Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 20;64(Pt 9):o1792. doi: 10.1107/S1600536808026123

4-(4-Amino-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-yl)pyridinium chloride

Xiao-Yan Ren a, Fang-Fang Jian a,*
PMCID: PMC2960705  PMID: 21201771

Abstract

The crystal structure of the title compound, C7H8N5S+·Cl, is stabilized by inter­molecular N—H⋯Cl and N—H⋯S hydrogen-bond inter­actions.

Related literature

For related literature, see: Jian et al. (2006); Shi et al. (1995); Xu et al. (2002).graphic file with name e-64-o1792-scheme1.jpg

Experimental

Crystal data

  • C7H8N5S+·Cl

  • M r = 229.69

  • Monoclinic, Inline graphic

  • a = 7.6740 (15) Å

  • b = 13.374 (3) Å

  • c = 9.965 (2) Å

  • β = 104.70 (3)°

  • V = 989.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 (2) K

  • 0.20 × 0.15 × 0.11 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2238 measured reflections

  • 2091 independent reflections

  • 1712 reflections with I > 2σ(I)

  • R int = 0.050

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.111

  • S = 0.96

  • 2091 reflections

  • 135 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026123/at2609sup1.cif

e-64-o1792-sup1.cif (14KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026123/at2609Isup2.hkl

e-64-o1792-Isup2.hkl (102.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.86 2.43 3.099 (2) 135
N3—H3A⋯Cl1ii 0.86 2.17 3.027 (2) 176
N5—H5B⋯S1iii 0.84 (3) 2.72 (3) 3.466 (3) 148 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

An important type of fungicides, triazole compounds are highly efficient and of low tocicity (Shi et al.,1995; Xu, et al., 2002). The part of our research is to find triazole with higher cooperational activity, we synthesized the title compound (I) and report its crystal structure here.

In the crystal structure of compound (I) (Fig. 1), the dihedral angle formed by the triazole ring (N1/N3/N4/C6/C7) and the pyridine ring (N1/C1-C5) was 0.7 (4)°. The C═S bond length [1.676 (3) Å] is in agreement with that observed before (Jian, et al., 2006). There are intermolecular N–H···Cl and N—H···S hydrogen-bond interactions to stabilize the crystal structure (Table 1).

Experimental

The title compound (I) was prepared by the process as following: ethyl isonicotinate 1.51 g (0.01 mol) and hydrazine hydrate 0.32 g (0.01 mol) with ethanol at 377 K for 3 h, afford ivory-white compound A 1.32 g (yield 96%), then add 0.06 ml carbon disulfide and KOH 0.56 g (0.01 mol) with ethanol, stirred at room temperature for 5 h, afford yellow compound B 2.0 g (yield 85.6%). At last, add 0.32 g hydrazine hydrate to the compound B with water at 377 K for 12 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from DMF-HCl (3:1) at 334 K.

Refinement

The H atoms of the NH2 group were found from a difference Fourier map and refined freely. The other H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H and C—H distances of 0.86 and 0.93 Å, respectively, and with Uiso(H) = 1.2Ueq of the parent atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C7H8N5S+·Cl F000 = 472
Mr = 229.69 Dx = 1.542 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 7.6740 (15) Å θ = 4–14º
b = 13.374 (3) Å µ = 0.56 mm1
c = 9.965 (2) Å T = 293 (2) K
β = 104.70 (3)º Bar, yellow
V = 989.3 (4) Å3 0.20 × 0.15 × 0.11 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.050
Radiation source: fine-focus sealed tube θmax = 27.0º
Monochromator: graphite θmin = 2.6º
T = 293(2) K h = 0→9
ω scans k = 0→15
Absorption correction: none l = −11→11
2238 measured reflections 3 standard reflections
2091 independent reflections every 100 reflections
1712 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111   w = 1/[σ2(Fo2) + (0.0626P)2 + 0.6426P] where P = (Fo2 + 2Fc2)/3
S = 0.96 (Δ/σ)max < 0.001
2091 reflections Δρmax = 0.35 e Å3
135 parameters Δρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.80625 (8) 0.86963 (4) 0.12228 (5) 0.04585 (18)
S1 0.75196 (9) 0.94026 (5) 0.52007 (7) 0.0565 (2)
N1 0.0222 (2) 0.78167 (16) −0.16338 (19) 0.0469 (5)
H1A −0.0577 0.7735 −0.2405 0.056*
N2 0.4905 (2) 0.89786 (14) 0.28259 (18) 0.0376 (4)
N3 0.5917 (2) 0.76955 (15) 0.40203 (19) 0.0452 (5)
H3A 0.6505 0.7315 0.4676 0.054*
N4 0.4694 (3) 0.73433 (15) 0.28792 (19) 0.0439 (4)
N5 0.4688 (4) 0.99550 (16) 0.2289 (3) 0.0540 (6)
C1 0.0851 (3) 0.7017 (2) −0.0868 (2) 0.0494 (6)
H1B 0.0430 0.6383 −0.1173 0.059*
C2 0.2114 (3) 0.71260 (18) 0.0365 (2) 0.0459 (5)
H2A 0.2551 0.6568 0.0903 0.055*
C3 0.2744 (3) 0.80777 (17) 0.0811 (2) 0.0362 (5)
C4 0.2062 (3) 0.88900 (18) −0.0017 (2) 0.0441 (5)
H4B 0.2462 0.9533 0.0254 0.053*
C5 0.0786 (3) 0.87364 (19) −0.1248 (2) 0.0491 (6)
H5C 0.0318 0.9278 −0.1810 0.059*
C6 0.4102 (3) 0.81438 (16) 0.2152 (2) 0.0367 (5)
C7 0.6114 (3) 0.86845 (18) 0.4025 (2) 0.0402 (5)
H5A 0.575 (5) 1.011 (3) 0.211 (4) 0.092 (12)*
H5B 0.443 (4) 1.032 (2) 0.290 (3) 0.065 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0495 (3) 0.0475 (3) 0.0356 (3) 0.0015 (2) 0.0015 (2) 0.0021 (2)
S1 0.0499 (4) 0.0593 (4) 0.0497 (4) −0.0019 (3) −0.0071 (3) −0.0162 (3)
N1 0.0392 (10) 0.0627 (13) 0.0340 (10) −0.0050 (9) 0.0007 (7) −0.0061 (9)
N2 0.0357 (9) 0.0395 (9) 0.0353 (9) −0.0011 (7) 0.0044 (7) −0.0037 (7)
N3 0.0436 (10) 0.0493 (11) 0.0356 (9) −0.0030 (9) −0.0030 (8) 0.0022 (8)
N4 0.0440 (10) 0.0465 (11) 0.0354 (9) −0.0058 (8) −0.0004 (8) −0.0004 (8)
N5 0.0633 (15) 0.0395 (12) 0.0503 (13) 0.0003 (10) −0.0024 (11) −0.0020 (10)
C1 0.0500 (13) 0.0506 (14) 0.0445 (12) −0.0123 (11) 0.0063 (10) −0.0096 (11)
C2 0.0486 (12) 0.0445 (13) 0.0402 (12) −0.0047 (10) 0.0035 (9) 0.0002 (10)
C3 0.0324 (10) 0.0451 (12) 0.0317 (10) −0.0027 (9) 0.0090 (8) −0.0032 (9)
C4 0.0464 (12) 0.0421 (12) 0.0397 (11) −0.0016 (10) 0.0034 (9) −0.0017 (9)
C5 0.0498 (13) 0.0509 (14) 0.0403 (12) 0.0037 (11) 0.0000 (10) 0.0018 (10)
C6 0.0340 (10) 0.0409 (11) 0.0350 (10) −0.0026 (8) 0.0081 (8) −0.0009 (8)
C7 0.0348 (10) 0.0491 (13) 0.0347 (11) −0.0002 (9) 0.0055 (8) −0.0043 (9)

Geometric parameters (Å, °)

S1—C7 1.679 (2) N5—H5A 0.90 (4)
N1—C5 1.328 (3) N5—H5B 0.84 (3)
N1—C1 1.331 (3) C1—C2 1.366 (3)
N1—H1A 0.8600 C1—H1B 0.9300
N2—C6 1.366 (3) C2—C3 1.394 (3)
N2—C7 1.371 (3) C2—H2A 0.9300
N2—N5 1.405 (3) C3—C4 1.385 (3)
N3—C7 1.331 (3) C3—C6 1.474 (3)
N3—N4 1.362 (3) C4—C5 1.376 (3)
N3—H3A 0.8600 C4—H4B 0.9300
N4—C6 1.308 (3) C5—H5C 0.9300
C5—N1—C1 122.28 (19) C1—C2—H2A 120.2
C5—N1—H1A 118.9 C3—C2—H2A 120.2
C1—N1—H1A 118.9 C4—C3—C2 118.6 (2)
C6—N2—C7 108.35 (18) C4—C3—C6 124.5 (2)
C6—N2—N5 125.26 (18) C2—C3—C6 116.9 (2)
C7—N2—N5 125.94 (19) C5—C4—C3 119.3 (2)
C7—N3—N4 113.60 (18) C5—C4—H4B 120.3
C7—N3—H3A 123.2 C3—C4—H4B 120.3
N4—N3—H3A 123.2 N1—C5—C4 120.1 (2)
C6—N4—N3 104.37 (18) N1—C5—H5C 119.9
N2—N5—H5A 105 (2) C4—C5—H5C 119.9
N2—N5—H5B 107 (2) N4—C6—N2 110.29 (18)
H5A—N5—H5B 114 (3) N4—C6—C3 121.29 (19)
N1—C1—C2 120.1 (2) N2—C6—C3 128.43 (19)
N1—C1—H1B 120.0 N3—C7—N2 103.35 (18)
C2—C1—H1B 120.0 N3—C7—S1 128.55 (17)
C1—C2—C3 119.6 (2) N2—C7—S1 128.10 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl1i 0.86 2.43 3.099 (2) 135
N3—H3A···Cl1ii 0.86 2.17 3.027 (2) 176
N5—H5B···S1iii 0.84 (3) 2.72 (3) 3.466 (3) 148 (3)

Symmetry codes: (i) x−1, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2; (iii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2609).

References

  1. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  3. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  4. Jian, F.-F., Yu, H.-Q., Qiao, Y.-B. & Liang, T.-L. (2006). Acta Cryst. E62, o3416–o3417.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Shi, Y. N., Lu, Y. C. & Fang, J. X. (1995). Chem. J. Chin. Univ.16, 1710–1713.
  7. Xu, L. Z., Zhang, S. S., Li, H. J. & Jiao, K. (2002). Chem. Res. Chin. Univ.18, 284–286.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026123/at2609sup1.cif

e-64-o1792-sup1.cif (14KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026123/at2609Isup2.hkl

e-64-o1792-Isup2.hkl (102.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES