Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 6;64(Pt 9):o1683–o1684. doi: 10.1107/S1600536808024070

Bis(diphenyl­phospho­rothio­yl) tris­ulfide

Monika Kulcsar a, Anca Silvestru a,*, Marius Vonas a
PMCID: PMC2960680  PMID: 21201673

Abstract

In the title compound, C24H20P2S5, the P atoms are arranged trans with respect to the S3 group and the S=P—S—S systems have cisoid geometry, with an average S—P—S—S torsion angle of −56.7°. The dihedral angles between the two phenyl rings attached to the P atoms are 87.33 (12) and 75.67 (10)°. In the crystal structure, the mol­ecules are linked into chains running parallel to the a axis by weak inter­molecular C—H⋯S hydrogen bonds. Centrosymmetrically related chains are further connected by π–π stacking inter­actions, with a centroid-to-centroid distance of 3.795 (5) Å.

Related literature

For related literature. see: Deleanu et al. (2002); Drake et al. (2001a ,b ); Gallacher & Pinkerton (1992a ,b , 1993); Kulcsar et al. (2005); Newton et al. (1993); Silvestru et al. (1994a ,b ); Buranda et al. (1991); Fest & Schmidt (1982); Knopik et al. (1993); Lawton (1970); McCleverty et al. (1983); Molyneux (1967); Perlikowska et al. (2004); Potrzebowski et al. (1991, 1994); Tiekink (2001); Tkachev et al. (1976); Zhang et al. (2004); Emsley (1994); Yadav et al. (1989).graphic file with name e-64-o1683-scheme1.jpg

Experimental

Crystal data

  • C24H20P2S5

  • M r = 530.64

  • Triclinic, Inline graphic

  • a = 9.2287 (8) Å

  • b = 11.5476 (10) Å

  • c = 12.9728 (12) Å

  • α = 92.690 (2)°

  • β = 105.287 (2)°

  • γ = 106.124 (2)°

  • V = 1270.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 297 (2) K

  • 0.35 × 0.27 × 0.21 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.819, T max = 0.885

  • 13712 measured reflections

  • 5178 independent reflections

  • 4536 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.106

  • S = 1.13

  • 5178 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024070/rz2237sup1.cif

e-64-o1683-sup1.cif (21.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024070/rz2237Isup2.hkl

e-64-o1683-Isup2.hkl (253.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯S5i 0.93 2.94 3.737 (3) 145

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Romanian Ministry of Education and Research (CNCSIS grant No. 12/1456/2007). We thank the National Center for X-ray Diffraction (Babes-Bolyai University, Cluj-Napoca) for support in the solid-state structure determination.

supplementary crystallographic information

Comment

Our interest was focused for long time on studies concerning reactions between bis(diorganothiophosphoryl)disulfides and diorganodichalcogenides of type R2E2 (E = Se, Te) in order to obtain new organochalcogen compounds with diorganodithiophosphorus ligands (Newton et al., 1993; Silvestru et al., 1994a,b; Drake et al., 2001a,b; Kulcsar et al., 2005; Deleanu et al., 2002). Bis(diorganothiophosphoryl)disulfides attracted much interest also due to their potential applications as pesticides (Fest & Schmidt, 1982), additives in motor oils (Molyneux, 1967) and in the rubber vulcanization (McCleverty et al., 1983). Both alkyl and aryl substituted derivatives of type [R2P(S)S]2 were already structurally characterized, e.g. R = OPr-i (Lawton, 1970; Tkachev et al., 1976; Tiekink, 2001; Zhang et al., 2004), R = OMe, OBu-t (Potrzebowski et al., 1991), cyclohexyl (Buranda et al., 1991), Me, Pr-i (Gallacher & Pinkerton, 1992b), Ph (Gallacher & Pinkerton, 1993), OPh (Gallacher & Pinkerton, 1993; Knopik et al., 1993), menthoxy (Perlikowska et al., 2004), R2 = OCMe2—CMe2O (Yadav et al., 1989), OCMe2—CH2O (Potrzebowski et al., 1994). A search of the Cambridge Structure Database revealed that only for one trisulfide, [Et2P(S)S]2S, the X-ray crystal structure was determined (Gallacher & Pinkerton, 1992a). Here we report about the phenyl substituted analog, [Ph2P(S)S]2S.

The chalcogen atoms S2 and S3 are doubly bonded to phosphorus [S2═P1 = 1.9351 (9); S3═P2 = 1.9303 (9) Å], while the P1—S1 [2.1171 (9) Å] and P2—S4 [2.1282 (9) Å] distances correspond to single P—S bonds (cf. [Ph2P(S)S]2: P═S = 1.930 (1), P—S = 2.139 (1) Å; Gallacher & Pinkerton, 1993). The sulfur–sulfur distances within the S3 group are not significantly different [S5—S4 = 2.0407 (10), S5—S1 = 2.0440 (10) Å], corresponding to a S—S single bond. These values are similar to those found in bis(diorganothiophosphoryl)disulfides or in [Et2P(S)S]2S. The SPS3PS skeleton of the title compound adopts a twisted zigzag chain structure (Fig. 1), with the torsion angles S2—P1—S1—S5 = -56.30 (5)°, P1—S1—S5—S4 = 96.84 (4)°, S1—S5—S4—P2 = 87.42 (5)° and S5—S4—P2—S3 = -57.13 (5)°. Although apparently the conformation of the SPS3PS skeleton is similar to that of the previously reported ethyl derivative, some differences should be noted. In the title compound the phosphorus atoms are trans with respect of the central S3 group [P1—S1···S5—P2 = 171.4°], as are in the related [Et2P(S)S]2S compound (the torsion angle between corresponding atoms is 159.8°). In both cases the central S atom and the terminal S atoms, respectively, are placed on opposite sides of the best plane described by the remaining atoms of the skeleton. However, the S═P···P═S torsion angle is 138.8°, but only -89.4° in the ethyl derivative. Moreover, the S═P—S—S system has a cisoid geometry [S2—P1—S1—S5 = -56.30 (5)°, S5—S4—P2—S3 = -57.13 (5)°], while it has a transoid geometry in [Et2P(S)S]2S (average S═P—S—S torsion angle 179.6°; Gallacher & Pinkerton, 1992a). The S—P—S angles [S2—P1—S1 = 113.77 (4)° and S3—P2—S4 = 114.34 (4)°] are consistent with a cisoid geometry, similar with that found for [Ph2P(S)S]2 [114.44 (4)°; Gallacher & Pinkerton, 1993], but much larger than in the transoid derivatives [(PhO)2P(S)S]2 [108.39 (7)°; Gallacher & Pinkerton, 1993] and [Et2P(S)S]2S [av. 103.7°; Gallacher & Pinkerton, 1992a]. The dihedral angles formed by the plane of the phenyl rings attached to the P1 and P2 atoms are 87.33 (12) 75.67 (10)° respectively. The crystal structure is stabilized by weak intermolecular hydrogen bonding interactions (Emsley, 1994) between the central sulfur atom and an aromatic proton of a neighbouring molecule (Table 1) forming chains parellel to the a axis (Fig. 2). Weak intermolecular S···H contacts were observed in [(PhO)2P(S)S]2 [2.954 (1) Å], but they are absent in [Et2P(S)S]2S or [Ph2P(S)S]2. Centrosymmetrically related chains are further connected by π–π stacking interactions involving the C13–C18 phenyl rings, with centroid-to-centroid distance of 3.795 (5) Å.

Experimental

The title compound was isolated as a by-product during recrystallization of PhSeS2PPh2 obtained in the reaction between [Ph2P(S)S]2 and Ph2Se2.

Refinement

All C-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and treated using a riding model with Uiso = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the title compound, with the atomic numbering scheme, showing displacement ellipsoids at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Fig. 2.

Fig. 2.

View of the S···H intermolecular interactions (dashed lines) in the title compound. Only H involved in hydrogen bonding interactions are shown. Symmetry codes: (i) 1 + x, y, z, (ii) -1 + x, y, z.

Crystal data

C24H20P2S5 Z = 2
Mr = 530.64 F000 = 548
Triclinic, P1 Dx = 1.387 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 9.2287 (8) Å Cell parameters from 4229 reflections
b = 11.5476 (10) Å θ = 2.4–25.3º
c = 12.9728 (12) Å µ = 0.59 mm1
α = 92.690 (2)º T = 297 (2) K
β = 105.287 (2)º Block, yellow
γ = 106.124 (2)º 0.35 × 0.27 × 0.21 mm
V = 1270.3 (2) Å3

Data collection

Bruker SMART APEX diffractometer 5178 independent reflections
Radiation source: fine-focus sealed tube 4536 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.029
T = 297(2) K θmax = 26.4º
φ and ω scans θmin = 1.6º
Absorption correction: multi-scan(SADABS; Bruker, 2000) h = −11→11
Tmin = 0.819, Tmax = 0.886 k = −14→14
13712 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.106   w = 1/[σ2(Fo2) + (0.0406P)2 + 0.4205P] where P = (Fo2 + 2Fc2)/3
S = 1.13 (Δ/σ)max = 0.001
5178 reflections Δρmax = 0.40 e Å3
280 parameters Δρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2158 (3) 0.8016 (2) 1.01664 (19) 0.0410 (6)
C2 0.3749 (3) 0.8562 (3) 1.0317 (2) 0.0549 (7)
H2 0.4141 0.8641 0.9724 0.066*
C3 0.4758 (4) 0.8988 (3) 1.1337 (3) 0.0649 (8)
H3 0.5828 0.9348 1.1436 0.078*
C4 0.4171 (4) 0.8878 (3) 1.2203 (3) 0.0689 (9)
H4 0.4848 0.9168 1.2894 0.083*
C5 0.2607 (4) 0.8349 (3) 1.2068 (2) 0.0710 (9)
H5 0.2225 0.8283 1.2665 0.085*
C6 0.1586 (3) 0.7909 (3) 1.1050 (2) 0.0561 (7)
H6 0.0520 0.7543 1.0960 0.067*
C7 −0.1095 (3) 0.7270 (2) 0.8809 (2) 0.0432 (6)
C8 −0.2183 (3) 0.6199 (3) 0.8876 (2) 0.0541 (7)
H8 −0.1877 0.5500 0.8980 0.065*
C9 −0.3720 (4) 0.6158 (4) 0.8789 (3) 0.0721 (10)
H9 −0.4449 0.5435 0.8832 0.087*
C10 −0.4163 (4) 0.7184 (5) 0.8640 (3) 0.0890 (12)
H10 −0.5203 0.7156 0.8568 0.107*
C11 −0.3101 (5) 0.8242 (4) 0.8595 (4) 0.0986 (13)
H11 −0.3412 0.8941 0.8513 0.118*
C12 −0.1564 (4) 0.8300 (3) 0.8671 (3) 0.0735 (9)
H12 −0.0848 0.9030 0.8629 0.088*
C13 0.3127 (3) 0.3345 (2) 0.5892 (2) 0.0398 (5)
C14 0.2557 (3) 0.3370 (2) 0.4795 (2) 0.0479 (6)
H14 0.1519 0.3359 0.4499 0.057*
C15 0.3525 (4) 0.3410 (3) 0.4141 (2) 0.0556 (7)
H15 0.3143 0.3436 0.3406 0.067*
C16 0.5055 (4) 0.3413 (3) 0.4577 (3) 0.0609 (8)
H16 0.5705 0.3430 0.4135 0.073*
C17 0.5620 (3) 0.3390 (3) 0.5657 (3) 0.0619 (8)
H17 0.6657 0.3395 0.5946 0.074*
C18 0.4675 (3) 0.3360 (2) 0.6329 (2) 0.0514 (7)
H18 0.5072 0.3349 0.7065 0.062*
C19 0.0085 (3) 0.2000 (2) 0.61159 (19) 0.0391 (5)
C20 0.0029 (3) 0.0881 (2) 0.6477 (2) 0.0553 (7)
H20 0.0863 0.0805 0.7028 0.066*
C21 −0.1260 (4) −0.0116 (3) 0.6021 (3) 0.0679 (9)
H21 −0.1291 −0.0866 0.6261 0.082*
C22 −0.2495 (4) −0.0006 (3) 0.5214 (3) 0.0663 (9)
H22 −0.3370 −0.0679 0.4914 0.080*
C23 −0.2445 (3) 0.1094 (3) 0.4849 (2) 0.0590 (8)
H23 −0.3284 0.1163 0.4297 0.071*
C24 −0.1155 (3) 0.2102 (2) 0.5295 (2) 0.0468 (6)
H24 −0.1123 0.2846 0.5042 0.056*
P1 0.09047 (8) 0.73820 (6) 0.88233 (5) 0.03962 (16)
P2 0.18502 (8) 0.32528 (6) 0.67495 (5) 0.03861 (16)
S1 0.11328 (9) 0.56101 (6) 0.88821 (5) 0.04965 (18)
S2 0.15246 (9) 0.81659 (7) 0.76545 (6) 0.0581 (2)
S3 0.27532 (9) 0.31611 (7) 0.82540 (5) 0.0562 (2)
S4 0.12601 (8) 0.48837 (6) 0.64407 (5) 0.04720 (18)
S5 −0.02304 (8) 0.48041 (6) 0.73690 (6) 0.04856 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0431 (14) 0.0406 (13) 0.0377 (13) 0.0128 (11) 0.0096 (11) 0.0023 (10)
C2 0.0462 (15) 0.0608 (18) 0.0556 (17) 0.0146 (13) 0.0134 (13) 0.0027 (14)
C3 0.0443 (16) 0.064 (2) 0.072 (2) 0.0126 (14) −0.0026 (15) 0.0023 (16)
C4 0.076 (2) 0.0575 (19) 0.0514 (18) 0.0143 (17) −0.0112 (16) −0.0003 (14)
C5 0.089 (3) 0.074 (2) 0.0389 (16) 0.0113 (19) 0.0159 (16) 0.0006 (15)
C6 0.0559 (17) 0.0611 (18) 0.0435 (15) 0.0060 (14) 0.0147 (13) 0.0017 (13)
C7 0.0407 (13) 0.0489 (15) 0.0380 (13) 0.0129 (11) 0.0096 (11) −0.0008 (11)
C8 0.0533 (16) 0.0624 (18) 0.0486 (16) 0.0170 (14) 0.0183 (13) 0.0084 (13)
C9 0.0529 (18) 0.094 (3) 0.061 (2) 0.0040 (18) 0.0249 (16) −0.0066 (18)
C10 0.055 (2) 0.131 (4) 0.088 (3) 0.040 (2) 0.0229 (19) −0.009 (3)
C11 0.085 (3) 0.093 (3) 0.137 (4) 0.056 (3) 0.034 (3) 0.007 (3)
C12 0.067 (2) 0.0587 (19) 0.103 (3) 0.0281 (17) 0.0295 (19) 0.0056 (18)
C13 0.0425 (13) 0.0311 (12) 0.0428 (14) 0.0077 (10) 0.0113 (11) 0.0010 (10)
C14 0.0475 (15) 0.0504 (15) 0.0453 (15) 0.0136 (12) 0.0138 (12) 0.0076 (12)
C15 0.0659 (19) 0.0535 (17) 0.0465 (16) 0.0101 (14) 0.0232 (14) 0.0062 (13)
C16 0.0594 (19) 0.0526 (17) 0.072 (2) 0.0048 (14) 0.0353 (17) −0.0010 (15)
C17 0.0399 (15) 0.0612 (19) 0.078 (2) 0.0090 (13) 0.0144 (15) −0.0046 (16)
C18 0.0474 (15) 0.0493 (16) 0.0510 (16) 0.0111 (13) 0.0081 (13) −0.0013 (12)
C19 0.0442 (13) 0.0345 (12) 0.0406 (13) 0.0104 (10) 0.0173 (11) 0.0027 (10)
C20 0.0587 (17) 0.0399 (15) 0.0614 (18) 0.0117 (13) 0.0107 (14) 0.0075 (13)
C21 0.083 (2) 0.0376 (16) 0.072 (2) 0.0061 (15) 0.0157 (18) 0.0063 (14)
C22 0.068 (2) 0.0485 (17) 0.064 (2) −0.0070 (15) 0.0186 (17) −0.0096 (15)
C23 0.0486 (16) 0.0630 (19) 0.0515 (17) 0.0052 (14) 0.0052 (13) −0.0032 (14)
C24 0.0480 (15) 0.0451 (15) 0.0454 (15) 0.0117 (12) 0.0129 (12) 0.0061 (12)
P1 0.0411 (4) 0.0412 (4) 0.0361 (3) 0.0117 (3) 0.0113 (3) 0.0044 (3)
P2 0.0440 (4) 0.0349 (3) 0.0359 (3) 0.0113 (3) 0.0105 (3) 0.0039 (3)
S1 0.0608 (4) 0.0496 (4) 0.0432 (4) 0.0259 (3) 0.0128 (3) 0.0062 (3)
S2 0.0642 (5) 0.0640 (5) 0.0451 (4) 0.0116 (4) 0.0206 (3) 0.0161 (3)
S3 0.0658 (5) 0.0598 (4) 0.0378 (4) 0.0173 (4) 0.0073 (3) 0.0082 (3)
S4 0.0632 (4) 0.0346 (3) 0.0467 (4) 0.0161 (3) 0.0191 (3) 0.0064 (3)
S5 0.0403 (3) 0.0436 (4) 0.0562 (4) 0.0096 (3) 0.0097 (3) −0.0040 (3)

Geometric parameters (Å, °)

C1—C6 1.380 (4) C14—C15 1.378 (4)
C1—C2 1.384 (4) C14—H14 0.9300
C1—P1 1.805 (2) C15—C16 1.375 (4)
C2—C3 1.377 (4) C15—H15 0.9300
C2—H2 0.9300 C16—C17 1.365 (4)
C3—C4 1.367 (5) C16—H16 0.9300
C3—H3 0.9300 C17—C18 1.382 (4)
C4—C5 1.361 (5) C17—H17 0.9300
C4—H4 0.9300 C18—H18 0.9300
C5—C6 1.380 (4) C19—C24 1.379 (3)
C5—H5 0.9300 C19—C20 1.387 (3)
C6—H6 0.9300 C19—P2 1.816 (2)
C7—C12 1.379 (4) C20—C21 1.376 (4)
C7—C8 1.383 (4) C20—H20 0.9300
C7—P1 1.809 (3) C21—C22 1.369 (4)
C8—C9 1.381 (4) C21—H21 0.9300
C8—H8 0.9300 C22—C23 1.369 (4)
C9—C10 1.362 (5) C22—H22 0.9300
C9—H9 0.9300 C23—C24 1.383 (4)
C10—C11 1.353 (6) C23—H23 0.9300
C10—H10 0.9300 C24—H24 0.9300
C11—C12 1.378 (5) P1—S2 1.9351 (9)
C11—H11 0.9300 P1—S1 2.1171 (9)
C12—H12 0.9300 P2—S3 1.9303 (9)
C13—C14 1.385 (3) P2—S4 2.1282 (9)
C13—C18 1.386 (4) S1—S5 2.0440 (10)
C13—P2 1.808 (2) S4—S5 2.0407 (10)
C6—C1—C2 119.4 (2) C14—C15—H15 120.1
C6—C1—P1 121.7 (2) C17—C16—C15 120.0 (3)
C2—C1—P1 118.9 (2) C17—C16—H16 120.0
C3—C2—C1 120.5 (3) C15—C16—H16 120.0
C3—C2—H2 119.8 C16—C17—C18 121.0 (3)
C1—C2—H2 119.8 C16—C17—H17 119.5
C4—C3—C2 119.4 (3) C18—C17—H17 119.5
C4—C3—H3 120.3 C17—C18—C13 119.1 (3)
C2—C3—H3 120.3 C17—C18—H18 120.4
C5—C4—C3 120.8 (3) C13—C18—H18 120.4
C5—C4—H4 119.6 C24—C19—C20 119.5 (2)
C3—C4—H4 119.6 C24—C19—P2 123.69 (19)
C4—C5—C6 120.4 (3) C20—C19—P2 116.8 (2)
C4—C5—H5 119.8 C21—C20—C19 120.1 (3)
C6—C5—H5 119.8 C21—C20—H20 120.0
C1—C6—C5 119.6 (3) C19—C20—H20 120.0
C1—C6—H6 120.2 C22—C21—C20 120.2 (3)
C5—C6—H6 120.2 C22—C21—H21 119.9
C12—C7—C8 118.9 (3) C20—C21—H21 119.9
C12—C7—P1 117.5 (2) C23—C22—C21 120.1 (3)
C8—C7—P1 123.5 (2) C23—C22—H22 119.9
C9—C8—C7 120.5 (3) C21—C22—H22 119.9
C9—C8—H8 119.8 C22—C23—C24 120.4 (3)
C7—C8—H8 119.8 C22—C23—H23 119.8
C10—C9—C8 119.6 (3) C24—C23—H23 119.8
C10—C9—H9 120.2 C19—C24—C23 119.8 (3)
C8—C9—H9 120.2 C19—C24—H24 120.1
C11—C10—C9 120.4 (3) C23—C24—H24 120.1
C11—C10—H10 119.8 C1—P1—C7 107.49 (11)
C9—C10—H10 119.8 C1—P1—S2 116.30 (9)
C10—C11—C12 120.9 (4) C7—P1—S2 113.64 (9)
C10—C11—H11 119.5 C1—P1—S1 96.94 (8)
C12—C11—H11 119.5 C7—P1—S1 107.14 (9)
C11—C12—C7 119.6 (3) S2—P1—S1 113.77 (4)
C11—C12—H12 120.2 C13—P2—C19 106.48 (11)
C7—C12—H12 120.2 C13—P2—S3 116.70 (9)
C14—C13—C18 119.7 (2) C19—P2—S3 113.09 (8)
C14—C13—P2 120.46 (19) C13—P2—S4 97.91 (8)
C18—C13—P2 119.8 (2) C19—P2—S4 106.85 (8)
C15—C14—C13 120.2 (3) S3—P2—S4 114.34 (4)
C15—C14—H14 119.9 S5—S1—P1 100.37 (4)
C13—C14—H14 119.9 S5—S4—P2 99.52 (4)
C16—C15—C14 119.9 (3) S4—S5—S1 106.77 (4)
C16—C15—H15 120.1
C6—C1—C2—C3 0.4 (4) C6—C1—P1—C7 24.6 (3)
P1—C1—C2—C3 −176.0 (2) C2—C1—P1—C7 −159.0 (2)
C1—C2—C3—C4 −0.6 (5) C6—C1—P1—S2 153.3 (2)
C2—C3—C4—C5 0.3 (5) C2—C1—P1—S2 −30.4 (2)
C3—C4—C5—C6 0.3 (5) C6—C1—P1—S1 −85.9 (2)
C2—C1—C6—C5 0.1 (4) C2—C1—P1—S1 90.5 (2)
P1—C1—C6—C5 176.4 (2) C12—C7—P1—C1 82.6 (2)
C4—C5—C6—C1 −0.4 (5) C8—C7—P1—C1 −100.7 (2)
C12—C7—C8—C9 1.0 (4) C12—C7—P1—S2 −47.6 (3)
P1—C7—C8—C9 −175.7 (2) C8—C7—P1—S2 129.2 (2)
C7—C8—C9—C10 −0.2 (5) C12—C7—P1—S1 −174.1 (2)
C8—C9—C10—C11 −1.2 (6) C8—C7—P1—S1 2.6 (2)
C9—C10—C11—C12 1.7 (7) C14—C13—P2—C19 50.3 (2)
C10—C11—C12—C7 −0.9 (6) C18—C13—P2—C19 −128.0 (2)
C8—C7—C12—C11 −0.4 (5) C14—C13—P2—S3 177.66 (17)
P1—C7—C12—C11 176.5 (3) C18—C13—P2—S3 −0.6 (2)
C18—C13—C14—C15 −0.1 (4) C14—C13—P2—S4 −59.9 (2)
P2—C13—C14—C15 −178.4 (2) C18—C13—P2—S4 121.75 (19)
C13—C14—C15—C16 0.7 (4) C24—C19—P2—C13 −82.9 (2)
C14—C15—C16—C17 −0.8 (4) C20—C19—P2—C13 95.5 (2)
C15—C16—C17—C18 0.2 (5) C24—C19—P2—S3 147.60 (19)
C16—C17—C18—C13 0.4 (4) C20—C19—P2—S3 −34.0 (2)
C14—C13—C18—C17 −0.4 (4) C24—C19—P2—S4 20.9 (2)
P2—C13—C18—C17 177.9 (2) C20—C19—P2—S4 −160.63 (19)
C24—C19—C20—C21 −0.3 (4) C1—P1—S1—S5 −179.08 (9)
P2—C19—C20—C21 −178.8 (2) C7—P1—S1—S5 70.17 (9)
C19—C20—C21—C22 −0.4 (5) S2—P1—S1—S5 −56.30 (5)
C20—C21—C22—C23 0.8 (5) C13—P2—S4—S5 178.76 (8)
C21—C22—C23—C24 −0.5 (5) C19—P2—S4—S5 68.80 (9)
C20—C19—C24—C23 0.7 (4) S3—P2—S4—S5 −57.13 (5)
P2—C19—C24—C23 179.1 (2) P2—S4—S5—S1 87.43 (4)
C22—C23—C24—C19 −0.3 (4) P1—S1—S5—S4 96.84 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C17—H17···S5i 0.93 2.94 3.737 (3) 145

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2237).

References

  1. Brandenburg, K. & Putz, H. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2000). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Buranda, T., Gallacher, A. C. & Pinkerton, A. A. (1991). Acta Cryst. C47, 1414–1418.
  5. Deleanu, C., Drake, J. E., Hursthouse, M. B., Kulcsar, M., Leight, M. E. & Silvestru, A. (2002). Appl. Organomet. Chem.16, 727–731.
  6. Drake, J. E., Hursthouse, M. B., Kulcsar, M., Light, M. E. & Silvestru, A. (2001a). Phosphorus Sulfur Silicon Relat. Elem.169, 293–296.
  7. Drake, J. E., Hursthouse, M. B., Kulcsar, M., Light, M. E. & Silvestru, A. (2001b). J. Organomet. Chem.623, 153–160.
  8. Emsley, J. (1994). Die Elemente Berlin: Walter de Gruyter.
  9. Fest, C. & Schmidt, K. J. (1982). The Chemistry of Organophosphorus Pesticides, 2nd ed. New York: Springer.
  10. Gallacher, A. C. & Pinkerton, A. A. (1992a). Acta Cryst. C48, 701–703.
  11. Gallacher, A. C. & Pinkerton, A. A. (1992b). Acta Cryst. C48, 2085–2088.
  12. Gallacher, A. C. & Pinkerton, A. A. (1993). Acta Cryst. C49, 1793–1796.
  13. Knopik, P., Luczak, L., Potrzebowski, M. J., Michalski, J., Blaszczyk, J. & Wieczorek, M. W. (1993). J. Chem. Soc. Dalton Trans. pp. 2749–2757.
  14. Kulcsar, M., Silvestru, A., Silvestru, C., Drake, J. E., Macdonald, C. L. B., Hursthouse, M. B. & Light, M. E. (2005). J. Organomet. Chem.690, 3217–3228.
  15. Lawton, S. L. (1970). Inorg. Chem.9, 2269–2274.
  16. McCleverty, J. A., Kowalski, R. S. Z., Bailey, N. A., Mulvaney, R. & O’Cleirigh, D. A. (1983). J. Chem. Soc. Dalton Trans. pp. 627–634.
  17. Molyneux, P. H. (1967). Lubrication and Lubricants, ch. 3, edited by E. R. Braithwaite. Amsterdam: Elsevier.
  18. Newton, M. G., King, R. B., Haiduc, I. & Silvestru, A. (1993). Inorg. Chem.32, 3795–3796.
  19. Perlikowska, W., Gouygou, M., Mikolajczyk, M. & Daran, J.-C. (2004). Tetrahedron Asymmetry, 15, 3519–3529.
  20. Potrzebowski, M. J., Grossmann, G., Blaszczyk, J., Wieczorek, M. W., Sieler, J., Knopik, P. & Komber, H. (1994). Inorg. Chem.33, 4688–4695.
  21. Potrzebowski, M. J., Reinbenspies, J. H. & Zhong, Z. (1991). Heteroat. Chem.2, 455–460.
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Silvestru, A., Haiduc, I., Ebert, K. H. & Breunig, H. J. (1994a). Inorg. Chem.33, 1253–1254.
  24. Silvestru, A., Haiduc, I., Ebert, K. H. & Breunig, H. J. (1994b). J. Organomet. Chem.482, 253–259.
  25. Tiekink, E. R. T. (2001). Z. Kristallogr. New Cryst. Struct.216, 247–248.
  26. Tkachev, V. V., Atovmyan, L. O. & Shchepinov, S. A. (1976). Zh. Strukt. Khim.17, 945–947.
  27. Westrip, S. P. (2008). publCIF In preparation.
  28. Yadav, J. S., Bohra, R., Mehrotra, R. K., Rai, A. K. & Srivastava, G. (1989). Acta Cryst. C45, 308–311.
  29. Zhang, S.-S., Li, X.-M., Wang, J.-L., Wan, J. & Jiao, K. (2004). Chem. Res. Chin. Univ.20, 146–148.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024070/rz2237sup1.cif

e-64-o1683-sup1.cif (21.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024070/rz2237Isup2.hkl

e-64-o1683-Isup2.hkl (253.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES