Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 20;64(Pt 9):m1186. doi: 10.1107/S1600536808026081

trans-Aqua­(4,7-diaza­decane-1,10-diamine-κ4 N)fluoridochromium(III) bis­(perchlorate) monohydrate

Jong-Ha Choi a, Uk Lee b,*
PMCID: PMC2960685  PMID: 21201626

Abstract

In the title compound, [CrF(C8H20N4)(H2O)](ClO4)2·H2O, the Cr atom is in a slightly distorted octa­hedral environment, coordinated by four N atoms of the 4,7-diaza­decane-1,10-diamine ligand, one water mol­ecule and an F atom trans to water. The five-membered chelate ring is in a gauche form, while the two six-membered chelate rings are in chair conformations. The crystal structure is stabilized by several hydrogen bonds.

Related literature

For the synthesis, see: Glerup et al. (1970). For related structures, see: Brencic et al. (1985); Choi et al. (1995, 2004, 2006, 2008). For other related literature, see: Choi & Hoggard (1992); Poon & Pun (1980); Stearns & Armstrong (1992).graphic file with name e-64-m1186-scheme1.jpg

Experimental

Crystal data

  • [CrF(C8H20N4)(H2O)](ClO4)2·H2O

  • M r = 480.23

  • Monoclinic, Inline graphic

  • a = 9.950 (1) Å

  • b = 16.893 (2) Å

  • c = 12.008 (1) Å

  • β = 108.65 (1)°

  • V = 1912.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 298 (2) K

  • 0.43 × 0.30 × 0.25 mm

Data collection

  • Stoe Stadi-4 diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe, 1996) T min = 0.686, T max = 0.889

  • 4347 measured reflections

  • 4347 independent reflections

  • 3245 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 60 min intensity decay: 3.1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076

  • wR(F 2) = 0.228

  • S = 1.09

  • 4347 reflections

  • 243 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: STADI4 (Stoe & Cie, 1996); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026081/cf2211sup1.cif

e-64-m1186-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026081/cf2211Isup2.hkl

e-64-m1186-Isup2.hkl (213KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1OA⋯Fi 0.86 (6) 1.72 (6) 2.564 (5) 168 (8)
O1W—H1OB⋯O2W 0.74 (6) 1.92 (6) 2.617 (6) 158 (7)
N1—H1AN⋯O2ii 0.91 2.42 3.332 (11) 177
N2—H1N2⋯O7iii 0.91 2.45 3.154 (10) 134
N3—H3BN⋯O5 0.90 2.36 3.242 (10) 167
N4—H4BN⋯O5 0.90 2.43 3.062 (10) 127
C1—H1B⋯O4iv 0.97 2.53 3.141 (13) 121

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

Acyclic flexible 4,7-diazadecane-1,10-diamine (3,2,3-tet) and its related tetradentate ligands provide a rich field of geometric and conformational isomers in octahedral transition metal complexes (Choi et al., 2008). The electronic absorption and infrared spectra often can be used diagnostically to identify the geometric isomers of chromium(III) complexes complexes (Poon & Pun, 1980; Choi & Hoggard, 1992). However, it should be noted that the assignments based on spectroscopic investigations are not always conclusive (Stearns & Armstrong, 1992). [Cr(3,2,3-tet)F(H2O)]X2 can adopt a diverse stereochemistry and configuration, but no structures have been reported. Thus we here report the crystal structure of the title complex (Fig. 1) in order to confirm the geometric configuration.

There are one fluorine atom and one water molecule coordinated to the chromium atom in a trans arrangement with an F—Cr—O1w bond angle of 179.5 (2)°. The rest of the coordination sites are occupied by four nitrogen atoms from 3,2,3-tet ligand in the equatorial plane. The mean Cr—N bond length of 2.079 (4) Å is normal, agreeing with literature values (Choi et al., 1995; Choi et al., 2004). The Cr—N1 and Cr—N2 bond lengths of 2.068 (5) and 2.070 (4) Å of secondary amines are slightly shorter than Cr—N3 and Cr—N4 distances of 2.082 (5) and 2.095 (4) Å of primary amines. The Cr—F distance of 1.881 (3) Å and Cr—O1W of 1.996 (4) Å are also compararble to the values of 1.870 (1) Å and 2.023 (2) Å found in trans-[Cr([15]aneN4)F2]ClO4 (Choi et al., 2006) and trans-[Cr(NH3)4Cl(H2O)]Cl2 (Brencic et al., 1985), respectively. The short Cr—F bond length suggests a strong bond.

The uncoordinated ClO4- anions and one water molecule remain outside the coordination sphere. There is an extensive hydrogen bonding network (Table 2) between the oxygens of the ClO4- anions, fluorine atom, water molecule, C—H and the N—H groups of the 3,2,3-tet ligand as shown in Figure 2. These hydrogen-bonded networks help to stabilize the crystal structure.

Experimental

As starting material, trans-[Cr(3,2,3-tet)F2]ClO4 was prepared according to the literature (Glerup et al., 1970). The complex trans-[Cr(3,2,3-tet)F2]ClO4 was dissolved in 0.2 M HClO4. The solution was heated at 333 K for 50 min and then a saturated solution of sodium perchlorate was added. Dark red crystals suitable for an X-ray structural determination were deposited over several days as the solution evaporated.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms. H atoms of O1w were located in a difference Fourier map and refined with constraints. Reasonable positions of H atoms for O2w could not obtained from a difference Fourier map.

Figures

Fig. 1.

Fig. 1.

Molecular structure (30% probability ellipsoids) of the title compound.

Fig. 2.

Fig. 2.

Hydrogen-bond interactions (dashed lines) in the title compound. [Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) x+1, y, z; (v) x, -y+3/2, z+1/2.]

Crystal data

[CrF(C8H20N4)(H2O)](ClO4)2·H2O F000 = 996
Mr = 480.23 Dx = 1.668 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 32 reflections
a = 9.950 (1) Å θ = 19.0–20.8º
b = 16.893 (2) Å µ = 0.94 mm1
c = 12.008 (1) Å T = 298 (2) K
β = 108.65 (1)º Block, dark red
V = 1912.4 (4) Å3 0.43 × 0.30 × 0.25 mm
Z = 4

Data collection

Stoe Stadi-4 diffractometer Rint = 0.0000
Radiation source: fine-focus sealed tube θmax = 27.5º
Monochromator: graphite θmin = 2.2º
T = 298(2) K h = −12→12
ω/2–θ scans k = 0→21
Absorption correction: numerical(X-SHAPE; Stoe, 1996) l = 0→15
Tmin = 0.686, Tmax = 0.889 3 standard reflections
4347 measured reflections every 60 min
4347 independent reflections intensity decay: 3.1%
3245 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.228   w = 1/[σ2(Fo2) + (0.1014P)2 + 6.2787P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
4347 reflections Δρmax = 1.07 e Å3
243 parameters Δρmin = −0.60 e Å3
3 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cr 0.77207 (8) 0.74161 (4) 0.61410 (6) 0.0294 (2)
Cl1 0.25308 (17) 0.51481 (9) 0.64339 (13) 0.0538 (4)
Cl2 1.24851 (16) 0.84876 (12) 0.62990 (16) 0.0643 (5)
F 0.7140 (3) 0.74557 (18) 0.7485 (2) 0.0404 (7)
N1 0.6809 (5) 0.6308 (3) 0.5748 (4) 0.0458 (11)
H1AN 0.7106 0.6106 0.5164 0.055*
N2 0.5732 (4) 0.7824 (3) 0.5160 (4) 0.0454 (11)
H1N2 0.5272 0.7928 0.5688 0.055*
N3 0.8507 (5) 0.8564 (3) 0.6485 (4) 0.0435 (10)
H3AN 0.8338 0.8731 0.7139 0.052*
H3BN 0.9455 0.8539 0.6654 0.052*
N4 0.9663 (4) 0.6910 (3) 0.7114 (4) 0.0414 (10)
H4AN 1.0105 0.6748 0.6607 0.050*
H4BN 1.0203 0.7291 0.7565 0.050*
C1 0.9611 (7) 0.6231 (4) 0.7887 (5) 0.0523 (14)
H1A 0.9198 0.6405 0.8476 0.063*
H1B 1.0569 0.6051 0.8291 0.063*
C2 0.8750 (8) 0.5550 (4) 0.7202 (7) 0.0643 (18)
H2A 0.8905 0.5089 0.7711 0.077*
H2B 0.9095 0.5423 0.6554 0.077*
C3 0.7171 (8) 0.5710 (4) 0.6718 (6) 0.0639 (18)
H3A 0.6679 0.5219 0.6425 0.077*
H3B 0.6840 0.5898 0.7348 0.077*
C4 0.5235 (7) 0.6431 (5) 0.5235 (6) 0.0643 (19)
H4A 0.4797 0.5967 0.4788 0.077*
H4B 0.4827 0.6510 0.5860 0.077*
C5 0.4968 (6) 0.7142 (5) 0.4451 (5) 0.065 (2)
H5A 0.5311 0.7049 0.3791 0.078*
H5B 0.3959 0.7252 0.4147 0.078*
C6 0.5603 (7) 0.8554 (5) 0.4447 (5) 0.0629 (19)
H6A 0.4607 0.8690 0.4110 0.076*
H6B 0.5972 0.8452 0.3805 0.076*
C7 0.6384 (8) 0.9245 (4) 0.5152 (7) 0.068 (2)
H7A 0.6117 0.9719 0.4677 0.082*
H7B 0.6070 0.9311 0.5833 0.082*
C8 0.7971 (7) 0.9183 (4) 0.5569 (6) 0.0586 (16)
H8A 0.8289 0.9063 0.4904 0.070*
H8B 0.8372 0.9690 0.5885 0.070*
O1 0.2360 (12) 0.5429 (5) 0.5295 (7) 0.143 (3)
O2 0.1991 (14) 0.4382 (5) 0.6357 (8) 0.183 (5)
O3 0.3986 (11) 0.5079 (10) 0.6805 (16) 0.257 (8)
O4 0.2177 (16) 0.5591 (8) 0.7161 (12) 0.231 (7)
O5 1.1848 (9) 0.8171 (7) 0.7049 (9) 0.173 (5)
O6 1.1523 (12) 0.9046 (7) 0.5676 (8) 0.186 (5)
O7 1.2769 (14) 0.7974 (8) 0.5576 (17) 0.277 (10)
O8 1.3760 (9) 0.8831 (8) 0.6872 (10) 0.188 (5)
O1W 0.8322 (4) 0.7379 (3) 0.4706 (3) 0.0412 (9)
H1OA 0.782 (7) 0.743 (4) 0.398 (6) 0.07 (2)*
H1OB 0.896 (6) 0.714 (4) 0.474 (5) 0.046 (19)*
O2W 1.0660 (6) 0.6849 (4) 0.4419 (5) 0.0841 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cr 0.0281 (4) 0.0384 (4) 0.0229 (4) −0.0002 (3) 0.0098 (3) −0.0013 (3)
Cl1 0.0632 (9) 0.0531 (8) 0.0533 (8) −0.0025 (7) 0.0302 (7) −0.0047 (6)
Cl2 0.0436 (8) 0.0758 (11) 0.0728 (11) −0.0005 (7) 0.0175 (7) 0.0124 (9)
F 0.0427 (16) 0.0559 (18) 0.0266 (13) −0.0032 (13) 0.0166 (12) −0.0043 (12)
N1 0.049 (3) 0.050 (3) 0.044 (2) −0.015 (2) 0.022 (2) −0.013 (2)
N2 0.032 (2) 0.073 (3) 0.032 (2) 0.010 (2) 0.0118 (17) 0.001 (2)
N3 0.048 (3) 0.040 (2) 0.048 (3) −0.0004 (19) 0.022 (2) −0.0008 (19)
N4 0.035 (2) 0.051 (3) 0.037 (2) 0.0042 (19) 0.0107 (18) 0.0039 (19)
C1 0.064 (4) 0.053 (3) 0.042 (3) 0.014 (3) 0.019 (3) 0.010 (3)
C2 0.083 (5) 0.036 (3) 0.078 (5) 0.007 (3) 0.032 (4) 0.011 (3)
C3 0.082 (5) 0.048 (3) 0.071 (4) −0.019 (3) 0.038 (4) −0.002 (3)
C4 0.043 (3) 0.082 (5) 0.068 (4) −0.026 (3) 0.018 (3) −0.027 (4)
C5 0.033 (3) 0.113 (6) 0.041 (3) −0.008 (3) 0.001 (2) −0.018 (4)
C6 0.048 (3) 0.097 (5) 0.045 (3) 0.030 (3) 0.017 (3) 0.029 (3)
C7 0.077 (5) 0.060 (4) 0.077 (5) 0.033 (4) 0.036 (4) 0.022 (4)
C8 0.067 (4) 0.044 (3) 0.077 (4) 0.008 (3) 0.041 (4) 0.012 (3)
O1 0.220 (10) 0.118 (6) 0.095 (5) −0.040 (6) 0.058 (6) −0.005 (5)
O2 0.337 (15) 0.099 (6) 0.131 (7) −0.105 (8) 0.099 (9) −0.011 (5)
O3 0.109 (8) 0.285 (16) 0.40 (2) 0.041 (10) 0.120 (11) 0.135 (16)
O4 0.320 (17) 0.204 (12) 0.246 (13) −0.030 (11) 0.198 (13) −0.117 (10)
O5 0.113 (6) 0.241 (12) 0.196 (10) −0.005 (7) 0.091 (7) 0.089 (9)
O6 0.198 (10) 0.226 (12) 0.105 (6) 0.110 (9) 0.007 (6) 0.029 (7)
O7 0.226 (13) 0.185 (11) 0.53 (3) −0.062 (9) 0.278 (17) −0.190 (15)
O8 0.091 (6) 0.270 (13) 0.173 (9) −0.082 (7) 0.002 (5) 0.040 (9)
O1W 0.0369 (19) 0.063 (2) 0.0266 (17) 0.0085 (18) 0.0144 (15) 0.0048 (16)
O2W 0.061 (3) 0.110 (5) 0.088 (4) 0.030 (3) 0.033 (3) 0.003 (3)

Geometric parameters (Å, °)

Cr—F 1.881 (3) N4—H4BN 0.900
Cr—O1W 1.997 (3) C1—C2 1.511 (10)
Cr—N1 2.068 (5) C1—H1A 0.970
Cr—N2 2.070 (4) C1—H1B 0.970
Cr—N3 2.082 (5) C2—C3 1.516 (10)
Cr—N4 2.095 (4) C2—H2A 0.970
Cl1—O4 1.282 (8) C2—H2B 0.970
Cl1—O3 1.377 (11) C3—H3A 0.970
Cl1—O2 1.392 (8) C3—H3B 0.970
Cl1—O1 1.405 (8) C4—C5 1.498 (11)
Cl2—O7 1.321 (10) C4—H4A 0.970
Cl2—O8 1.364 (8) C4—H4B 0.970
Cl2—O5 1.365 (7) C5—H5A 0.970
Cl2—O6 1.381 (9) C5—H5B 0.970
N1—C3 1.496 (8) C6—C7 1.504 (11)
N1—C4 1.502 (8) C6—H6A 0.970
N1—H1AN 0.910 C6—H6B 0.970
N2—C6 1.484 (8) C7—C8 1.499 (10)
N2—C5 1.488 (8) C7—H7A 0.970
N2—H1N2 0.910 C7—H7B 0.970
N3—C8 1.488 (8) C8—H8A 0.970
N3—H3AN 0.900 C8—H8B 0.970
N3—H3BN 0.900 O1W—H1OA 0.86 (6)
N4—C1 1.487 (7) O1W—H1OB 0.74 (6)
N4—H4AN 0.900
F—Cr—O1W 179.49 (16) N4—C1—C2 112.0 (5)
F—Cr—N1 89.72 (16) N4—C1—H1A 109.2
O1W—Cr—N1 90.30 (18) C2—C1—H1A 109.2
F—Cr—N2 88.63 (15) N4—C1—H1B 109.2
O1W—Cr—N2 90.87 (17) C2—C1—H1B 109.2
N1—Cr—N2 84.3 (2) H1A—C1—H1B 107.9
F—Cr—N3 89.77 (16) C1—C2—C3 114.3 (5)
O1W—Cr—N3 90.17 (18) C1—C2—H2A 108.7
N1—Cr—N3 176.23 (19) C3—C2—H2A 108.7
N2—Cr—N3 91.9 (2) C1—C2—H2B 108.7
F—Cr—N4 91.04 (15) C3—C2—H2B 108.7
O1W—Cr—N4 89.47 (17) H2A—C2—H2B 107.6
N1—Cr—N4 90.98 (19) N1—C3—C2 112.4 (5)
N2—Cr—N4 175.3 (2) N1—C3—H3A 109.1
N3—Cr—N4 92.77 (19) C2—C3—H3A 109.1
O4—Cl1—O3 108.6 (11) N1—C3—H3B 109.1
O4—Cl1—O2 113.8 (8) C2—C3—H3B 109.1
O3—Cl1—O2 106.6 (9) H3A—C3—H3B 107.9
O4—Cl1—O1 119.5 (9) C5—C4—N1 108.7 (5)
O3—Cl1—O1 97.5 (8) C5—C4—H4A 109.9
O2—Cl1—O1 108.9 (5) N1—C4—H4A 109.9
O7—Cl2—O8 104.5 (8) C5—C4—H4B 109.9
O7—Cl2—O5 114.7 (9) N1—C4—H4B 109.9
O8—Cl2—O5 112.8 (7) H4A—C4—H4B 108.3
O7—Cl2—O6 110.5 (10) N2—C5—C4 107.8 (5)
O8—Cl2—O6 110.7 (8) N2—C5—H5A 110.1
O5—Cl2—O6 103.7 (7) C4—C5—H5A 110.1
C3—N1—C4 111.9 (5) N2—C5—H5B 110.1
C3—N1—Cr 117.1 (4) C4—C5—H5B 110.1
C4—N1—Cr 107.0 (4) H5A—C5—H5B 108.5
C3—N1—H1AN 106.8 N2—C6—C7 112.8 (5)
C4—N1—H1AN 106.8 N2—C6—H6A 109.0
Cr—N1—H1AN 106.8 C7—C6—H6A 109.0
C6—N2—C5 112.3 (5) N2—C6—H6B 109.0
C6—N2—Cr 119.7 (4) C7—C6—H6B 109.0
C5—N2—Cr 106.8 (4) H6A—C6—H6B 107.8
C6—N2—H1N2 105.7 C8—C7—C6 115.7 (6)
C5—N2—H1N2 105.7 C8—C7—H7A 108.4
Cr—N2—H1N2 105.7 C6—C7—H7A 108.4
C8—N3—Cr 119.0 (4) C8—C7—H7B 108.4
C8—N3—H3AN 107.6 C6—C7—H7B 108.4
Cr—N3—H3AN 107.6 H7A—C7—H7B 107.4
C8—N3—H3BN 107.6 N3—C8—C7 112.7 (5)
Cr—N3—H3BN 107.6 N3—C8—H8A 109.0
H3AN—N3—H3BN 107.0 C7—C8—H8A 109.0
C1—N4—Cr 116.9 (4) N3—C8—H8B 109.0
C1—N4—H4AN 108.1 C7—C8—H8B 109.0
Cr—N4—H4AN 108.1 H8A—C8—H8B 107.8
C1—N4—H4BN 108.1 Cr—O1W—H1OA 129 (5)
Cr—N4—H4BN 108.1 Cr—O1W—H1OB 117 (5)
H4AN—N4—H4BN 107.3 H1OA—O1W—H1OB 109 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1OA···Fi 0.86 (6) 1.72 (6) 2.564 (5) 168 (8)
O1W—H1OB···O2W 0.74 (6) 1.92 (6) 2.617 (6) 158 (7)
N1—H1AN···O2ii 0.91 2.42 3.332 (11) 177
N2—H1N2···O7iii 0.91 2.45 3.154 (10) 134
N3—H3BN···O5 0.90 2.36 3.242 (10) 167
N4—H4BN···O5 0.90 2.43 3.062 (10) 127
C1—H1B···O4iv 0.97 2.53 3.141 (13) 121

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2211).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Brencic, J. V., Leban, I. & Zule, J. (1985). Z. Anorg. Allg. Chem.521, 199–206.
  3. Choi, J. H., Choi, S. Y., Hong, Y. P., Ko, S. O., Ryoo, K. S., Lee, S. H. & Park, Y. C. (2008). Spectrochim. Acta [A], 70, 619–625. [DOI] [PubMed]
  4. Choi, J. H. & Hoggard, P. E. (1992). Polyhedron, 11, 2399–2407.
  5. Choi, J. H., Oh, I. G., Ryoo, K. S., Lim, W. T., Park, Y. C. & Habibi, M. H. (2006). Spectrochim. Acta [A], 65, 1138–1143. [DOI] [PubMed]
  6. Choi, J. H., Oh, I. G., Suzuki, T. & Kaizaki, S. (2004). J. Mol. Struct.694, 39–44.
  7. Choi, J.-H., Suh, I.-H. & Kwak, S.-H. (1995). Acta Cryst. C51, 1745–1748.
  8. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  9. Glerup, J., Josephsen, J., Michelsen, K., Pedersen, E. & Schaffer, C. (1970). Acta Chem. Scand.24, 247–254.
  10. Poon, C. K. & Pun, K. C. (1980). Inorg. Chem.19, 568–569.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Stearns, D. M. & Armstrong, W. H. (1992). Inorg. Chem.31, 5178–5184.
  13. Stoe & Cie (1996). STADI4, X-RED and X-SHAPE Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026081/cf2211sup1.cif

e-64-m1186-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026081/cf2211Isup2.hkl

e-64-m1186-Isup2.hkl (213KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES