Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Feb 29;64(Pt 3):o638. doi: 10.1107/S1600536808005242

3-(2-Hydroxy­benzyl­ideneamino)benzonitrile

Hai-Jun Xu a,*, Xing-Xuan Gong a, Han Wang a
PMCID: PMC2960747  PMID: 21201969

Abstract

In the title mol­ecule, C14H10N2O, an intra­molecular O—H⋯N hydrogen bond contributes to the essential coplanarity of the two benzene rings, which form a dihedral angle of 6.04 (18)°.

Related literature

For related crystal structures, see: Kosar et al. (2005); Cheng et al. (2005, 2006).graphic file with name e-64-0o638-scheme1.jpg

Experimental

Crystal data

  • C14H10N2O

  • M r = 222.24

  • Orthorhombic, Inline graphic

  • a = 26.397 (5) Å

  • b = 3.9211 (8) Å

  • c = 10.773 (2) Å

  • V = 1115.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.22 × 0.05 × 0.05 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.812, T max = 1.000 (expected range = 0.809–0.996)

  • 9995 measured reflections

  • 1339 independent reflections

  • 901 reflections with I > 2σ(I)

  • R int = 0.116

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.121

  • S = 1.05

  • 1339 reflections

  • 160 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005242/cv2384sup1.cif

e-64-0o638-sup1.cif (14.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005242/cv2384Isup2.hkl

e-64-0o638-Isup2.hkl (66.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N1 0.82 (2) 1.89 (4) 2.623 (4) 149 (7)

Acknowledgments

HJX acknowledges a Start-up Grant from Southeast University, People’s Republic of China.

supplementary crystallographic information

Comment

Schiff base compounds have attracted great attention for many years. These compounds play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, photochromism and thermochromism. Here, we report the crystal structure of the title compound.

In the title compound (Fig. 1), all bond lengths are within normal ranges. The C7=N1 bond length of 1.277 (4)Å is a typical double bond, similar to the corresponding bond lengths in 4-methoxy-2-[(4-nitrophenyl)iminomethyl]phenol (Kosar et al., 2005). The molecule is almost planar and displays a trans configuration with respect to the C7=N1 double bond. The dihedral angle between the benzene rings is 6.04 (18)°. Strong intramolecular O—H···N hydrogen-bond interaction (Talbe I), similar to the reported earlier (Cheng et al., 2005, 2006), is observed in the molecule.

Experimental

3-Aminobenzonitrile and salicylaldehyde were available commercially and were used without further purification. 3-Aminobenzonitrile (1.18 g, 10 mmol) and salicylaldehyde (1.22 g, 10 mmol) were dissolved in ethanol (20 ml). The mixture was heated to reflux for 4 h, then cooled to room temperature overnight and large amounts of a yellow precipitate were formed. Yellow crystals were obtained by recrystallization from ethyl alcohol (yield: 82%). For the X-ray diffraction analysis, suitable single crystals were obtained after one week by slow evaporation from an ethyl alcohol solution.

Refinement

C-bound H atoms were geometrically positioned (C—H 0.93 Å) and refined as riding with Uiso(H)= 1.2Ueq(C). Atom H1B was located on a difference map and refined isotropically with bon restraint O1—H1B = 0.82 (2) Å. In the absence of significant anomalous scatterers, 1124 Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atomic numbering and displacement ellipsoids drawn at the 30% probability level.

Crystal data

C14H10N2O F000 = 464
Mr = 222.24 Dx = 1.324 Mg m3
Orthorhombic, Pca21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 8294 reflections
a = 26.397 (5) Å θ = 3.0–27.6º
b = 3.9211 (8) Å µ = 0.09 mm1
c = 10.773 (2) Å T = 293 (2) K
V = 1115.1 (4) Å3 Stick, yellow
Z = 4 0.22 × 0.05 × 0.05 mm

Data collection

Rigaku Mercury2 diffractometer 1339 independent reflections
Radiation source: fine-focus sealed tube 901 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.116
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5º
T = 293(2) K θmin = 3.1º
ω scans h = −34→34
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005) k = −5→5
Tmin = 0.812, Tmax = 1.00 l = −13→13
9995 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121   w = 1/[σ2(Fo2) + (0.0413P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1339 reflections Δρmax = 0.15 e Å3
160 parameters Δρmin = −0.16 e Å3
2 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.45687 (11) 0.2218 (7) 0.2697 (3) 0.0473 (8)
C1 0.54425 (12) 0.2407 (8) 0.3273 (3) 0.0427 (8)
C9 0.37076 (12) 0.2616 (9) 0.2071 (3) 0.0457 (9)
H9A 0.3823 0.3718 0.1360 0.055*
C6 0.57995 (14) 0.1614 (9) 0.4188 (3) 0.0559 (10)
H6A 0.5694 0.0602 0.4924 0.067*
C8 0.40534 (12) 0.1480 (8) 0.2952 (3) 0.0451 (8)
C7 0.49124 (12) 0.1608 (8) 0.3501 (3) 0.0460 (9)
H7A 0.4821 0.0624 0.4254 0.055*
C3 0.61133 (14) 0.4649 (10) 0.2017 (3) 0.0570 (11)
H3A 0.6223 0.5715 0.1294 0.068*
C2 0.56072 (13) 0.3894 (9) 0.2167 (3) 0.0468 (9)
C12 0.33597 (14) −0.0682 (10) 0.4162 (4) 0.0601 (10)
H12A 0.3245 −0.1800 0.4869 0.072*
C10 0.31905 (13) 0.2118 (9) 0.2243 (3) 0.0510 (10)
C11 0.30193 (13) 0.0476 (9) 0.3297 (3) 0.0572 (11)
H11A 0.2674 0.0157 0.3421 0.069*
C14 0.28378 (13) 0.3427 (10) 0.1343 (4) 0.0585 (10)
O1 0.52789 (11) 0.4688 (8) 0.1250 (3) 0.0683 (8)
C5 0.63050 (14) 0.2312 (10) 0.4013 (4) 0.0629 (11)
H5A 0.6540 0.1756 0.4622 0.076*
C4 0.64585 (14) 0.3839 (10) 0.2928 (4) 0.0632 (11)
H4A 0.6800 0.4331 0.2808 0.076*
C13 0.38733 (13) −0.0193 (10) 0.3986 (3) 0.0542 (10)
H13A 0.4101 −0.1006 0.4575 0.065*
N2 0.25591 (14) 0.4542 (10) 0.0648 (4) 0.0896 (13)
H1B 0.4999 (10) 0.396 (12) 0.145 (7) 0.13 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0426 (18) 0.0517 (18) 0.0474 (16) 0.0006 (13) −0.0038 (14) −0.0007 (13)
C1 0.038 (2) 0.0449 (17) 0.045 (2) 0.0021 (14) 0.0015 (17) −0.0035 (16)
C9 0.042 (2) 0.048 (2) 0.046 (2) 0.0029 (16) 0.0022 (17) −0.0027 (17)
C6 0.053 (2) 0.058 (2) 0.057 (2) 0.0006 (18) −0.005 (2) 0.0031 (19)
C8 0.0392 (19) 0.0456 (19) 0.051 (2) −0.0018 (15) 0.0032 (17) −0.0088 (17)
C7 0.052 (2) 0.0445 (19) 0.042 (2) 0.0000 (16) 0.0045 (17) 0.0015 (17)
C3 0.054 (3) 0.061 (3) 0.056 (2) −0.0065 (18) 0.0091 (19) −0.0002 (19)
C2 0.047 (2) 0.051 (2) 0.042 (2) −0.0009 (16) 0.0012 (16) −0.0012 (18)
C12 0.056 (2) 0.065 (3) 0.060 (2) −0.0083 (19) 0.006 (2) 0.006 (2)
C10 0.042 (2) 0.054 (2) 0.057 (2) 0.0035 (17) 0.0024 (19) −0.0148 (19)
C11 0.0399 (19) 0.061 (2) 0.071 (3) −0.0074 (17) 0.0068 (19) −0.013 (2)
C14 0.044 (2) 0.065 (3) 0.067 (2) 0.0038 (18) −0.006 (2) −0.011 (2)
O1 0.0590 (17) 0.092 (2) 0.0540 (15) −0.0015 (16) −0.0059 (17) 0.0190 (16)
C5 0.049 (2) 0.070 (3) 0.070 (3) 0.007 (2) −0.011 (2) 0.002 (2)
C4 0.047 (2) 0.064 (2) 0.079 (3) −0.0066 (19) 0.004 (2) −0.008 (2)
C13 0.047 (2) 0.060 (2) 0.056 (2) −0.0005 (17) 0.0015 (18) 0.007 (2)
N2 0.066 (2) 0.097 (3) 0.105 (3) 0.012 (2) −0.032 (2) −0.004 (2)

Geometric parameters (Å, °)

N1—C7 1.277 (4) C3—H3A 0.9300
N1—C8 1.418 (4) C2—O1 1.351 (4)
C1—C2 1.396 (4) C12—C11 1.372 (5)
C1—C6 1.398 (5) C12—C13 1.382 (5)
C1—C7 1.455 (4) C12—H12A 0.9300
C9—C8 1.390 (4) C10—C11 1.381 (5)
C9—C10 1.391 (4) C10—C14 1.439 (5)
C9—H9A 0.9300 C11—H11A 0.9300
C6—C5 1.375 (5) C14—N2 1.137 (5)
C6—H6A 0.9300 O1—H1B 0.82 (2)
C8—C13 1.377 (5) C5—C4 1.374 (5)
C7—H7A 0.9300 C5—H5A 0.9300
C3—C4 1.376 (5) C4—H4A 0.9300
C3—C2 1.378 (4) C13—H13A 0.9300
C7—N1—C8 120.8 (3) C3—C2—C1 119.5 (3)
C2—C1—C6 119.0 (3) C11—C12—C13 120.2 (3)
C2—C1—C7 122.2 (3) C11—C12—H12A 119.9
C6—C1—C7 118.8 (3) C13—C12—H12A 119.9
C8—C9—C10 120.5 (3) C11—C10—C9 119.8 (3)
C8—C9—H9A 119.7 C11—C10—C14 120.6 (3)
C10—C9—H9A 119.7 C9—C10—C14 119.6 (4)
C5—C6—C1 120.9 (4) C12—C11—C10 119.9 (3)
C5—C6—H6A 119.6 C12—C11—H11A 120.1
C1—C6—H6A 119.6 C10—C11—H11A 120.1
C13—C8—C9 118.6 (3) N2—C14—C10 178.2 (5)
C13—C8—N1 125.8 (3) C2—O1—H1B 108 (5)
C9—C8—N1 115.6 (3) C4—C5—C6 119.3 (4)
N1—C7—C1 121.9 (3) C4—C5—H5A 120.4
N1—C7—H7A 119.0 C6—C5—H5A 120.4
C1—C7—H7A 119.0 C3—C4—C5 120.8 (3)
C4—C3—C2 120.5 (4) C3—C4—H4A 119.6
C4—C3—H3A 119.7 C5—C4—H4A 119.6
C2—C3—H3A 119.7 C12—C13—C8 121.0 (3)
O1—C2—C3 119.1 (3) C12—C13—H13A 119.5
O1—C2—C1 121.4 (3) C8—C13—H13A 119.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1B···N1 0.82 (2) 1.89 (4) 2.623 (4) 149 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2384).

References

  1. Cheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137–o1138.
  2. Cheng, K., Zhu, H. L., Li, Z. B. & Yan, Z. (2006). Acta Cryst. E62, o2417–o2418.
  3. Ko˛sar, B., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör (2005). Acta Cryst. E61, o2106–o2108. [DOI] [PubMed]
  4. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005242/cv2384sup1.cif

e-64-0o638-sup1.cif (14.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005242/cv2384Isup2.hkl

e-64-0o638-Isup2.hkl (66.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES