Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 6;64(Pt 9):o1695. doi: 10.1107/S160053680802521X

2-Meth­oxy-N′-(2-methoxy­benzyl­idene)benzohydrazide

Jiu-Fu Lu a,*, Suo-Tian Min a, Xiao-Hui Ji a, Zhong-Hai Dang a
PMCID: PMC2960713  PMID: 21201684

Abstract

The title Schiff base compound, C16H16N2O3, was derived from the condensation of 2-methoxy­benzaldehyde with 2-methoxy­benzohydrazide in an ethanol solution. The dihedral angle between the two aromatic rings is 87.5 (3)°. In the crystal structure, the mol­ecules are linked into chains running parallel to the a axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Lu et al. (2008a ,b ); Nie (2008); He (2008); Shi et al. (2007). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-o1695-scheme1.jpg

Experimental

Crystal data

  • C16H16N2O3

  • M r = 284.31

  • Monoclinic, Inline graphic

  • a = 4.9998 (13) Å

  • b = 13.475 (4) Å

  • c = 10.824 (3) Å

  • β = 93.674 (4)°

  • V = 727.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.30 × 0.30 × 0.28 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.973, T max = 0.975

  • 6081 measured reflections

  • 1647 independent reflections

  • 1229 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.095

  • S = 1.11

  • 1647 reflections

  • 195 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802521X/ci2648sup1.cif

e-64-o1695-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802521X/ci2648Isup2.hkl

e-64-o1695-Isup2.hkl (81.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.90 (1) 1.99 (1) 2.873 (3) 167 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge Shaanxi University of Technology for the research fund.

supplementary crystallographic information

Comment

As part of our investigation of the crystal structures of Schiff bases derived from the condensation of aldehydes with benzohydrazides (Lu et al., 2008a,b), we report here the crystal structure of the title new Schiff base compound.

In the title molecule (Fig. 1). the bond lengths have normal values (Allen et al., 1987), and are comparable to those observed in related compounds (Nie, 2008; He, 2008; Shi et al., 2007). The dihedral angle between the two aromatic rings is 87.5 (3)°, indicating that they are almost perpendicular to one another.

In the crystal structure, the molecules are linked into chains (Fig. 2) running parallel to the a axis by intermolecular N–H···O hydrogen bonds (Table 1).

Experimental

The title compound was prepared by the Schiff base condensation of 2-methoxybenzaldehyde (0.1 mol) and 2-methoxybenzohydrazide (0.1 mmol) in ethanol (50 ml). The excess ethanol was removed by distillation. The colorless solid obtained was filtered and washed with ethanol. Single crystals suitable for X-ray diffraction were obatined by slow evaporation of an ethanol solution at room temperature.

Refinement

The imino H atom was located in a difference map and refined with a N–H distance restraint of 0.90 (1) Å. The other H atoms were positioned geometrically (C–H = 0.93-0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). In the absence of significant anomalous scattering, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate hydrogen bonds.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis. Dashed lines indicate hydrogen bonds.

Crystal data

C16H16N2O3 F000 = 300
Mr = 284.31 Dx = 1.297 Mg m3
Monoclinic, P21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 744 reflections
a = 4.9998 (13) Å θ = 2.5–24.0º
b = 13.475 (4) Å µ = 0.09 mm1
c = 10.824 (3) Å T = 298 (2) K
β = 93.674 (4)º Block, colourless
V = 727.7 (4) Å3 0.30 × 0.30 × 0.28 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer 1647 independent reflections
Radiation source: fine-focus sealed tube 1229 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.055
T = 298(2) K θmax = 27.0º
ω scans θmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004) h = −6→6
Tmin = 0.973, Tmax = 0.975 k = −17→16
6081 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095   w = 1/[σ2(Fo2) + (0.0297P)2] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.001
1647 reflections Δρmax = 0.16 e Å3
195 parameters Δρmin = −0.14 e Å3
2 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4130 (5) 0.5063 (2) 1.0258 (2) 0.0579 (8)
O2 1.2673 (4) 0.71624 (19) 0.6930 (2) 0.0436 (6)
O3 0.6361 (5) 0.7245 (2) 0.4683 (2) 0.0513 (6)
N1 0.8931 (5) 0.5916 (2) 0.7771 (2) 0.0357 (7)
N2 0.8339 (5) 0.67811 (19) 0.7116 (3) 0.0354 (7)
C1 0.7337 (7) 0.4561 (2) 0.8904 (3) 0.0371 (9)
C2 0.5766 (7) 0.4321 (3) 0.9892 (3) 0.0426 (9)
C3 0.6008 (7) 0.3398 (3) 1.0439 (3) 0.0501 (10)
H3 0.4953 0.3233 1.1086 0.060*
C4 0.7794 (8) 0.2725 (3) 1.0032 (4) 0.0549 (11)
H4 0.7928 0.2102 1.0400 0.066*
C5 0.9407 (8) 0.2954 (3) 0.9081 (4) 0.0537 (10)
H5 1.0645 0.2498 0.8818 0.064*
C6 0.9142 (7) 0.3876 (3) 0.8529 (3) 0.0455 (9)
H6 1.0216 0.4036 0.7887 0.055*
C7 0.6996 (7) 0.5520 (2) 0.8295 (3) 0.0377 (8)
H7 0.5353 0.5844 0.8291 0.045*
C8 1.0305 (6) 0.7328 (2) 0.6674 (3) 0.0296 (7)
C9 0.9390 (6) 0.8198 (2) 0.5913 (3) 0.0343 (8)
C10 0.7391 (6) 0.8162 (3) 0.4959 (3) 0.0358 (8)
C11 0.6635 (7) 0.9012 (3) 0.4321 (3) 0.0518 (10)
H11 0.5257 0.8990 0.3703 0.062*
C12 0.7913 (8) 0.9890 (3) 0.4597 (4) 0.0606 (12)
H12 0.7384 1.0462 0.4168 0.073*
C13 0.9946 (8) 0.9936 (3) 0.5493 (4) 0.0617 (12)
H13 1.0835 1.0533 0.5659 0.074*
C14 1.0677 (7) 0.9096 (3) 0.6151 (4) 0.0478 (10)
H14 1.2059 0.9131 0.6767 0.057*
C15 0.2563 (8) 0.4878 (4) 1.1267 (4) 0.0653 (12)
H15A 0.1495 0.4295 1.1105 0.098*
H15B 0.1410 0.5435 1.1385 0.098*
H15C 0.3714 0.4778 1.2001 0.098*
C16 0.4372 (8) 0.7167 (4) 0.3692 (3) 0.0712 (12)
H16A 0.2821 0.7542 0.3885 0.107*
H16B 0.3884 0.6483 0.3573 0.107*
H16C 0.5066 0.7422 0.2949 0.107*
H2 0.662 (3) 0.696 (3) 0.696 (3) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0577 (16) 0.0581 (19) 0.0601 (19) 0.0064 (15) 0.0196 (15) 0.0132 (15)
O2 0.0265 (12) 0.0451 (14) 0.0586 (14) 0.0050 (12) −0.0024 (10) 0.0062 (13)
O3 0.0604 (15) 0.0471 (15) 0.0439 (13) −0.0052 (14) −0.0149 (11) 0.0053 (14)
N1 0.0391 (16) 0.0318 (15) 0.0356 (15) 0.0028 (13) −0.0030 (13) 0.0079 (13)
N2 0.0271 (14) 0.0357 (16) 0.0428 (16) 0.0036 (13) −0.0018 (13) 0.0124 (13)
C1 0.037 (2) 0.038 (2) 0.0354 (19) −0.0036 (16) −0.0070 (16) 0.0053 (16)
C2 0.041 (2) 0.046 (2) 0.040 (2) −0.0060 (18) −0.0050 (18) 0.0062 (18)
C3 0.054 (2) 0.051 (3) 0.045 (2) −0.011 (2) −0.0020 (18) 0.0176 (19)
C4 0.069 (3) 0.035 (2) 0.058 (3) 0.000 (2) −0.016 (2) 0.018 (2)
C5 0.061 (3) 0.043 (2) 0.056 (3) 0.0023 (19) −0.001 (2) 0.001 (2)
C6 0.049 (2) 0.042 (2) 0.045 (2) −0.0021 (19) 0.0002 (18) 0.0085 (18)
C7 0.0336 (18) 0.043 (2) 0.0357 (19) 0.0002 (16) −0.0008 (16) 0.0078 (16)
C8 0.0279 (17) 0.0279 (18) 0.0332 (16) −0.0013 (15) 0.0026 (13) −0.0029 (15)
C9 0.0317 (17) 0.0346 (19) 0.0377 (18) 0.0046 (15) 0.0098 (14) 0.0017 (16)
C10 0.0368 (19) 0.0353 (19) 0.0357 (19) 0.0037 (16) 0.0051 (15) 0.0015 (17)
C11 0.055 (2) 0.056 (3) 0.044 (2) 0.008 (2) 0.001 (2) 0.013 (2)
C12 0.065 (3) 0.046 (3) 0.071 (3) 0.007 (2) 0.009 (2) 0.027 (2)
C13 0.072 (3) 0.039 (2) 0.076 (3) −0.010 (2) 0.014 (3) 0.008 (2)
C14 0.048 (2) 0.037 (2) 0.058 (2) −0.0087 (19) 0.0060 (19) 0.003 (2)
C15 0.060 (3) 0.083 (3) 0.054 (3) −0.002 (3) 0.012 (2) 0.009 (2)
C16 0.077 (3) 0.078 (3) 0.055 (2) −0.014 (3) −0.023 (2) 0.009 (3)

Geometric parameters (Å, °)

O1—C2 1.367 (4) C6—H6 0.93
O1—C15 1.407 (4) C7—H7 0.93
O2—C8 1.220 (3) C8—C9 1.488 (4)
O3—C10 1.364 (4) C9—C14 1.387 (5)
O3—C16 1.419 (4) C9—C10 1.391 (4)
N1—C7 1.270 (4) C10—C11 1.378 (5)
N1—N2 1.387 (3) C11—C12 1.368 (5)
N2—C8 1.341 (4) C11—H11 0.93
N2—H2 0.901 (10) C12—C13 1.360 (5)
C1—C6 1.370 (5) C12—H12 0.93
C1—C2 1.405 (5) C13—C14 1.375 (5)
C1—C7 1.456 (4) C13—H13 0.93
C2—C3 1.380 (5) C14—H14 0.93
C3—C4 1.365 (5) C15—H15A 0.96
C3—H3 0.93 C15—H15B 0.96
C4—C5 1.383 (5) C15—H15C 0.96
C4—H4 0.93 C16—H16A 0.96
C5—C6 1.381 (5) C16—H16B 0.96
C5—H5 0.93 C16—H16C 0.96
C2—O1—C15 118.0 (3) C14—C9—C10 118.1 (3)
C10—O3—C16 118.0 (3) C14—C9—C8 117.5 (3)
C7—N1—N2 115.9 (3) C10—C9—C8 124.3 (3)
C8—N2—N1 120.5 (2) O3—C10—C11 123.8 (3)
C8—N2—H2 120 (3) O3—C10—C9 115.9 (3)
N1—N2—H2 120 (3) C11—C10—C9 120.3 (3)
C6—C1—C2 118.8 (3) C12—C11—C10 120.0 (4)
C6—C1—C7 121.6 (3) C12—C11—H11 120.0
C2—C1—C7 119.6 (3) C10—C11—H11 120.0
O1—C2—C3 125.0 (3) C13—C12—C11 120.8 (4)
O1—C2—C1 115.3 (3) C13—C12—H12 119.6
C3—C2—C1 119.7 (4) C11—C12—H12 119.6
C4—C3—C2 120.1 (4) C12—C13—C14 119.6 (4)
C4—C3—H3 120.0 C12—C13—H13 120.2
C2—C3—H3 119.9 C14—C13—H13 120.2
C3—C4—C5 121.1 (3) C13—C14—C9 121.2 (4)
C3—C4—H4 119.5 C13—C14—H14 119.4
C5—C4—H4 119.5 C9—C14—H14 119.4
C6—C5—C4 118.6 (4) O1—C15—H15A 109.5
C6—C5—H5 120.7 O1—C15—H15B 109.5
C4—C5—H5 120.7 H15A—C15—H15B 109.5
C1—C6—C5 121.6 (4) O1—C15—H15C 109.5
C1—C6—H6 119.2 H15A—C15—H15C 109.5
C5—C6—H6 119.2 H15B—C15—H15C 109.5
N1—C7—C1 120.3 (3) O3—C16—H16A 109.5
N1—C7—H7 119.9 O3—C16—H16B 109.5
C1—C7—H7 119.9 H16A—C16—H16B 109.5
O2—C8—N2 122.8 (3) O3—C16—H16C 109.5
O2—C8—C9 122.0 (3) H16A—C16—H16C 109.5
N2—C8—C9 115.1 (3) H16B—C16—H16C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O2i 0.90 (1) 1.99 (1) 2.873 (3) 167 (4)

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2648).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. He, L. (2008). Acta Cryst. E64, o82.
  4. Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008a). Acta Cryst. E64, o1693. [DOI] [PMC free article] [PubMed]
  5. Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008b). Acta Cryst. E64, o1694. [DOI] [PMC free article] [PubMed]
  6. Nie, Y. (2008). Acta Cryst. E64, o471. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shi, X.-F., Liu, C.-Y., Liu, B. & Yuan, C.-C. (2007). Acta Cryst. E63, o1295–o1296.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802521X/ci2648sup1.cif

e-64-o1695-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802521X/ci2648Isup2.hkl

e-64-o1695-Isup2.hkl (81.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES