Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Feb 15;64(Pt 3):o590. doi: 10.1107/S1600536808004121

(3R*,4R*,5S*)-4-(4-Methyl­phen­yl)-2,3-diphenyl-7-[(R*)-1-phenyl­ethyl]-1-oxa-2,7-diaza­spiro­[4.5]decan-10-one oxime

G Chanthini Begum a, R Suresh Kumar b, J Suresh a, C Gopinathan a, P L Nilantha Lakshman c,*
PMCID: PMC2960745  PMID: 21201928

Abstract

In the title compound, C34H35N3O2, the polysubstituted piperidine ring adopts a chair conformation and the isoxazolidine ring is in an envelope form. The mol­ecules are linked into a chain along the b axis by O—H⋯N, C—H⋯O and C—H⋯N inter­actions. The chains are cross-linked via weak C—H⋯π inter­actions.

Related literature

For related literature, see: Ali et al. (1988); Annuziata et al. (1987); Colombi et al. (1978); Gothelf & Jorgensen (2000); Goti et al. (1997); Hossain et al. (1993); Kumar et al. (2003).graphic file with name e-64-0o590-scheme1.jpg

Experimental

Crystal data

  • C34H35N3O2

  • M r = 517.65

  • Orthorhombic, Inline graphic

  • a = 10.448 (7) Å

  • b = 10.588 (9) Å

  • c = 26.490 (16) Å

  • V = 2930 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.18 × 0.16 × 0.11 mm

Data collection

  • Nonius MACH-3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.986, T max = 0.991

  • 3068 measured reflections

  • 2933 independent reflections

  • 1037 reflections with I > 2σ(I)

  • R int = 0.049

  • 2 standard reflections frequency: 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.119

  • S = 0.95

  • 2933 reflections

  • 355 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004121/ci2561sup1.cif

e-64-0o590-sup1.cif (26.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004121/ci2561Isup2.hkl

e-64-0o590-Isup2.hkl (141KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.98 2.791 (6) 170
C3—H3B⋯N2ii 0.97 2.61 3.353 (8) 133
C96—H96⋯O1ii 0.93 2.60 3.456 (9) 154
C94—H94⋯Cg1iii 0.93 2.80 3.721 (11) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

RSK thanks CSIR, New Delhi, for a Major Research Project.

supplementary crystallographic information

Comment

1,3-dipolar cycloaddition of nitrones with olefinic dipolarophiles proceeds through a concerted mechanism yielding highly substituted isoxazolidines with generation of as many as three new contiguous stereogenic centers in a single step (Gothelf & Jorgensen, 2000). Isoxazolidines are potential precursors for biologically important compounds such as amino sugars, alkaloids (Goti et al., 1997; Ali et al., 1988), β-lactams (Ali et al., 1988), and amino acids (Annuziata et al., 1987), and exhibit antibacterial and antifungal activities (Kumar et al., 2003). Among the dipoles, nitrones have been extensively used as they readily undergo both inter- and intra-molecular 1,3-dipolar cycloaddition with olefins. 1,3-dipolar cycloaddition of exocyclic olefins with nitrones result in highly substituted spiro-isoxazolidines (Hossain et al., 1993) and they have also been transformed into complex heterocycles (Colombi et al., 1978).

The molecular structure of the title compound is shown in Fig.1. The isoxazolidine ring has an envelope conformation, as indicated by the puckering parameters Q = 0.492 (6) Å and φ = 34.1 (7)°. The piperidine ring adopts a chair conformation. The C31—C36, C81—C86 and C71—C76 phenyl rings form dihedral angles of 37.5 (3)°, 77.5 (3)° and 71.8 (2)°, respectively, with the O2/C5/C7/C8 plane. The C31—C36 and C71—C76 phenyl rings are oriented at angles of 74.1 (3)° and 70.9 (3)°, respectively, with respect to the C81—C86 phenyl ring. The C2—N1—C9—C91 and C6—N1—C9—C10 torsion angles are 175.9 (6) and 178.4 (5)°, respectively.

Intermolecular O—H···N and weak C—H···O and C—H···N interactions form a linear chain running parallel to the b axis (Table 1). The chains are cross-linked via weak C—H···π interactions involving the C31—C36 phenyl ring (centroid Cg1).

Experimental

4-(4-Methylphenyl)-2,3-diphenyl-7-[(R)-1-phenylethyl]-1-oxa-2,7-diazaspiro[4.5] decan-10-one (0.05 g, 0.01 mmol), hydroxylammonium chloride (0.010 g, 0.015 mmol) and sodium acetate (0.012 g, 0.015 mmol) in ethanol (3 ml) was refluxed for 30 min. After completion of the reaction, as evident from TLC the excess solvent was evaporated in vacuo and the residue was subjected to flash column chromatography on silica gel using petroleum ether-ethyl acetate (10:2) as eluent. The product was recrystallized from ethanol (yield 72%, m.p 418 K)

Refinement

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, O—H = 0.82 Å and Uiso = 1.2Ueq(C) for CH2 and CH groups, and 1.5Ueq for CH3 and OH groups. In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C34H35N3O2 F000 = 1104
Mr = 517.65 Dx = 1.173 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 25 reflections
a = 10.448 (7) Å θ = 2–25º
b = 10.588 (9) Å µ = 0.07 mm1
c = 26.490 (16) Å T = 293 (2) K
V = 2930 (4) Å3 Block, colourless
Z = 4 0.18 × 0.16 × 0.11 mm

Data collection

Nonius MACH-3 diffractometer Rint = 0.049
Radiation source: fine-focus sealed tube θmax = 25.0º
Monochromator: graphite θmin = 2.1º
T = 293(2) K h = 0→12
ω–2θ scans k = 0→12
Absorption correction: ψ scan(North et al., 1968) l = −1→31
Tmin = 0.986, Tmax = 0.991 2 standard reflections
3068 measured reflections every 60 min
2933 independent reflections intensity decay: none
1037 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.119   w = 1/[σ2(Fo2) + (0.0339P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96 (Δ/σ)max = 0.001
2933 reflections Δρmax = 0.15 e Å3
355 parameters Δρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.1491 (7) 0.2999 (7) 0.2896 (2) 0.057 (2)
H2A 0.1502 0.3589 0.3176 0.068*
H2B 0.1778 0.2185 0.3020 0.068*
C3 0.0135 (7) 0.2879 (6) 0.2695 (2) 0.061 (2)
H3A −0.0421 0.2557 0.2959 0.073*
H3B −0.0178 0.3704 0.2594 0.073*
C4 0.0111 (6) 0.2011 (7) 0.2257 (2) 0.0428 (19)
C5 0.1068 (6) 0.2330 (6) 0.1843 (2) 0.0440 (19)
C6 0.2378 (6) 0.2497 (7) 0.2084 (2) 0.0495 (19)
H6A 0.2663 0.1691 0.2218 0.059*
H6B 0.2985 0.2757 0.1827 0.059*
C7 0.1025 (6) 0.1445 (6) 0.1374 (2) 0.0453 (19)
H7 0.0322 0.0849 0.1430 0.054*
C8 0.0593 (6) 0.2344 (6) 0.0951 (2) 0.0459 (19)
H8 0.1348 0.2757 0.0806 0.055*
C9 0.3678 (7) 0.3610 (7) 0.2705 (3) 0.059 (2)
H9 0.3949 0.2804 0.2852 0.070*
C10 0.3704 (8) 0.4613 (7) 0.3123 (2) 0.092 (3)
H10A 0.3400 0.5402 0.2990 0.138*
H10B 0.4564 0.4714 0.3243 0.138*
H10C 0.3163 0.4350 0.3396 0.138*
C31 −0.0448 (7) 0.4453 (7) 0.0987 (3) 0.049 (2)
C32 −0.1389 (8) 0.4467 (8) 0.0614 (3) 0.069 (2)
H32 −0.1766 0.3712 0.0515 0.083*
C33 −0.1768 (8) 0.5572 (10) 0.0391 (3) 0.081 (3)
H33 −0.2395 0.5554 0.0142 0.098*
C34 −0.1238 (10) 0.6699 (8) 0.0530 (3) 0.078 (3)
H34 −0.1507 0.7451 0.0383 0.094*
C35 −0.0303 (9) 0.6693 (8) 0.0890 (3) 0.084 (3)
H35 0.0081 0.7452 0.0980 0.101*
C36 0.0098 (8) 0.5574 (8) 0.1127 (3) 0.065 (2)
H36 0.0726 0.5595 0.1376 0.078*
C71 0.2166 (7) 0.0680 (7) 0.1229 (2) 0.047 (2)
C72 0.3230 (7) 0.1135 (7) 0.0978 (3) 0.057 (2)
H72 0.3307 0.1998 0.0921 0.068*
C73 0.4189 (8) 0.0327 (7) 0.0807 (3) 0.065 (2)
H73 0.4884 0.0662 0.0633 0.078*
C74 0.4133 (9) −0.0953 (8) 0.0889 (3) 0.065 (2)
C75 0.3100 (9) −0.1418 (8) 0.1145 (3) 0.081 (3)
H75 0.3036 −0.2281 0.1207 0.098*
C76 0.2152 (8) −0.0616 (8) 0.1312 (3) 0.067 (2)
H76 0.1467 −0.0960 0.1489 0.081*
C77 0.5171 (7) −0.1818 (8) 0.0674 (3) 0.093 (3)
H77A 0.5320 −0.1608 0.0327 0.139*
H77B 0.4897 −0.2681 0.0699 0.139*
H77C 0.5948 −0.1707 0.0863 0.139*
C81 −0.0138 (8) 0.1710 (7) 0.0537 (3) 0.057 (2)
C82 0.0338 (8) 0.1661 (7) 0.0054 (3) 0.079 (3)
H82 0.1112 0.2050 −0.0022 0.094*
C83 −0.0344 (13) 0.1023 (11) −0.0326 (4) 0.116 (5)
H83 −0.0023 0.0992 −0.0654 0.139*
C84 −0.1453 (13) 0.0462 (13) −0.0216 (6) 0.136 (6)
H84 −0.1877 0.0016 −0.0468 0.163*
C85 −0.1984 (11) 0.0517 (11) 0.0251 (5) 0.120 (4)
H85 −0.2780 0.0161 0.0316 0.144*
C86 −0.1287 (10) 0.1135 (8) 0.0636 (3) 0.088 (3)
H86 −0.1613 0.1151 0.0962 0.105*
C91 0.4635 (7) 0.3974 (8) 0.2304 (3) 0.056 (2)
C92 0.5805 (9) 0.3409 (10) 0.2280 (4) 0.105 (4)
H92 0.5980 0.2731 0.2492 0.126*
C93 0.6745 (11) 0.3822 (11) 0.1947 (5) 0.125 (5)
H93 0.7541 0.3430 0.1938 0.150*
C94 0.6480 (11) 0.4818 (11) 0.1631 (4) 0.107 (4)
H94 0.7107 0.5117 0.1412 0.128*
C95 0.5312 (9) 0.5363 (8) 0.1637 (3) 0.081 (3)
H95 0.5127 0.6016 0.1415 0.097*
C96 0.4391 (7) 0.4953 (8) 0.1974 (3) 0.067 (2)
H96 0.3594 0.5343 0.1978 0.081*
N1 0.2373 (5) 0.3445 (5) 0.2497 (2) 0.0447 (15)
N2 −0.0569 (5) 0.1010 (5) 0.2211 (2) 0.0442 (15)
N3 −0.0164 (5) 0.3297 (5) 0.12360 (19) 0.0462 (15)
O1 −0.1378 (5) 0.0870 (4) 0.26317 (17) 0.0568 (14)
H1 −0.1726 0.0177 0.2621 0.085*
O2 0.0736 (4) 0.3573 (4) 0.16451 (15) 0.0469 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.077 (6) 0.051 (5) 0.042 (4) −0.012 (5) 0.010 (5) −0.003 (4)
C3 0.074 (6) 0.051 (5) 0.057 (5) −0.007 (5) 0.021 (5) −0.007 (4)
C4 0.041 (5) 0.046 (4) 0.041 (4) 0.004 (4) 0.013 (4) −0.001 (4)
C5 0.049 (5) 0.042 (5) 0.041 (4) −0.001 (4) 0.002 (4) −0.001 (4)
C6 0.058 (5) 0.049 (4) 0.042 (4) 0.000 (4) 0.002 (4) 0.004 (4)
C7 0.058 (5) 0.038 (4) 0.040 (4) −0.008 (4) 0.007 (4) −0.003 (4)
C8 0.042 (5) 0.053 (5) 0.043 (4) 0.000 (4) 0.007 (4) −0.011 (4)
C9 0.056 (6) 0.066 (6) 0.053 (5) 0.005 (5) −0.013 (5) 0.009 (5)
C10 0.106 (7) 0.120 (7) 0.050 (5) −0.019 (6) −0.019 (5) −0.026 (6)
C31 0.050 (5) 0.049 (5) 0.047 (5) 0.000 (5) 0.012 (4) −0.011 (5)
C32 0.055 (6) 0.073 (7) 0.080 (6) 0.004 (5) −0.003 (5) 0.002 (6)
C33 0.085 (7) 0.093 (7) 0.066 (6) 0.027 (7) −0.008 (5) 0.014 (7)
C34 0.116 (9) 0.058 (7) 0.061 (6) 0.011 (6) 0.012 (6) −0.001 (5)
C35 0.114 (8) 0.071 (7) 0.068 (6) −0.005 (6) −0.020 (6) 0.006 (5)
C36 0.087 (7) 0.053 (5) 0.057 (5) 0.004 (6) −0.012 (5) 0.011 (5)
C71 0.064 (6) 0.031 (5) 0.047 (5) −0.004 (5) 0.011 (4) −0.003 (4)
C72 0.061 (5) 0.051 (5) 0.058 (5) 0.005 (5) 0.008 (5) 0.006 (5)
C73 0.063 (6) 0.068 (6) 0.065 (5) 0.010 (5) 0.015 (5) 0.014 (5)
C74 0.081 (7) 0.064 (6) 0.050 (5) 0.031 (6) −0.002 (5) −0.006 (5)
C75 0.107 (8) 0.049 (5) 0.087 (7) 0.016 (6) 0.019 (6) 0.002 (5)
C76 0.078 (6) 0.065 (6) 0.059 (6) −0.004 (6) 0.012 (5) 0.005 (5)
C77 0.100 (7) 0.090 (7) 0.088 (6) 0.042 (6) 0.008 (6) −0.017 (5)
C81 0.057 (6) 0.061 (5) 0.052 (5) 0.012 (5) −0.002 (5) −0.011 (5)
C82 0.086 (6) 0.089 (6) 0.060 (5) 0.029 (6) −0.011 (5) −0.021 (5)
C83 0.174 (13) 0.117 (11) 0.056 (6) 0.065 (10) −0.037 (8) −0.044 (7)
C84 0.132 (14) 0.090 (10) 0.187 (15) 0.019 (10) −0.070 (13) −0.049 (11)
C85 0.089 (9) 0.085 (8) 0.186 (13) 0.013 (7) −0.012 (10) −0.017 (10)
C86 0.094 (8) 0.076 (7) 0.093 (8) −0.010 (6) −0.033 (7) −0.028 (6)
C91 0.037 (5) 0.066 (6) 0.064 (5) 0.013 (5) −0.011 (4) −0.025 (5)
C92 0.062 (7) 0.110 (8) 0.144 (10) 0.024 (7) −0.005 (7) −0.021 (8)
C93 0.056 (7) 0.138 (12) 0.181 (14) 0.028 (9) 0.000 (8) −0.036 (10)
C94 0.064 (8) 0.135 (11) 0.122 (10) −0.025 (8) 0.048 (7) −0.063 (8)
C95 0.083 (7) 0.090 (7) 0.070 (5) −0.012 (7) 0.021 (6) −0.016 (5)
C96 0.048 (5) 0.073 (6) 0.082 (6) 0.001 (5) 0.017 (5) 0.003 (5)
N1 0.044 (4) 0.043 (3) 0.047 (3) −0.001 (3) −0.004 (3) −0.004 (3)
N2 0.044 (4) 0.042 (3) 0.046 (4) 0.000 (3) 0.011 (3) −0.002 (3)
N3 0.052 (4) 0.042 (4) 0.044 (3) −0.003 (3) 0.000 (3) 0.005 (3)
O1 0.062 (4) 0.053 (4) 0.056 (3) −0.015 (3) 0.024 (3) −0.001 (3)
O2 0.052 (3) 0.047 (3) 0.042 (3) −0.001 (3) 0.001 (3) 0.002 (3)

Geometric parameters (Å, °)

C2—N1 1.480 (7) C71—C72 1.383 (8)
C2—C3 1.518 (8) C71—C76 1.390 (8)
C2—H2A 0.97 C72—C73 1.393 (9)
C2—H2B 0.97 C72—H72 0.93
C3—C4 1.482 (8) C73—C74 1.374 (9)
C3—H3A 0.97 C73—H73 0.93
C3—H3B 0.97 C74—C75 1.367 (10)
C4—N2 1.282 (7) C74—C77 1.529 (9)
C4—C5 1.520 (8) C75—C76 1.377 (10)
C5—O2 1.460 (7) C75—H75 0.93
C5—C6 1.521 (8) C76—H76 0.93
C5—C7 1.557 (8) C77—H77A 0.96
C6—N1 1.485 (7) C77—H77B 0.96
C6—H6A 0.97 C77—H77C 0.96
C6—H6B 0.97 C81—C86 1.371 (10)
C7—C71 1.491 (8) C81—C82 1.374 (8)
C7—C8 1.537 (8) C82—C83 1.406 (11)
C7—H7 0.98 C82—H82 0.93
C8—N3 1.487 (7) C83—C84 1.335 (14)
C8—C81 1.496 (9) C83—H83 0.93
C8—H8 0.98 C84—C85 1.358 (15)
C9—N1 1.481 (7) C84—H84 0.93
C9—C91 1.508 (9) C85—C86 1.412 (12)
C9—C10 1.534 (8) C85—H85 0.93
C9—H9 0.98 C86—H86 0.93
C10—H10A 0.96 C91—C92 1.362 (10)
C10—H10B 0.96 C91—C96 1.379 (9)
C10—H10C 0.96 C92—C93 1.391 (13)
C31—C36 1.368 (8) C92—H92 0.93
C31—C32 1.393 (9) C93—C94 1.374 (13)
C31—N3 1.422 (8) C93—H93 0.93
C32—C33 1.369 (10) C94—C95 1.350 (11)
C32—H32 0.93 C94—H94 0.93
C33—C34 1.366 (10) C95—C96 1.382 (9)
C33—H33 0.93 C95—H95 0.93
C34—C35 1.365 (10) C96—H96 0.93
C34—H34 0.93 N2—O1 1.406 (6)
C35—C36 1.405 (10) N3—O2 1.464 (6)
C35—H35 0.93 O1—H1 0.82
C36—H36 0.93
N1—C2—C3 111.0 (5) C72—C71—C76 115.4 (7)
N1—C2—H2A 109.4 C72—C71—C7 125.2 (6)
C3—C2—H2A 109.4 C76—C71—C7 119.2 (7)
N1—C2—H2B 109.4 C71—C72—C73 121.4 (7)
C3—C2—H2B 109.4 C71—C72—H72 119.3
H2A—C2—H2B 108.0 C73—C72—H72 119.3
C4—C3—C2 110.0 (6) C74—C73—C72 121.6 (8)
C4—C3—H3A 109.7 C74—C73—H73 119.2
C2—C3—H3A 109.7 C72—C73—H73 119.2
C4—C3—H3B 109.7 C75—C74—C73 117.9 (8)
C2—C3—H3B 109.7 C75—C74—C77 121.9 (8)
H3A—C3—H3B 108.2 C73—C74—C77 120.1 (9)
N2—C4—C3 126.6 (6) C74—C75—C76 120.3 (8)
N2—C4—C5 118.7 (6) C74—C75—H75 119.8
C3—C4—C5 114.6 (6) C76—C75—H75 119.8
O2—C5—C4 107.6 (5) C75—C76—C71 123.4 (8)
O2—C5—C6 105.1 (5) C75—C76—H76 118.3
C4—C5—C6 108.4 (6) C71—C76—H76 118.3
O2—C5—C7 104.4 (5) C74—C77—H77A 109.5
C4—C5—C7 115.0 (5) C74—C77—H77B 109.5
C6—C5—C7 115.5 (6) H77A—C77—H77B 109.5
N1—C6—C5 112.6 (5) C74—C77—H77C 109.5
N1—C6—H6A 109.1 H77A—C77—H77C 109.5
C5—C6—H6A 109.1 H77B—C77—H77C 109.5
N1—C6—H6B 109.1 C86—C81—C82 118.5 (8)
C5—C6—H6B 109.1 C86—C81—C8 120.5 (7)
H6A—C6—H6B 107.8 C82—C81—C8 121.0 (8)
C71—C7—C8 112.6 (5) C81—C82—C83 120.1 (9)
C71—C7—C5 120.6 (6) C81—C82—H82 119.9
C8—C7—C5 102.6 (5) C83—C82—H82 119.9
C71—C7—H7 106.7 C84—C83—C82 119.8 (12)
C8—C7—H7 106.7 C84—C83—H83 120.1
C5—C7—H7 106.7 C82—C83—H83 120.1
N3—C8—C81 113.9 (6) C83—C84—C85 122.4 (15)
N3—C8—C7 101.9 (5) C83—C84—H84 118.8
C81—C8—C7 114.0 (5) C85—C84—H84 118.8
N3—C8—H8 108.9 C84—C85—C86 117.8 (13)
C81—C8—H8 108.9 C84—C85—H85 121.1
C7—C8—H8 108.9 C86—C85—H85 121.1
N1—C9—C91 112.2 (6) C81—C86—C85 121.3 (10)
N1—C9—C10 111.5 (6) C81—C86—H86 119.3
C91—C9—C10 108.6 (6) C85—C86—H86 119.3
N1—C9—H9 108.1 C92—C91—C96 117.8 (9)
C91—C9—H9 108.1 C92—C91—C9 121.1 (9)
C10—C9—H9 108.1 C96—C91—C9 121.0 (7)
C9—C10—H10A 109.5 C91—C92—C93 121.7 (11)
C9—C10—H10B 109.5 C91—C92—H92 119.1
H10A—C10—H10B 109.5 C93—C92—H92 119.1
C9—C10—H10C 109.5 C94—C93—C92 119.0 (12)
H10A—C10—H10C 109.5 C94—C93—H93 120.5
H10B—C10—H10C 109.5 C92—C93—H93 120.5
C36—C31—C32 118.5 (7) C95—C94—C93 120.1 (12)
C36—C31—N3 122.3 (7) C95—C94—H94 119.9
C32—C31—N3 119.1 (7) C93—C94—H94 119.9
C33—C32—C31 121.3 (8) C94—C95—C96 120.3 (9)
C33—C32—H32 119.4 C94—C95—H95 119.9
C31—C32—H32 119.4 C96—C95—H95 119.9
C34—C33—C32 120.9 (8) C91—C96—C95 121.0 (8)
C34—C33—H33 119.5 C91—C96—H96 119.5
C32—C33—H33 119.5 C95—C96—H96 119.5
C35—C34—C33 118.3 (9) C2—N1—C9 110.2 (5)
C35—C34—H34 120.9 C2—N1—C6 108.2 (5)
C33—C34—H34 120.9 C9—N1—C6 110.5 (5)
C34—C35—C36 122.0 (9) C4—N2—O1 110.3 (5)
C34—C35—H35 119.0 C31—N3—O2 107.8 (5)
C36—C35—H35 119.0 C31—N3—C8 117.4 (5)
C31—C36—C35 119.1 (7) O2—N3—C8 99.8 (5)
C31—C36—H36 120.5 N2—O1—H1 109.5
C35—C36—H36 120.5 C5—O2—N3 103.8 (4)
N1—C2—C3—C4 57.3 (8) N3—C8—C81—C82 128.0 (7)
C2—C3—C4—N2 123.3 (8) C7—C8—C81—C82 −115.7 (8)
C2—C3—C4—C5 −52.3 (7) C86—C81—C82—C83 −0.5 (12)
N2—C4—C5—O2 121.4 (6) C8—C81—C82—C83 177.8 (7)
C3—C4—C5—O2 −62.5 (7) C81—C82—C83—C84 −0.2 (16)
N2—C4—C5—C6 −125.4 (6) C82—C83—C84—C85 2(2)
C3—C4—C5—C6 50.6 (8) C83—C84—C85—C86 −4(2)
N2—C4—C5—C7 5.6 (9) C82—C81—C86—C85 −0.9 (13)
C3—C4—C5—C7 −178.4 (5) C8—C81—C86—C85 −179.2 (8)
O2—C5—C6—N1 60.0 (6) C84—C85—C86—C81 2.9 (16)
C4—C5—C6—N1 −54.9 (7) N1—C9—C91—C92 −135.1 (7)
C7—C5—C6—N1 174.4 (5) C10—C9—C91—C92 101.2 (9)
O2—C5—C7—C71 123.6 (6) N1—C9—C91—C96 49.8 (9)
C4—C5—C7—C71 −118.7 (7) C10—C9—C91—C96 −73.9 (8)
C6—C5—C7—C71 8.8 (9) C96—C91—C92—C93 2.0 (13)
O2—C5—C7—C8 −2.5 (7) C9—C91—C92—C93 −173.3 (9)
C4—C5—C7—C8 115.2 (6) C91—C92—C93—C94 −0.6 (17)
C6—C5—C7—C8 −117.3 (6) C92—C93—C94—C95 −1.6 (17)
C71—C7—C8—N3 −159.2 (5) C93—C94—C95—C96 2.3 (15)
C5—C7—C8—N3 −28.1 (6) C92—C91—C96—C95 −1.2 (11)
C71—C7—C8—C81 77.7 (7) C9—C91—C96—C95 174.0 (7)
C5—C7—C8—C81 −151.2 (6) C94—C95—C96—C91 −0.9 (12)
C36—C31—C32—C33 −0.2 (11) C3—C2—N1—C9 177.5 (6)
N3—C31—C32—C33 174.9 (7) C3—C2—N1—C6 −61.6 (7)
C31—C32—C33—C34 −0.3 (13) C91—C9—N1—C2 175.9 (6)
C32—C33—C34—C35 1.2 (13) C10—C9—N1—C2 −62.0 (7)
C33—C34—C35—C36 −1.7 (13) C91—C9—N1—C6 56.3 (7)
C32—C31—C36—C35 −0.3 (11) C10—C9—N1—C6 178.4 (5)
N3—C31—C36—C35 −175.1 (7) C5—C6—N1—C2 61.5 (7)
C34—C35—C36—C31 1.2 (13) C5—C6—N1—C9 −177.8 (6)
C8—C7—C71—C72 42.9 (9) C3—C4—N2—O1 3.8 (9)
C5—C7—C71—C72 −78.4 (9) C5—C4—N2—O1 179.3 (5)
C8—C7—C71—C76 −131.6 (7) C36—C31—N3—O2 1.4 (8)
C5—C7—C71—C76 107.0 (8) C32—C31—N3—O2 −173.4 (6)
C76—C71—C72—C73 2.1 (11) C36—C31—N3—C8 −110.1 (7)
C7—C71—C72—C73 −172.6 (7) C32—C31—N3—C8 75.0 (8)
C71—C72—C73—C74 −1.2 (12) C81—C8—N3—C31 −72.3 (8)
C72—C73—C74—C75 0.1 (13) C7—C8—N3—C31 164.5 (6)
C72—C73—C74—C77 177.1 (6) C81—C8—N3—O2 171.7 (5)
C73—C74—C75—C76 0.1 (13) C7—C8—N3—O2 48.5 (5)
C77—C74—C75—C76 −176.8 (7) C4—C5—O2—N3 −89.7 (5)
C74—C75—C76—C71 0.9 (13) C6—C5—O2—N3 154.9 (4)
C72—C71—C76—C75 −1.9 (12) C7—C5—O2—N3 33.0 (6)
C7—C71—C76—C75 173.1 (7) C31—N3—O2—C5 −174.5 (5)
N3—C8—C81—C86 −53.8 (9) C8—N3—O2—C5 −51.4 (5)
C7—C8—C81—C86 62.6 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.82 1.98 2.791 (6) 170
C3—H3B···N2ii 0.97 2.61 3.353 (8) 133
C96—H96···O1ii 0.93 2.60 3.456 (9) 154
C94—H94···Cg1iii 0.93 2.80 3.721 (11) 170

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2561).

References

  1. Ali, Sk. A., Khan, J. H. & Wazeer, M. I. M. (1988). Tetrahedron, 44, 5911–5920.
  2. Annuziata, R., Chinquini, M., Cozzi, F. & Raimondi, L. (1987). Tetrahedron, 43, 4051–4056.
  3. Colombi, S., Vecchio, G., Gottarelli, G., Samori, B., Lanfredi, A. M. M. & Tiripicchio, A. (1978). Tetrahedron, 34, 2967–2976.
  4. Enraf–Nonius (1994). CAD-4 EXPRESS Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  5. Gothelf, K. V. & Jorgensen, K. A. (2000). Chem. Commun. pp. 1449–1458.
  6. Goti, A., Fedi, V., Nanneli, L., De Sarlo, F. & Brandi, A. (1997). Synlett, pp. 577–579.
  7. Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  8. Hossain, N., Papchikhin, A., Plavec, J. & Chattopadhyaya, J. (1993). Tetrahedron, 49, 10133–10156.
  9. Kumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Synth. Commun.33, 1545–1555.
  10. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004121/ci2561sup1.cif

e-64-0o590-sup1.cif (26.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004121/ci2561Isup2.hkl

e-64-0o590-Isup2.hkl (141KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES