—C24 120.8 (2)
C4—C5—C6 120.6 (2) C20—C19—C24 120.51 (19)
C4—C5—H5 119.7 C21—C20—C15 119.36 (18)
C6—C5—H5 119.7 C21—C20—C19 121.15 (19)
C1—C6—C5 117.9 (3) C15—C20—C19 119.46 (18)
C1—C6—H6 121.1 C22—C21—C20 118.67 (18)
C5—C6—H6 121.1 C22—C21—H21 120.7
C8—C7—C12 121.70 (19) C20—C21—H21 120.7
C8—C7—N1 129.54 (17) C21—C22—C13 122.74 (16)
C12—C7—N1 108.65 (17) C21—C22—N1 129.15 (17)
C9—C8—C7 117.5 (2) C13—C22—N1 107.99 (16)
C9—C8—H8 121.3 C17—C23—H23A 109.5
C7—C8—H8 121.3 C17—C23—H23B 109.5
C8—C9—C10 121.6 (2) H23A—C23—H23B 109.5
C8—C9—H9 119.2 C17—C23—H23C 109.5
C10—C9—H9 119.2 H23A—C23—H23C 109.5
C11—C10—C9 120.7 (2) H23B—C23—H23C 109.5
C11—C10—H10 119.6 C19—C24—H24A 109.5
C9—C10—H10 119.6 C19—C24—H24B 109.5
C10—C11—C12 119.3 (2) H24A—C24—H24B 109.5
C10—C11—H11 120.3 C19—C24—H24C 109.5
C12—C11—H11 120.3 H24A—C24—H24C 109.5
C11—C12—C7 119.10 (19) H24B—C24—H24C 109.5
C11—C12—C13 132.82 (18)
O1—S1—N1—C7 −43.11 (16) C7—C12—C13—C14 −176.6 (2)
O2—S1—N1—C7 −172.43 (14) C11—C12—C13—C22 175.6 (2)
C1—S1—N1—C7 72.46 (16) C7—C12—C13—C22 −0.6 (2)
O1—S1—N1—C22 173.90 (14) C22—C13—C14—C15 −0.3 (3)
O2—S1—N1—C22 44.58 (16) C12—C13—C14—C15 175.41 (19)
C1—S1—N1—C22 −70.53 (16) C13—C14—C15—C16 −179.16 (17)
O1—S1—C1—C2 −158.20 (16) C13—C14—C15—C20 −0.4 (3)
O2—S1—C1—C2 −25.75 (18) C14—C15—C16—C17 177.57 (19)
N1—S1—C1—C2 88.19 (17) C20—C15—C16—C17 −1.2 (3)
O1—S1—C1—C6 22.46 (19) C15—C16—C17—C18 0.4 (3)
O2—S1—C1—C6 154.91 (16) C15—C16—C17—C23 −179.2 (2)
N1—S1—C1—C6 −91.15 (17) C16—C17—C18—C19 0.6 (3)
C6—C1—C2—C3 −0.1 (3) C23—C17—C18—C19 −179.9 (2)
S1—C1—C2—C3 −179.44 (18) C17—C18—C19—C20 −0.6 (3)
C1—C2—C3—C4 −0.4 (4) C17—C18—C19—C24 −179.3 (2)
C2—C3—C4—C5 0.4 (4) C14—C15—C20—C21 0.7 (3)
C3—C4—C5—C6 0.0 (4) C16—C15—C20—C21 179.44 (17)
C2—C1—C6—C5 0.5 (3) C14—C15—C20—C19 −177.66 (17)
S1—C1—C6—C5 179.85 (17) C16—C15—C20—C19 1.1 (3)
C4—C5—C6—C1 −0.5 (4) C18—C19—C20—C21 −178.54 (18)
C22—N1—C7—C8 −176.3 (2) C24—C19—C20—C21 0.2 (3)
S1—N1—C7—C8 36.3 (3) C18—C19—C20—C15 −0.2 (3)
C22—N1—C7—C12 −0.2 (2) C24—C19—C20—C15 178.47 (18)
S1—N1—C7—C12 −147.55 (14) C15—C20—C21—C22 −0.2 (3)
C12—C7—C8—C9 −0.1 (3) C19—C20—C21—C22 178.10 (16)
N1—C7—C8—C9 175.6 (2) C20—C21—C22—C13 −0.5 (3)
C7—C8—C9—C10 0.0 (4) C20—C21—C22—N1 −176.05 (17)
C8—C9—C10—C11 0.0 (4) C14—C13—C22—C21 0.8 (3)
C9—C10—C11—C12 0.0 (4) C12—C13—C22—C21 −175.89 (17)
C10—C11—C12—C7 −0.1 (3) C14—C13—C22—N1 177.13 (16)
C10—C11—C12—C13 −175.9 (2) C12—C13—C22—N1 0.5 (2)
C8—C7—C12—C11 0.2 (3) C7—N1—C22—C21 175.86 (18)
N1—C7—C12—C11 −176.30 (18) S1—N1—C22—C21 −36.4 (2)
C8—C7—C12—C13 176.93 (19) C7—N1—C22—C13 −0.19 (19)
N1—C7—C12—C13 0.5 (2) S1—N1—C22—C13 147.52 (13)
C11—C12—C13—C14 −0.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8···O1 0.93 2.37 2.945 (3) 120
C21—H21···O2 0.93 2.34 2.935 (2) 122
C8—H8···Cg1i 0.93 3.00 3.859 155
C11—H11···Cg2ii 0.93 2.90 3.693 144

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2759).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3673.
  4. Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542. [DOI] [PMC free article] [PubMed]
  5. Diaz, J. L., Villacampa, B., Lopez-Calahorra, F. & Velasco, D. (2002). Chem. Mater.14, 2240–2251.
  6. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  7. Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121–127.
  8. Govindasamy, L., Velmurugan, D., Ravikumar, K. & Mohanakrishnan, A. K. (1998). Acta Cryst. C54, 277–279.
  9. Hökelek, T., Gündüz, H., Patir, S. & Uludaug, N. (1998). Acta Cryst. C54, 1297–1299.
  10. Hosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e144–e146. [DOI] [PubMed]
  11. Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod.63, 893–897. [DOI] [PubMed]
  12. Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem.47, 444–447. [DOI] [PubMed]
  13. Rodriguez, J. G., del Valle, C., Esteban-Calderon, C. & Martinez-Repoll, M. (1995). J. Chem. Crystallogr.25, 249–257.
  14. Sankaranarayanan, R., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Babu, G. & Perumal, P. T. (2000). Acta Cryst. C56, 475–476. [PubMed]
  15. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  18. Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem.49, 5589–5594. [DOI] [PubMed]
  19. Zhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem.14, 895–900.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024380/bt2759sup1.cif

e-64-o1667-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024380/bt2759Isup2.hkl

e-64-o1667-Isup2.hkl (270KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES