Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 23;64(Pt 9):o1812. doi: 10.1107/S1600536808026664

Ethyl 2-allylsulfanyl-4-(4-methoxyphenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate

M Nizam Mohideen a,*, A Rasheeth b, C A M A Huq b
PMCID: PMC2960718  PMID: 21201789

Abstract

In the title compound, C18H22N2O3S, the pyrimidine ring is not planar. It adopts a half-chair conformation The crystal structure is characterized by classical N—H⋯O and C—H⋯O inter- and intra­molecular hydrogen bonds, respectively. The title compound exhibits a wide spectrum of biological activities.

Related literature

For related literature, see: Allen et al. (1987); Biginelli (1893); Cremer & Pople (1975); Gurskaya et al. (2003a ,b ); Kappe (1993); Kappe et al. (1997); Li (2006); Nardelli (1983); Nizam Mohideen et al. (2008); Overman et al. (1995); Snider et al. (1996).graphic file with name e-64-o1812-scheme1.jpg

Experimental

Crystal data

  • C18H22N2O3S

  • M r = 346.44

  • Monoclinic, Inline graphic

  • a = 28.325 (5) Å

  • b = 7.410 (2) Å

  • c = 20.202 (4) Å

  • β = 121.61 (3)°

  • V = 3610.9 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 (2) K

  • 0.4 × 0.2 × 0.1 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.954, T max = 0.983

  • 16675 measured reflections

  • 3183 independent reflections

  • 2722 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.140

  • S = 1.04

  • 3183 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026664/pv2100sup1.cif

e-64-o1812-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026664/pv2100Isup2.hkl

e-64-o1812-Isup2.hkl (153.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 2.16 2.990 (2) 161
C7—H7⋯O2 0.98 2.46 2.831 (3) 102

Symmetry code: (i) Inline graphic.

Acknowledgments

MNM, AR, and CAMAH thank the Management of The New College, Chennai, India, for providing the necessary facilities.

supplementary crystallographic information

Comment

The title compound, (I), belongs to the class of 5-substituted 1,2,3,4-tetrahydropyrimidin-2-ones, which are known as `Biginelli compounds' (Kappe, 1993). The Biginelli reaction is a classic multicomponent reaction (Biginelli, 1893). The biological activity of some isolated alkaloids has been attributed to the presence of the dihydropyrimidinone moiety in the molecules (Overman et al., 1995) and the conformation of the pyrimidine ring (Kappe et al., 1997; Gurskaya et al., 2003a,b). Most important among them are batzelladine alkaloids, which have been found to be potent HIVgp-120-CD4 inhibitors (Snider et al., 1996). The aim of the present work was to study classical and extended Biginelli reactions. As part of our ongoing investigation of pyrimidine derivatives, the title compound, (I), has been prepared and its crystal structure is presented here.

The bond lengths and angles in the title compound (Fig. 1) are comparable with ethyl 1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenylpyrimidine-5-carboxylate, a structure closely related to (I) (Nizam Mohideen et al., 2008). The torsion angles [C1—C6—C7—C10 = 153.1 (2), C5—C6—C7—C10 = -31.5 (2), C9—C10—C12—O2 = 171.3 (2), C7—C10—C12—O2 = -11.6 (3), C9—C10—C12—O3 = -10.1 (1) and C7—C10—C12—O3 = 167.1 (2) °] differs from the torsion angles [47.6 (2), -137.1 (2), 10.1 (2), -167.8 (2) -171.5 (2) and 10.5 (2) °] in the reported structure mentioned above.

In (I), the heterocyclic ring (atoms N1, N2, C7, C8, C9, C10) of the dihydropyrimidine group is not planar, as indicated by the displacement of atom C7 from the least-squares plane [0.212 (1) Å] and by the C8—N1—C7—C10 torsion angle [31.1 (1) °]. Atom C11 deviating by -0.204 (1) Å from the least squares plane of the pyrimidine ring. The pyrimidine ring adopts half chair conformation; the puckering parameters are q2 = 0.312 (1) Å, φ = 236.3 (2)°, and θ = 104.2 (1)° (Cremer & Pople, 1975), and the lowest displacement asymmetry parameters ΔS(C7) is 2.3 (1)°, Δ2(C10) is 22.4 (1)° (Nardelli, 1983).

The benzene ring is planar, the larget displacement observed being -0.008 (1) Å for atom C6. The dihedral angle between the pyrimidine and benzene rings is 89.5 (1)°, close to the value of 86.5 (1)° found in ethyl 1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenylpyrimidine-5-carboxylate.

The crystal packing is characterized by classical N—H···O and C—H···O inter and intramolecular hydrogen bonds (Table 1).

Experimental

To a suspension of NaH (0.100 g, 2 mmol, 50% dispersion in mineral oil washed with hexane) in dry THF (25 ml) was added a solution of dihydropyrimidone, (0.594 g, 2 mmol) in dry THF (10 ml) and stirred in an atmosphere of N2 for one hour. Then a solution of allyl bromide (0.2 ml, 2.5 mmol) in dry THF (5 ml) was added drop wise and stirred for futher four hours. (TLC control, silica, ethyl acetate: hexane 1:9 as eluent). Evaporation of solvent under reduced pressure, followed by purification of the residue by column chromatography gave a yellow solid. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in ethanol (mp 368–369 K).

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.98 Å and N—H distance of 0.86 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C, N) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C18H22N2O3S F000 = 1472
Mr = 346.44 Dx = 1.275 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 7889 reflections
a = 28.325 (5) Å θ = 2.6–25º
b = 7.410 (2) Å µ = 0.20 mm1
c = 20.202 (4) Å T = 293 (2) K
β = 121.61 (3)º Needle, yellow
V = 3610.9 (18) Å3 0.4 × 0.2 × 0.1 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer' 3183 independent reflections
Radiation source: fine-focus sealed tube 2722 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.026
T = 293(2) K θmax = 25.0º
ω and φ scan θmin = 1.7º
Absorption correction: Multi-scan(SADABS; Bruker, 2004) h = −33→33
Tmin = 0.954, Tmax = 0.983 k = −8→8
16675 measured reflections l = −24→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.140   w = 1/[σ2(Fo2) + (0.0785P)2 + 3.5811P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.002
3183 reflections Δρmax = 0.48 e Å3
220 parameters Δρmin = −0.33 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.15041 (3) 0.63300 (8) 0.44134 (3) 0.0551 (2)
O1 0.33272 (7) 1.1779 (2) 0.34204 (10) 0.0580 (4)
O2 0.06407 (7) 1.4020 (2) 0.24877 (9) 0.0522 (4)
O3 0.01426 (7) 1.2100 (2) 0.15153 (9) 0.0617 (5)
N1 0.14728 (7) 0.9848 (2) 0.40787 (9) 0.0385 (4)
N2 0.09759 (7) 0.7816 (2) 0.30377 (10) 0.0387 (4)
H2 0.0954 0.6715 0.2889 0.046*
C1 0.23063 (8) 1.2512 (3) 0.39532 (11) 0.0399 (5)
H1 0.2280 1.3171 0.4325 0.048*
C2 0.27875 (9) 1.2591 (3) 0.39437 (13) 0.0456 (5)
H2A 0.3082 1.3292 0.4308 0.055*
C3 0.28341 (8) 1.1622 (3) 0.33898 (12) 0.0406 (5)
C4 0.23922 (9) 1.0596 (3) 0.28488 (12) 0.0424 (5)
H4 0.2418 0.9951 0.2474 0.051*
C5 0.19079 (8) 1.0533 (3) 0.28672 (11) 0.0387 (5)
H5 0.1611 0.9844 0.2499 0.046*
C6 0.18558 (8) 1.1467 (2) 0.34195 (11) 0.0331 (4)
C7 0.13489 (8) 1.1274 (2) 0.34918 (11) 0.0334 (4)
H7 0.1298 1.2415 0.3692 0.040*
C8 0.13171 (8) 0.8265 (3) 0.38169 (11) 0.0359 (4)
C9 0.06696 (8) 0.9154 (3) 0.25004 (11) 0.0355 (4)
C10 0.08227 (8) 1.0897 (3) 0.27177 (11) 0.0341 (4)
C11 0.02055 (9) 0.8432 (3) 0.17415 (13) 0.0484 (5)
H11A −0.0117 0.9173 0.1562 0.073*
H11B 0.0123 0.7217 0.1813 0.073*
H11C 0.0315 0.8444 0.1365 0.073*
C12 0.05336 (8) 1.2485 (3) 0.22475 (12) 0.0382 (5)
C13 −0.01773 (13) 1.3590 (4) 0.10104 (16) 0.0718 (8)
H13A 0.0067 1.4473 0.0989 0.086*
H13B −0.0387 1.4178 0.1204 0.086*
C14 −0.05525 (19) 1.2832 (6) 0.0238 (2) 0.1255 (18)
H14A −0.0341 1.2191 0.0066 0.188*
H14B −0.0755 1.3789 −0.0120 0.188*
H14C −0.0807 1.2017 0.0261 0.188*
C15 0.33997 (12) 1.0703 (4) 0.28976 (19) 0.0700 (8)
H15A 0.3327 0.9462 0.2949 0.105*
H15B 0.3774 1.0823 0.3016 0.105*
H15C 0.3147 1.1098 0.2374 0.105*
C16 0.19334 (12) 0.7289 (4) 0.53535 (15) 0.0662 (7)
H16A 0.2215 0.6410 0.5676 0.079*
H16B 0.2122 0.8324 0.5304 0.079*
C17 0.16579 (19) 0.7873 (5) 0.57661 (19) 0.0867 (10)
H17 0.1891 0.8174 0.6287 0.104*
C18 0.1139 (2) 0.8017 (6) 0.5498 (3) 0.1070 (13)
H18A 0.0884 0.7736 0.4981 0.128*
H18B 0.1015 0.8404 0.5820 0.128*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0785 (5) 0.0335 (3) 0.0492 (4) −0.0010 (3) 0.0305 (3) 0.0058 (2)
O1 0.0468 (9) 0.0614 (11) 0.0707 (11) −0.0059 (8) 0.0342 (8) −0.0012 (9)
O2 0.0615 (10) 0.0249 (8) 0.0522 (9) 0.0007 (7) 0.0174 (8) −0.0004 (7)
O3 0.0692 (11) 0.0348 (9) 0.0446 (9) 0.0068 (8) 0.0045 (8) 0.0012 (7)
N1 0.0498 (10) 0.0318 (9) 0.0347 (9) −0.0012 (7) 0.0226 (8) 0.0015 (7)
N2 0.0510 (10) 0.0219 (8) 0.0409 (9) 0.0009 (7) 0.0224 (8) −0.0030 (7)
C1 0.0456 (11) 0.0325 (11) 0.0356 (10) −0.0020 (8) 0.0171 (9) −0.0050 (8)
C2 0.0414 (11) 0.0391 (12) 0.0444 (11) −0.0100 (9) 0.0142 (9) −0.0054 (9)
C3 0.0393 (11) 0.0361 (11) 0.0454 (11) 0.0010 (8) 0.0215 (9) 0.0083 (9)
C4 0.0521 (12) 0.0385 (11) 0.0400 (11) −0.0019 (9) 0.0264 (10) −0.0029 (9)
C5 0.0419 (11) 0.0337 (11) 0.0358 (10) −0.0082 (8) 0.0171 (9) −0.0065 (8)
C6 0.0395 (10) 0.0237 (9) 0.0313 (9) 0.0004 (7) 0.0151 (8) 0.0028 (7)
C7 0.0415 (10) 0.0240 (9) 0.0331 (9) −0.0002 (8) 0.0184 (8) −0.0013 (7)
C8 0.0436 (11) 0.0294 (10) 0.0383 (10) 0.0022 (8) 0.0239 (9) 0.0033 (8)
C9 0.0372 (10) 0.0307 (10) 0.0387 (10) −0.0005 (8) 0.0200 (9) −0.0024 (8)
C10 0.0376 (10) 0.0270 (10) 0.0359 (10) 0.0006 (8) 0.0180 (8) −0.0002 (8)
C11 0.0488 (13) 0.0345 (12) 0.0484 (12) −0.0045 (9) 0.0161 (10) −0.0061 (9)
C12 0.0380 (10) 0.0333 (11) 0.0405 (11) 0.0007 (8) 0.0187 (9) 0.0004 (8)
C13 0.0752 (18) 0.0447 (15) 0.0550 (15) 0.0156 (13) 0.0063 (13) 0.0100 (12)
C14 0.133 (3) 0.085 (3) 0.065 (2) 0.022 (2) −0.013 (2) 0.0010 (19)
C15 0.0728 (17) 0.0696 (18) 0.094 (2) 0.0004 (14) 0.0614 (17) 0.0047 (16)
C16 0.0784 (18) 0.0486 (15) 0.0485 (14) −0.0047 (13) 0.0173 (13) 0.0134 (11)
C17 0.129 (3) 0.067 (2) 0.0587 (17) −0.014 (2) 0.045 (2) −0.0015 (15)
C18 0.141 (4) 0.098 (3) 0.103 (3) 0.017 (3) 0.078 (3) 0.004 (2)

Geometric parameters (Å, °)

S1—C8 1.766 (2) C7—H7 0.9800
S1—C16 1.780 (3) C9—C10 1.359 (3)
O1—C3 1.370 (3) C9—C11 1.501 (3)
O1—C15 1.421 (3) C10—C12 1.464 (3)
O2—C12 1.211 (2) C11—H11A 0.9600
O3—C12 1.334 (3) C11—H11B 0.9600
O3—C13 1.453 (3) C11—H11C 0.9600
N1—C8 1.267 (3) C12—O2 1.211 (2)
N1—C7 1.486 (2) C13—C14 1.464 (4)
N2—C8 1.388 (3) C13—H13A 0.9700
N2—C9 1.389 (3) C13—H13B 0.9700
N2—H2 0.8600 C14—H14A 0.9600
C1—C2 1.374 (3) C14—H14B 0.9600
C1—C6 1.395 (3) C14—H14C 0.9600
C1—H1 0.9300 C15—H15A 0.9600
C2—C3 1.393 (3) C15—H15B 0.9600
C2—H2A 0.9300 C15—H15C 0.9600
C3—C4 1.380 (3) C16—C17 1.474 (5)
C4—C5 1.392 (3) C16—H16A 0.9700
C4—H4 0.9300 C16—H16B 0.9700
C5—C6 1.385 (3) C17—C18 1.277 (5)
C5—H5 0.9300 C17—H17 0.9300
C6—C7 1.524 (3) C18—H18A 0.9300
C7—C10 1.517 (3) C18—H18B 0.9300
C8—S1—C16 101.35 (11) C9—C11—H11B 109.5
C3—O1—C15 117.37 (19) H11A—C11—H11B 109.5
C12—O3—C13 117.77 (18) C9—C11—H11C 109.5
C8—N1—C7 116.11 (16) H11A—C11—H11C 109.5
C8—N2—C9 119.55 (16) H11B—C11—H11C 109.5
C8—N2—H2 120.2 O2—C12—O3 122.22 (18)
C9—N2—H2 120.2 O2—C12—O3 122.22 (18)
C2—C1—C6 121.64 (19) O2—C12—C10 123.91 (19)
C2—C1—H1 119.2 O2—C12—C10 123.91 (19)
C6—C1—H1 119.2 O3—C12—C10 113.86 (17)
C1—C2—C3 120.11 (19) O3—C13—C14 107.1 (2)
C1—C2—H2A 119.9 O3—C13—H13A 110.3
C3—C2—H2A 119.9 C14—C13—H13A 110.3
O1—C3—C4 124.2 (2) O3—C13—H13B 110.3
O1—C3—C2 116.34 (19) C14—C13—H13B 110.3
C4—C3—C2 119.44 (19) H13A—C13—H13B 108.5
C3—C4—C5 119.65 (19) C13—C14—H14A 109.5
C3—C4—H4 120.2 C13—C14—H14B 109.5
C5—C4—H4 120.2 H14A—C14—H14B 109.5
C6—C5—C4 121.81 (18) C13—C14—H14C 109.5
C6—C5—H5 119.1 H14A—C14—H14C 109.5
C4—C5—H5 119.1 H14B—C14—H14C 109.5
C5—C6—C1 117.34 (18) O1—C15—H15A 109.5
C5—C6—C7 122.25 (17) O1—C15—H15B 109.5
C1—C6—C7 120.26 (17) H15A—C15—H15B 109.5
N1—C7—C10 112.63 (15) O1—C15—H15C 109.5
N1—C7—C6 107.63 (15) H15A—C15—H15C 109.5
C10—C7—C6 112.61 (15) H15B—C15—H15C 109.5
N1—C7—H7 107.9 C17—C16—S1 116.9 (2)
C10—C7—H7 107.9 C17—C16—H16A 108.1
C6—C7—H7 107.9 S1—C16—H16A 108.1
N1—C8—N2 125.34 (17) C17—C16—H16B 108.1
N1—C8—S1 123.53 (15) S1—C16—H16B 108.1
N2—C8—S1 111.13 (14) H16A—C16—H16B 107.3
C10—C9—N2 117.60 (18) C18—C17—C16 128.1 (3)
C10—C9—C11 128.98 (19) C18—C17—H17 115.9
N2—C9—C11 113.43 (17) C16—C17—H17 115.9
C9—C10—C12 125.37 (18) C17—C18—H18A 120.0
C9—C10—C7 118.86 (17) C17—C18—H18B 120.0
C12—C10—C7 115.70 (16) H18A—C18—H18B 120.0
C9—C11—H11A 109.5
C6—C1—C2—C3 0.3 (3) C16—S1—C8—N2 179.62 (16)
C15—O1—C3—C4 −5.1 (3) C8—N2—C9—C10 17.0 (3)
C15—O1—C3—C2 175.6 (2) C8—N2—C9—C11 −163.18 (18)
C1—C2—C3—O1 179.86 (19) N2—C9—C10—C12 −176.65 (17)
C1—C2—C3—C4 0.5 (3) C11—C9—C10—C12 3.6 (3)
O1—C3—C4—C5 −179.79 (19) N2—C9—C10—C7 6.3 (3)
C2—C3—C4—C5 −0.5 (3) C11—C9—C10—C7 −173.39 (19)
C3—C4—C5—C6 −0.4 (3) N1—C7—C10—C9 −29.8 (2)
C4—C5—C6—C1 1.2 (3) C6—C7—C10—C9 92.1 (2)
C4—C5—C6—C7 −174.30 (18) N1—C7—C10—C12 152.88 (16)
C2—C1—C6—C5 −1.2 (3) C6—C7—C10—C12 −85.2 (2)
C2—C1—C6—C7 174.42 (18) C13—O3—C12—O2 −2.9 (3)
C8—N1—C7—C10 31.2 (2) C13—O3—C12—O2 −2.9 (3)
C8—N1—C7—C6 −93.6 (2) C13—O3—C12—C10 178.3 (2)
C5—C6—C7—N1 93.2 (2) C9—C10—C12—O2 171.3 (2)
C1—C6—C7—N1 −82.1 (2) C7—C10—C12—O2 −11.6 (3)
C5—C6—C7—C10 −31.5 (2) C9—C10—C12—O2 171.3 (2)
C1—C6—C7—C10 153.14 (17) C7—C10—C12—O2 −11.6 (3)
C7—N1—C8—N2 −10.0 (3) C9—C10—C12—O3 −10.0 (3)
C7—N1—C8—S1 170.98 (14) C7—C10—C12—O3 167.10 (17)
C9—N2—C8—N1 −16.0 (3) C12—O3—C13—C14 177.0 (3)
C9—N2—C8—S1 163.17 (14) C8—S1—C16—C17 90.0 (2)
C16—S1—C8—N1 −1.2 (2) S1—C16—C17—C18 −10.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O2i 0.86 2.16 2.990 (2) 161
C7—H7···O2 0.98 2.46 2.831 (3) 102

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2100).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Biginelli, P. (1893). Gazz. Chim. Ital.23, 360–413.
  3. Bruker (2004). APEX2, SAINT, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Gurskaya, G. V., Zavodnik, V. E. & Shutalev, A. D. (2003a). Crystallogr. Rep.48, 92–97.
  7. Gurskaya, G. V., Zavodnik, V. E. & Shutalev, A. D. (2003b). Crystallogr. Rep.48, 416–421.
  8. Kappe, C. O. (1993). Tetrahedron, 49, 6937–6963.
  9. Kappe, C. O., Fabian, W. M. F. & Semones, M. A. (1997). Tetrahedron, 53, 2803–2816.
  10. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  11. Nizam Mohideen, M., Rasheeth, A., Huq, C. A. M. A. & Nizar, S. S. (2008). Acta Cryst. E64, o1752. [DOI] [PMC free article] [PubMed]
  12. Overman, L. E., Michael, H., Rabinowitz, M. H. & Renhowe, P. A. (1995). J. Am. Chem. Soc.117, 2657–2658.
  13. Li, R. (2006). Acta Cryst. E62, o5480–o5481.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Snider, B. B., Chen, J., Patil, A. D. & Freyer, A. J. (1996). Tetrahedron Lett.37, 6977–6980.
  16. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026664/pv2100sup1.cif

e-64-o1812-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026664/pv2100Isup2.hkl

e-64-o1812-Isup2.hkl (153.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES