Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 30;64(Pt 9):o1849. doi: 10.1107/S1600536808027013

(E)-4-Chloro-N′-(4-hydroxy­benzyl­idene)­benzohydrazide

De-Suo Yang a,*
PMCID: PMC2960690  PMID: 21201820

Abstract

The mol­ecule of the title compound, C14H11ClN2O2, displays a trans configuration with respect to the C=N double bond. The dihedral angle between the two benzene rings is 12.8 (3)°. In the crystal structure, mol­ecules are linked through inter­molecular O—H⋯O and N—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming a three-dimensional network.

Related literature

For related structures, see: Yang (2007, 2008a ,b ). For bond-length data, see: Allen et al. (1987). For related literature, see: Bernardo et al. (1996); Musie et al. (2001); Paul et al. (2002).graphic file with name e-64-o1849-scheme1.jpg

Experimental

Crystal data

  • C14H11ClN2O2

  • M r = 274.70

  • Orthorhombic, Inline graphic

  • a = 26.251 (3) Å

  • b = 12.376 (3) Å

  • c = 7.786 (2) Å

  • V = 2529.5 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 (2) K

  • 0.13 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.963, T max = 0.971

  • 11323 measured reflections

  • 2164 independent reflections

  • 1462 reflections with I > 2σ(I)

  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.116

  • S = 1.02

  • 2164 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027013/ci2657sup1.cif

e-64-o1849-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027013/ci2657Isup2.hkl

e-64-o1849-Isup2.hkl (106.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.90 (1) 2.078 (11) 2.970 (3) 171 (3)
O1—H1⋯O2ii 0.82 1.91 2.725 (3) 170
C6—H6⋯Cg1iii 0.93 2.88 3.726 (3) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 is the C1–C6 ring centroid.

Acknowledgments

The author acknowledges Key Laboratory Construction Support from the Education Office of Shanxi Province (project No. 05JS43).

supplementary crystallographic information

Comment

Schiff base compounds have been of great interest for a long time. These compounds play an important role in the development of coordination chemistry (Musie et al., 2001; Bernardo et al., 1996; Paul et al., 2002). Recently, we have reported a few Schiff base compounds (Yang, 2007, 2008a,b). As a further investigation of this work, the crystal structure of the title compound is reported here.

The molecule of the title compound displays a trans configuration with respect to the C═N double bond (Fig. 1). The dihedral angle between the two benzene rings is 12.8 (3)°. All the bonds are within normal ranges (Allen et al., 1987). The C7?N1 bond length of 1.268 (3) Å conforms to the value for a double bond. The bond length of 1.339 (3) Å between atoms C8 and N2 is intermediate between a C—N single bond and a C?N double bond, because of conjugation effects in the molecule.

In the crystal structure, molecules are linked through intermolecular O—H···O and N—H···O hydrogen bonds, and C—H···π interactions (Table 1), forming a three-dimensional network (Fig. 2).

Experimental

4-Hydroxybenzaldehyde (0.1 mmol, 12.2 mg) and 4-chlorobenzohydrazide (0.1 mmol, 17.0 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature to give a clear colourless solution. Crystals of the title compound were formed by gradual evaporation of the solvent over a period of 5 days at room temperature.

Refinement

Atom H2A was located in a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (1) Å and with a Uiso of 0.08 Å2. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with O—H distance of 0.82 Å, C—H distances of 0.93 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Molecular packing as viewed along the b axis. H atoms not involved hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C14H11ClN2O2 F000 = 1136
Mr = 274.70 Dx = 1.443 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 1916 reflections
a = 26.251 (3) Å θ = 2.3–24.5º
b = 12.376 (3) Å µ = 0.30 mm1
c = 7.786 (2) Å T = 298 (2) K
V = 2529.5 (9) Å3 Block, colourless
Z = 8 0.13 × 0.12 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2164 independent reflections
Radiation source: fine-focus sealed tube 1462 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.078
T = 298(2) K θmax = 24.9º
ω scans θmin = 1.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −30→31
Tmin = 0.963, Tmax = 0.971 k = −14→11
11323 measured reflections l = −8→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116   w = 1/[σ2(Fo2) + (0.0433P)2 + 1.3235P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
2164 reflections Δρmax = 0.27 e Å3
176 parameters Δρmin = −0.35 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.11993 (3) 0.56136 (8) −0.02967 (12) 0.0721 (3)
N1 0.15097 (8) 0.76262 (18) 0.3530 (3) 0.0421 (6)
N2 0.10461 (9) 0.74598 (18) 0.2709 (3) 0.0401 (6)
O1 0.37436 (7) 0.92023 (16) 0.5358 (3) 0.0554 (6)
H1 0.3853 0.9786 0.5022 0.083*
O2 0.08473 (7) 0.61751 (14) 0.4644 (2) 0.0412 (5)
C1 0.22762 (10) 0.8643 (2) 0.3633 (3) 0.0378 (7)
C2 0.25323 (10) 0.7913 (2) 0.4685 (4) 0.0450 (7)
H2 0.2372 0.7273 0.5004 0.054*
C3 0.30150 (10) 0.8119 (2) 0.5258 (4) 0.0463 (8)
H3 0.3178 0.7630 0.5979 0.056*
C4 0.32601 (10) 0.9058 (2) 0.4761 (3) 0.0394 (7)
C5 0.30142 (10) 0.9795 (2) 0.3730 (4) 0.0427 (7)
H5 0.3176 1.0435 0.3418 0.051*
C6 0.25282 (10) 0.9580 (2) 0.3163 (4) 0.0440 (7)
H6 0.2366 1.0075 0.2449 0.053*
C7 0.17709 (10) 0.8413 (2) 0.2970 (4) 0.0430 (7)
H7 0.1636 0.8853 0.2116 0.052*
C8 0.07391 (10) 0.6686 (2) 0.3321 (3) 0.0351 (6)
C9 0.02586 (9) 0.6472 (2) 0.2385 (3) 0.0335 (6)
C10 −0.00001 (10) 0.7240 (2) 0.1430 (4) 0.0409 (7)
H10 0.0134 0.7933 0.1331 0.049*
C11 −0.04545 (10) 0.6992 (2) 0.0619 (4) 0.0441 (7)
H11 −0.0628 0.7512 −0.0013 0.053*
C12 −0.06436 (10) 0.5965 (2) 0.0767 (3) 0.0435 (7)
C13 −0.03996 (10) 0.5193 (2) 0.1731 (4) 0.0476 (8)
H13 −0.0536 0.4502 0.1827 0.057*
C14 0.00479 (10) 0.5449 (2) 0.2554 (3) 0.0425 (7)
H14 0.0210 0.4934 0.3229 0.051*
H2A 0.1010 (12) 0.783 (2) 0.172 (2) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0490 (5) 0.0779 (6) 0.0895 (7) −0.0117 (4) −0.0259 (5) 0.0004 (5)
N1 0.0359 (13) 0.0460 (15) 0.0443 (14) −0.0041 (11) −0.0089 (11) 0.0015 (12)
N2 0.0355 (13) 0.0423 (14) 0.0424 (13) −0.0048 (11) −0.0094 (11) 0.0047 (11)
O1 0.0404 (13) 0.0531 (14) 0.0726 (15) −0.0084 (9) −0.0133 (11) 0.0061 (12)
O2 0.0436 (11) 0.0403 (11) 0.0398 (10) 0.0025 (9) −0.0063 (9) 0.0053 (9)
C1 0.0356 (16) 0.0400 (16) 0.0379 (15) −0.0022 (13) −0.0013 (13) −0.0006 (13)
C2 0.0419 (17) 0.0391 (16) 0.0539 (18) −0.0091 (13) −0.0022 (15) 0.0060 (14)
C3 0.0428 (18) 0.0409 (17) 0.0552 (19) −0.0001 (13) −0.0092 (15) 0.0096 (15)
C4 0.0321 (16) 0.0425 (17) 0.0437 (16) −0.0009 (12) −0.0019 (13) −0.0058 (14)
C5 0.0437 (17) 0.0371 (16) 0.0472 (17) −0.0063 (13) 0.0020 (14) 0.0023 (14)
C6 0.0423 (17) 0.0450 (18) 0.0447 (17) −0.0012 (14) −0.0075 (14) 0.0094 (13)
C7 0.0400 (17) 0.0448 (18) 0.0442 (17) −0.0007 (14) −0.0071 (13) 0.0045 (14)
C8 0.0365 (16) 0.0323 (15) 0.0365 (15) 0.0047 (13) −0.0008 (12) −0.0052 (13)
C9 0.0318 (15) 0.0361 (16) 0.0325 (14) 0.0037 (12) 0.0025 (12) 0.0007 (12)
C10 0.0392 (16) 0.0353 (16) 0.0480 (16) −0.0046 (13) −0.0025 (14) 0.0027 (13)
C11 0.0391 (16) 0.0483 (18) 0.0449 (17) 0.0014 (14) −0.0064 (14) 0.0077 (14)
C12 0.0333 (16) 0.0520 (19) 0.0451 (17) −0.0032 (14) −0.0032 (13) −0.0031 (15)
C13 0.0441 (18) 0.0426 (18) 0.0560 (19) −0.0116 (14) −0.0027 (15) 0.0030 (15)
C14 0.0431 (17) 0.0408 (17) 0.0438 (16) −0.0003 (14) −0.0046 (14) 0.0064 (14)

Geometric parameters (Å, °)

Cl1—C12 1.733 (3) C5—C6 1.376 (4)
N1—C7 1.268 (3) C5—H5 0.93
N1—N2 1.390 (3) C6—H6 0.93
N2—C8 1.339 (3) C7—H7 0.93
N2—H2A 0.899 (10) C8—C9 1.481 (3)
O1—C4 1.363 (3) C9—C10 1.385 (3)
O1—H1 0.82 C9—C14 1.387 (4)
O2—C8 1.242 (3) C10—C11 1.384 (4)
C1—C6 1.385 (4) C10—H10 0.93
C1—C2 1.392 (4) C11—C12 1.369 (4)
C1—C7 1.451 (4) C11—H11 0.93
C2—C3 1.367 (4) C12—C13 1.373 (4)
C2—H2 0.93 C13—C14 1.375 (4)
C3—C4 1.383 (4) C13—H13 0.93
C3—H3 0.93 C14—H14 0.93
C4—C5 1.377 (4)
C7—N1—N2 115.4 (2) N1—C7—H7 119.3
C8—N2—N1 118.0 (2) C1—C7—H7 119.3
C8—N2—H2A 127 (2) O2—C8—N2 121.5 (2)
N1—N2—H2A 114 (2) O2—C8—C9 120.8 (2)
C4—O1—H1 109.5 N2—C8—C9 117.8 (2)
C6—C1—C2 117.9 (2) C10—C9—C14 118.8 (2)
C6—C1—C7 120.4 (2) C10—C9—C8 124.0 (2)
C2—C1—C7 121.6 (2) C14—C9—C8 117.2 (2)
C3—C2—C1 121.2 (3) C11—C10—C9 121.0 (2)
C3—C2—H2 119.4 C11—C10—H10 119.5
C1—C2—H2 119.4 C9—C10—H10 119.5
C2—C3—C4 119.8 (3) C12—C11—C10 118.7 (3)
C2—C3—H3 120.1 C12—C11—H11 120.6
C4—C3—H3 120.1 C10—C11—H11 120.6
O1—C4—C5 123.3 (2) C11—C12—C13 121.5 (3)
O1—C4—C3 116.6 (2) C11—C12—Cl1 119.8 (2)
C5—C4—C3 120.1 (3) C13—C12—Cl1 118.7 (2)
C6—C5—C4 119.6 (3) C12—C13—C14 119.5 (3)
C6—C5—H5 120.2 C12—C13—H13 120.2
C4—C5—H5 120.2 C14—C13—H13 120.2
C5—C6—C1 121.3 (3) C13—C14—C9 120.4 (3)
C5—C6—H6 119.3 C13—C14—H14 119.8
C1—C6—H6 119.3 C9—C14—H14 119.8
N1—C7—C1 121.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O2i 0.90 (1) 2.078 (11) 2.970 (3) 171 (3)
O1—H1···O2ii 0.82 1.91 2.725 (3) 170
C6—H6···Cg1iii 0.93 2.88 3.726 (3) 152

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1/2, y+1/2, z; (iii) −x+1/2, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2657).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bernardo, K., Leppard, S., Robert, A., Commenges, G., Dahan, F. & Meunier, B. (1996). Inorg. Chem.35, 387–396. [DOI] [PubMed]
  3. Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Musie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem.40, 3336–3341. [DOI] [PubMed]
  5. Paul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem.41, 5803–5809. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Yang, D.-S. (2007). J. Chem. Crystallogr.37, 343–348.
  9. Yang, D.-S. (2008a). Acta Cryst. E64, o1758. [DOI] [PMC free article] [PubMed]
  10. Yang, D.-S. (2008b). Acta Cryst. E64, o1759. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027013/ci2657sup1.cif

e-64-o1849-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027013/ci2657Isup2.hkl

e-64-o1849-Isup2.hkl (106.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES