Abstract
The molecule of the title compound, C11H14N2O3, adopts a trans configuration with respect to the C=N bond. The dihedral angle between the benzene ring and the hydrazinecarboxylate plane is 12.06 (9)°. Molecules are linked into a one-dimensional network by N—H⋯O hydrogen bonds and C—H⋯π interactions. The benzene rings of inversion-related molecules are stacked with their centroids separated by 3.777 (1) Å, indicating π–π interactions.
Related literature
For general background, see: Parashar et al. (1988 ▶); Hadjoudis et al. (1987 ▶); Borg et al. (1999 ▶). For related structures, see: Shang et al. (2007 ▶).
Experimental
Crystal data
C11H14N2O3
M r = 222.24
Monoclinic,
a = 12.416 (3) Å
b = 11.113 (3) Å
c = 8.073 (2) Å
β = 95.628 (3)°
V = 1108.5 (5) Å3
Z = 4
Mo Kα radiation
μ = 0.10 mm−1
T = 273 (2) K
0.30 × 0.26 × 0.25 mm
Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2002 ▶) T min = 0.972, T max = 0.978
7124 measured reflections
1952 independent reflections
1624 reflections with I > 2σ(I)
R int = 0.030
Refinement
R[F 2 > 2σ(F 2)] = 0.036
wR(F 2) = 0.102
S = 1.07
1952 reflections
153 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.19 e Å−3
Δρmin = −0.14 e Å−3
Data collection: SMART (Bruker, 2002 ▶); cell refinement: SAINT (Bruker, 2002 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024264/zl2130sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024264/zl2130Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—H2A⋯O2i | 0.89 (2) | 2.01 (2) | 2.8864 (17) | 169.0 |
| C4—H4⋯Cg1ii | 0.93 | 2.87 | 3.6488 (19) | 142 |
Symmetry codes: (i)
; (ii)
. Cg1 is the centroid of the benzene ring.
Acknowledgments
The authors acknowledge financial support from Hangzhou Vocational and Technical College, China.
supplementary crystallographic information
Comment
Benzaldehydehydrazone derivatives have received considerable attention for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). Meanwhile, it's an important intermidiate of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many interesting properties (Borg et al., 1999). As a further investigation of this type of derivatives, the crystal structure of the title compound, C11H14N2O3 (Fig.1), is described here.
The title molecule (Fig.1) adopts a trans configuration with respect to the C═N bond. The N1/N2/O2/O3/C10/C11 plane of the hydrazine carboxylic acid methyl ester group is slightly twisted away from the attached ring. The dihedral angle between the C2—C7 ring and the N1/N2/O2/O3/C10/C11 plane is 12.06 (9)°. The bond lengths and angles agree with those observed for methyl N'-[(E)-4-methoxybenzylidene] hydrazinecarboxylate (Shang et al., 2007).
The molecules are linked into a one-dimensional network by N–H···O hydrogen bonds and C–H···π interactions (Table 1, Fig.2). The benzene rings of the inversion-related molecules are stacked with their centroids separated by a distance of 3.777 (1) Å, indicating π-π interactions.
Experimental
4-Methoxy-acetophenone (1.50 g, 0.01 mol) and methyl hydrazinecarboxylate (0.90 g, 0.01 mol) were dissolved in stirred methanol (15 ml) and left for 3.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 80% yield. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 470–472 K).
Refinement
The H atoms attached N2 were located in a difference map and its position and Uiso values were freely refined. C-bound H atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).
Figures
Fig. 1.
Molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
Crystal packing of the title compound, viewed approximately down the a axis. Dashed lines indicate intermolecular hydrogen bonds.
Crystal data
| C11H14N2O3 | F000 = 472 |
| Mr = 222.24 | Dx = 1.332 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 1952 reflections |
| a = 12.416 (3) Å | θ = 1.6–25.0º |
| b = 11.113 (3) Å | µ = 0.10 mm−1 |
| c = 8.073 (2) Å | T = 273 (2) K |
| β = 95.628 (3)º | Block, colourless |
| V = 1108.5 (5) Å3 | 0.30 × 0.26 × 0.25 mm |
| Z = 4 |
Data collection
| Bruker SMART CCD area-detector diffractometer | 1952 independent reflections |
| Radiation source: fine-focus sealed tube | 1624 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.030 |
| T = 273(2) K | θmax = 25.0º |
| φ and ω scans | θmin = 1.7º |
| Absorption correction: multi-scan(SADABS; Bruker, 2002) | h = −14→14 |
| Tmin = 0.972, Tmax = 0.978 | k = −13→11 |
| 7124 measured reflections | l = −9→9 |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0461P)2 + 0.2826P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.102 | (Δ/σ)max = 0.001 |
| S = 1.07 | Δρmax = 0.19 e Å−3 |
| 1952 reflections | Δρmin = −0.14 e Å−3 |
| 153 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.042 (4) |
| Secondary atom site location: difference Fourier map |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| H2A | 0.6796 (14) | 0.1822 (17) | 0.308 (2) | 0.059 (5)* | |
| C7 | 0.96977 (11) | 0.12453 (12) | 0.16378 (16) | 0.0297 (3) | |
| C8 | 0.85779 (11) | 0.12580 (12) | 0.21369 (16) | 0.0317 (3) | |
| C10 | 0.62251 (11) | 0.29834 (13) | 0.14528 (18) | 0.0348 (3) | |
| C3 | 1.18244 (11) | 0.12536 (13) | 0.07457 (18) | 0.0341 (3) | |
| C5 | 1.04408 (11) | 0.03686 (13) | 0.22113 (17) | 0.0351 (4) | |
| H5 | 1.0223 | −0.0236 | 0.2902 | 0.042* | |
| C6 | 1.00522 (11) | 0.21282 (12) | 0.05809 (17) | 0.0348 (4) | |
| H6 | 0.9574 | 0.2727 | 0.0174 | 0.042* | |
| C2 | 1.14990 (11) | 0.03671 (13) | 0.17850 (18) | 0.0375 (4) | |
| H2 | 1.1983 | −0.0225 | 0.2196 | 0.045* | |
| C4 | 1.10911 (11) | 0.21306 (13) | 0.01308 (18) | 0.0364 (4) | |
| H4 | 1.1305 | 0.2720 | −0.0587 | 0.044* | |
| C1 | 1.36336 (12) | 0.05169 (17) | 0.0921 (2) | 0.0551 (5) | |
| H1A | 1.3691 | 0.0574 | 0.2113 | 0.083* | |
| H1B | 1.4320 | 0.0704 | 0.0531 | 0.083* | |
| H1C | 1.3425 | −0.0286 | 0.0588 | 0.083* | |
| C11 | 0.44286 (12) | 0.36579 (16) | 0.1528 (2) | 0.0528 (5) | |
| H11A | 0.4628 | 0.4492 | 0.1589 | 0.079* | |
| H11B | 0.3810 | 0.3529 | 0.2132 | 0.079* | |
| H11C | 0.4254 | 0.3433 | 0.0385 | 0.079* | |
| O1 | 1.28412 (8) | 0.13431 (10) | 0.02268 (14) | 0.0460 (3) | |
| O3 | 0.53202 (8) | 0.29346 (10) | 0.22464 (14) | 0.0467 (3) | |
| O2 | 0.63408 (8) | 0.36576 (10) | 0.03058 (13) | 0.0432 (3) | |
| N1 | 0.79718 (9) | 0.21424 (11) | 0.15959 (14) | 0.0350 (3) | |
| N2 | 0.69424 (10) | 0.21707 (12) | 0.21353 (17) | 0.0391 (3) | |
| C9 | 0.82244 (12) | 0.02704 (14) | 0.3229 (2) | 0.0439 (4) | |
| H9A | 0.8329 | 0.0521 | 0.4372 | 0.066* | |
| H9B | 0.8646 | −0.0439 | 0.3082 | 0.066* | |
| H9C | 0.7472 | 0.0098 | 0.2933 | 0.066* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C7 | 0.0318 (7) | 0.0303 (7) | 0.0271 (7) | −0.0005 (5) | 0.0034 (5) | −0.0038 (5) |
| C8 | 0.0343 (7) | 0.0334 (8) | 0.0277 (7) | −0.0011 (6) | 0.0052 (5) | −0.0037 (6) |
| C10 | 0.0317 (7) | 0.0391 (8) | 0.0346 (8) | 0.0006 (6) | 0.0082 (6) | −0.0059 (7) |
| C3 | 0.0301 (7) | 0.0370 (8) | 0.0357 (8) | 0.0004 (6) | 0.0048 (6) | −0.0050 (6) |
| C5 | 0.0388 (8) | 0.0333 (8) | 0.0336 (8) | 0.0002 (6) | 0.0058 (6) | 0.0038 (6) |
| C6 | 0.0342 (7) | 0.0328 (8) | 0.0374 (8) | 0.0051 (6) | 0.0041 (6) | 0.0021 (6) |
| C2 | 0.0362 (8) | 0.0357 (8) | 0.0403 (8) | 0.0086 (6) | 0.0021 (6) | 0.0019 (6) |
| C4 | 0.0361 (8) | 0.0354 (8) | 0.0386 (8) | −0.0008 (6) | 0.0079 (6) | 0.0049 (6) |
| C1 | 0.0332 (8) | 0.0649 (12) | 0.0680 (12) | 0.0125 (8) | 0.0084 (8) | 0.0035 (9) |
| C11 | 0.0314 (8) | 0.0592 (11) | 0.0684 (12) | 0.0078 (7) | 0.0075 (7) | 0.0000 (9) |
| O1 | 0.0304 (5) | 0.0522 (7) | 0.0565 (7) | 0.0053 (5) | 0.0107 (5) | 0.0060 (5) |
| O3 | 0.0316 (5) | 0.0567 (7) | 0.0539 (7) | 0.0066 (5) | 0.0153 (5) | 0.0079 (5) |
| O2 | 0.0425 (6) | 0.0493 (7) | 0.0396 (6) | 0.0093 (5) | 0.0125 (5) | 0.0054 (5) |
| N1 | 0.0308 (6) | 0.0412 (7) | 0.0345 (7) | 0.0028 (5) | 0.0097 (5) | 0.0002 (5) |
| N2 | 0.0330 (6) | 0.0467 (8) | 0.0393 (7) | 0.0047 (5) | 0.0131 (5) | 0.0059 (6) |
| C9 | 0.0379 (8) | 0.0442 (9) | 0.0516 (9) | 0.0011 (7) | 0.0144 (7) | 0.0075 (7) |
Geometric parameters (Å, °)
| C7—C5 | 1.3896 (19) | C2—H2 | 0.9300 |
| C7—C6 | 1.399 (2) | C4—H4 | 0.9300 |
| C7—C8 | 1.4850 (19) | C1—O1 | 1.4201 (19) |
| C8—N1 | 1.2878 (18) | C1—H1A | 0.9600 |
| C8—C9 | 1.500 (2) | C1—H1B | 0.9600 |
| C10—O2 | 1.2105 (17) | C1—H1C | 0.9600 |
| C10—N2 | 1.3476 (19) | C11—O3 | 1.4429 (19) |
| C10—O3 | 1.3479 (17) | C11—H11A | 0.9600 |
| C3—O1 | 1.3722 (17) | C11—H11B | 0.9600 |
| C3—C2 | 1.380 (2) | C11—H11C | 0.9600 |
| C3—C4 | 1.392 (2) | N1—N2 | 1.3905 (16) |
| C5—C2 | 1.390 (2) | N2—H2A | 0.891 (19) |
| C5—H5 | 0.9300 | C9—H9A | 0.9600 |
| C6—C4 | 1.3740 (19) | C9—H9B | 0.9600 |
| C6—H6 | 0.9300 | C9—H9C | 0.9600 |
| C5—C7—C6 | 117.16 (13) | O1—C1—H1A | 109.5 |
| C5—C7—C8 | 121.66 (12) | O1—C1—H1B | 109.5 |
| C6—C7—C8 | 121.18 (12) | H1A—C1—H1B | 109.5 |
| N1—C8—C7 | 116.53 (12) | O1—C1—H1C | 109.5 |
| N1—C8—C9 | 124.24 (13) | H1A—C1—H1C | 109.5 |
| C7—C8—C9 | 119.23 (12) | H1B—C1—H1C | 109.5 |
| O2—C10—N2 | 127.18 (13) | O3—C11—H11A | 109.5 |
| O2—C10—O3 | 123.74 (13) | O3—C11—H11B | 109.5 |
| N2—C10—O3 | 109.08 (13) | H11A—C11—H11B | 109.5 |
| O1—C3—C2 | 124.78 (13) | O3—C11—H11C | 109.5 |
| O1—C3—C4 | 115.44 (13) | H11A—C11—H11C | 109.5 |
| C2—C3—C4 | 119.78 (13) | H11B—C11—H11C | 109.5 |
| C7—C5—C2 | 122.07 (13) | C3—O1—C1 | 117.08 (12) |
| C7—C5—H5 | 119.0 | C10—O3—C11 | 115.40 (12) |
| C2—C5—H5 | 119.0 | C8—N1—N2 | 115.82 (12) |
| C4—C6—C7 | 121.48 (13) | C10—N2—N1 | 118.55 (13) |
| C4—C6—H6 | 119.3 | C10—N2—H2A | 117.4 (12) |
| C7—C6—H6 | 119.3 | N1—N2—H2A | 122.0 (11) |
| C3—C2—C5 | 119.33 (13) | C8—C9—H9A | 109.5 |
| C3—C2—H2 | 120.3 | C8—C9—H9B | 109.5 |
| C5—C2—H2 | 120.3 | H9A—C9—H9B | 109.5 |
| C6—C4—C3 | 120.17 (13) | C8—C9—H9C | 109.5 |
| C6—C4—H4 | 119.9 | H9A—C9—H9C | 109.5 |
| C3—C4—H4 | 119.9 | H9B—C9—H9C | 109.5 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H2A···O2i | 0.89 (2) | 2.01 (2) | 2.8864 (17) | 169.0 |
| C4—H4···Cg1ii | 0.93 | 2.87 | 3.6488 (19) | 142 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2130).
References
- Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem.42, 4331–4342. [DOI] [PubMed]
- Bruker (2002). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.
- Parashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta, 151, 201–208.
- Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024264/zl2130sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024264/zl2130Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


