Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 6;64(Pt 9):o1676. doi: 10.1107/S1600536808024264

(E)-Methyl N′-[1-(4-methoxy­phen­yl)ethyl­idene]hydrazinecarboxyl­ate

Lu-Ping Lv a, Wei-Ping Yu a, Wen-Bo Yu a, Xue-Feng Zhou b, Xian-Chao Hu c,*
PMCID: PMC2960734  PMID: 21201666

Abstract

The mol­ecule of the title compound, C11H14N2O3, adopts a trans configuration with respect to the C=N bond. The dihedral angle between the benzene ring and the hydrazinecarboxyl­ate plane is 12.06 (9)°. Mol­ecules are linked into a one-dimensional network by N—H⋯O hydrogen bonds and C—H⋯π inter­actions. The benzene rings of inversion-related mol­ecules are stacked with their centroids separated by 3.777 (1) Å, indicating π–π inter­actions.

Related literature

For general background, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999). For related structures, see: Shang et al. (2007).graphic file with name e-64-o1676-scheme1.jpg

Experimental

Crystal data

  • C11H14N2O3

  • M r = 222.24

  • Monoclinic, Inline graphic

  • a = 12.416 (3) Å

  • b = 11.113 (3) Å

  • c = 8.073 (2) Å

  • β = 95.628 (3)°

  • V = 1108.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 (2) K

  • 0.30 × 0.26 × 0.25 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.972, T max = 0.978

  • 7124 measured reflections

  • 1952 independent reflections

  • 1624 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.102

  • S = 1.07

  • 1952 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024264/zl2130sup1.cif

e-64-o1676-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024264/zl2130Isup2.hkl

e-64-o1676-Isup2.hkl (94.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.89 (2) 2.01 (2) 2.8864 (17) 169.0
C4—H4⋯Cg1ii 0.93 2.87 3.6488 (19) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of the benzene ring.

Acknowledgments

The authors acknowledge financial support from Hangzhou Vocational and Technical College, China.

supplementary crystallographic information

Comment

Benzaldehydehydrazone derivatives have received considerable attention for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). Meanwhile, it's an important intermidiate of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many interesting properties (Borg et al., 1999). As a further investigation of this type of derivatives, the crystal structure of the title compound, C11H14N2O3 (Fig.1), is described here.

The title molecule (Fig.1) adopts a trans configuration with respect to the C═N bond. The N1/N2/O2/O3/C10/C11 plane of the hydrazine carboxylic acid methyl ester group is slightly twisted away from the attached ring. The dihedral angle between the C2—C7 ring and the N1/N2/O2/O3/C10/C11 plane is 12.06 (9)°. The bond lengths and angles agree with those observed for methyl N'-[(E)-4-methoxybenzylidene] hydrazinecarboxylate (Shang et al., 2007).

The molecules are linked into a one-dimensional network by N–H···O hydrogen bonds and C–H···π interactions (Table 1, Fig.2). The benzene rings of the inversion-related molecules are stacked with their centroids separated by a distance of 3.777 (1) Å, indicating π-π interactions.

Experimental

4-Methoxy-acetophenone (1.50 g, 0.01 mol) and methyl hydrazinecarboxylate (0.90 g, 0.01 mol) were dissolved in stirred methanol (15 ml) and left for 3.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 80% yield. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 470–472 K).

Refinement

The H atoms attached N2 were located in a difference map and its position and Uiso values were freely refined. C-bound H atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

Fig. 2.

Fig. 2.

Crystal packing of the title compound, viewed approximately down the a axis. Dashed lines indicate intermolecular hydrogen bonds.

Crystal data

C11H14N2O3 F000 = 472
Mr = 222.24 Dx = 1.332 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1952 reflections
a = 12.416 (3) Å θ = 1.6–25.0º
b = 11.113 (3) Å µ = 0.10 mm1
c = 8.073 (2) Å T = 273 (2) K
β = 95.628 (3)º Block, colourless
V = 1108.5 (5) Å3 0.30 × 0.26 × 0.25 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 1952 independent reflections
Radiation source: fine-focus sealed tube 1624 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.030
T = 273(2) K θmax = 25.0º
φ and ω scans θmin = 1.7º
Absorption correction: multi-scan(SADABS; Bruker, 2002) h = −14→14
Tmin = 0.972, Tmax = 0.978 k = −13→11
7124 measured reflections l = −9→9

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036   w = 1/[σ2(Fo2) + (0.0461P)2 + 0.2826P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102 (Δ/σ)max = 0.001
S = 1.07 Δρmax = 0.19 e Å3
1952 reflections Δρmin = −0.14 e Å3
153 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.042 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H2A 0.6796 (14) 0.1822 (17) 0.308 (2) 0.059 (5)*
C7 0.96977 (11) 0.12453 (12) 0.16378 (16) 0.0297 (3)
C8 0.85779 (11) 0.12580 (12) 0.21369 (16) 0.0317 (3)
C10 0.62251 (11) 0.29834 (13) 0.14528 (18) 0.0348 (3)
C3 1.18244 (11) 0.12536 (13) 0.07457 (18) 0.0341 (3)
C5 1.04408 (11) 0.03686 (13) 0.22113 (17) 0.0351 (4)
H5 1.0223 −0.0236 0.2902 0.042*
C6 1.00522 (11) 0.21282 (12) 0.05809 (17) 0.0348 (4)
H6 0.9574 0.2727 0.0174 0.042*
C2 1.14990 (11) 0.03671 (13) 0.17850 (18) 0.0375 (4)
H2 1.1983 −0.0225 0.2196 0.045*
C4 1.10911 (11) 0.21306 (13) 0.01308 (18) 0.0364 (4)
H4 1.1305 0.2720 −0.0587 0.044*
C1 1.36336 (12) 0.05169 (17) 0.0921 (2) 0.0551 (5)
H1A 1.3691 0.0574 0.2113 0.083*
H1B 1.4320 0.0704 0.0531 0.083*
H1C 1.3425 −0.0286 0.0588 0.083*
C11 0.44286 (12) 0.36579 (16) 0.1528 (2) 0.0528 (5)
H11A 0.4628 0.4492 0.1589 0.079*
H11B 0.3810 0.3529 0.2132 0.079*
H11C 0.4254 0.3433 0.0385 0.079*
O1 1.28412 (8) 0.13431 (10) 0.02268 (14) 0.0460 (3)
O3 0.53202 (8) 0.29346 (10) 0.22464 (14) 0.0467 (3)
O2 0.63408 (8) 0.36576 (10) 0.03058 (13) 0.0432 (3)
N1 0.79718 (9) 0.21424 (11) 0.15959 (14) 0.0350 (3)
N2 0.69424 (10) 0.21707 (12) 0.21353 (17) 0.0391 (3)
C9 0.82244 (12) 0.02704 (14) 0.3229 (2) 0.0439 (4)
H9A 0.8329 0.0521 0.4372 0.066*
H9B 0.8646 −0.0439 0.3082 0.066*
H9C 0.7472 0.0098 0.2933 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C7 0.0318 (7) 0.0303 (7) 0.0271 (7) −0.0005 (5) 0.0034 (5) −0.0038 (5)
C8 0.0343 (7) 0.0334 (8) 0.0277 (7) −0.0011 (6) 0.0052 (5) −0.0037 (6)
C10 0.0317 (7) 0.0391 (8) 0.0346 (8) 0.0006 (6) 0.0082 (6) −0.0059 (7)
C3 0.0301 (7) 0.0370 (8) 0.0357 (8) 0.0004 (6) 0.0048 (6) −0.0050 (6)
C5 0.0388 (8) 0.0333 (8) 0.0336 (8) 0.0002 (6) 0.0058 (6) 0.0038 (6)
C6 0.0342 (7) 0.0328 (8) 0.0374 (8) 0.0051 (6) 0.0041 (6) 0.0021 (6)
C2 0.0362 (8) 0.0357 (8) 0.0403 (8) 0.0086 (6) 0.0021 (6) 0.0019 (6)
C4 0.0361 (8) 0.0354 (8) 0.0386 (8) −0.0008 (6) 0.0079 (6) 0.0049 (6)
C1 0.0332 (8) 0.0649 (12) 0.0680 (12) 0.0125 (8) 0.0084 (8) 0.0035 (9)
C11 0.0314 (8) 0.0592 (11) 0.0684 (12) 0.0078 (7) 0.0075 (7) 0.0000 (9)
O1 0.0304 (5) 0.0522 (7) 0.0565 (7) 0.0053 (5) 0.0107 (5) 0.0060 (5)
O3 0.0316 (5) 0.0567 (7) 0.0539 (7) 0.0066 (5) 0.0153 (5) 0.0079 (5)
O2 0.0425 (6) 0.0493 (7) 0.0396 (6) 0.0093 (5) 0.0125 (5) 0.0054 (5)
N1 0.0308 (6) 0.0412 (7) 0.0345 (7) 0.0028 (5) 0.0097 (5) 0.0002 (5)
N2 0.0330 (6) 0.0467 (8) 0.0393 (7) 0.0047 (5) 0.0131 (5) 0.0059 (6)
C9 0.0379 (8) 0.0442 (9) 0.0516 (9) 0.0011 (7) 0.0144 (7) 0.0075 (7)

Geometric parameters (Å, °)

C7—C5 1.3896 (19) C2—H2 0.9300
C7—C6 1.399 (2) C4—H4 0.9300
C7—C8 1.4850 (19) C1—O1 1.4201 (19)
C8—N1 1.2878 (18) C1—H1A 0.9600
C8—C9 1.500 (2) C1—H1B 0.9600
C10—O2 1.2105 (17) C1—H1C 0.9600
C10—N2 1.3476 (19) C11—O3 1.4429 (19)
C10—O3 1.3479 (17) C11—H11A 0.9600
C3—O1 1.3722 (17) C11—H11B 0.9600
C3—C2 1.380 (2) C11—H11C 0.9600
C3—C4 1.392 (2) N1—N2 1.3905 (16)
C5—C2 1.390 (2) N2—H2A 0.891 (19)
C5—H5 0.9300 C9—H9A 0.9600
C6—C4 1.3740 (19) C9—H9B 0.9600
C6—H6 0.9300 C9—H9C 0.9600
C5—C7—C6 117.16 (13) O1—C1—H1A 109.5
C5—C7—C8 121.66 (12) O1—C1—H1B 109.5
C6—C7—C8 121.18 (12) H1A—C1—H1B 109.5
N1—C8—C7 116.53 (12) O1—C1—H1C 109.5
N1—C8—C9 124.24 (13) H1A—C1—H1C 109.5
C7—C8—C9 119.23 (12) H1B—C1—H1C 109.5
O2—C10—N2 127.18 (13) O3—C11—H11A 109.5
O2—C10—O3 123.74 (13) O3—C11—H11B 109.5
N2—C10—O3 109.08 (13) H11A—C11—H11B 109.5
O1—C3—C2 124.78 (13) O3—C11—H11C 109.5
O1—C3—C4 115.44 (13) H11A—C11—H11C 109.5
C2—C3—C4 119.78 (13) H11B—C11—H11C 109.5
C7—C5—C2 122.07 (13) C3—O1—C1 117.08 (12)
C7—C5—H5 119.0 C10—O3—C11 115.40 (12)
C2—C5—H5 119.0 C8—N1—N2 115.82 (12)
C4—C6—C7 121.48 (13) C10—N2—N1 118.55 (13)
C4—C6—H6 119.3 C10—N2—H2A 117.4 (12)
C7—C6—H6 119.3 N1—N2—H2A 122.0 (11)
C3—C2—C5 119.33 (13) C8—C9—H9A 109.5
C3—C2—H2 120.3 C8—C9—H9B 109.5
C5—C2—H2 120.3 H9A—C9—H9B 109.5
C6—C4—C3 120.17 (13) C8—C9—H9C 109.5
C6—C4—H4 119.9 H9A—C9—H9C 109.5
C3—C4—H4 119.9 H9B—C9—H9C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O2i 0.89 (2) 2.01 (2) 2.8864 (17) 169.0
C4—H4···Cg1ii 0.93 2.87 3.6488 (19) 142

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2130).

References

  1. Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem.42, 4331–4342. [DOI] [PubMed]
  2. Bruker (2002). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.
  4. Parashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta, 151, 201–208.
  5. Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024264/zl2130sup1.cif

e-64-o1676-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024264/zl2130Isup2.hkl

e-64-o1676-Isup2.hkl (94.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES