Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Feb 20;64(Pt 3):m487–m488. doi: 10.1107/S1600536808004406

cis-Dichlorido[4,4,5,5-tetra­methyl-2-(2-pyrid­yl)-2-imidazoline-1-ox­yl]­palladium(II) tetra­hydro­furan hemi­solvate

Sihem Badeche a,*, Djamil Azzedine Rouag a, Sabrina Benmebarek a, Salah-Eddine Bouaoud a, Stéphane Golhen b
PMCID: PMC2960750  PMID: 21201871

Abstract

The asymmetric unit of the title complex, [PdCl2(C12H16N3O)]·0.5C4H8O, consists of one palladium complex in a general position and one half tetra­hydro­furan (THF) solvent mol­ecule, with the O atom lying on a twofold rotation axis. The PdII atom is bound to one chelating imino nitroxide radical through two N atoms, one from the pyridyl ring and the other from the imidazoline ring. The coordination of the metal centre is completed by two Cl atoms in a cis configuration, leading to a quasi-square-planar coordination of the metal centre. The four atoms that define the PdII coordination environment and the eight atoms that belong to the pyridylimine fragment are coplanar, with no deviation larger than 0.087 (5) Å. In the crystal structure, inter­molecular inter­actions shorter than the corresponding van der Waals radii sum are observed only between PdII complexes, and no short contact is observed around the THF mol­ecule. Weak C—H⋯O and C—H⋯Cl inter­actions yield a two-dimensional network of complexes in the (101) plane.

Related literature

For related literature, see: Caneschi et al. (1991); Davis et al. (1972); Evans et al. (1968); Fettouhi et al. (2003); Li et al. (2004); Ma et al. (2006, 2007); Oshio et al. (1996); Ueda et al. (2003, 2005); Ullman & Holm (1970); Xu et al. (2007).graphic file with name e-64-0m487-scheme1.jpg

Experimental

Crystal data

  • [PdCl2(C12H16N3O)]·0.5C4H8O

  • M r = 431.65

  • Monoclinic, Inline graphic

  • a = 19.1398 (10) Å

  • b = 15.2061 (12) Å

  • c = 13.8291 (10) Å

  • β = 123.415 (3)°

  • V = 3359.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 293 (2) K

  • 0.7 × 0.3 × 0.3 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 5707 measured reflections

  • 3065 independent reflections

  • 2049 reflections with I > 2σ(I)

  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.152

  • S = 1.03

  • 3065 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.95 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004406/dn2318sup1.cif

e-64-0m487-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004406/dn2318Isup2.hkl

e-64-0m487-Isup2.hkl (147.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.61 3.307 (8) 132
C10—H10B⋯Cl1ii 0.96 2.77 3.691 (7) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Centre de Diffractomtétrie de l’Université de Rennes 1 CDiFX for the data collection.

supplementary crystallographic information

Comment

Organic nitronyl nitroxide radicals have attracted much attention for their magnetic properties in general and ferromagnetism in particular. Then several transition metal complexes with stable nitronyl nitroxide radical ligands have been prepared and extensively investigated (Ma et al., 2007; Xu et al., 2007; Ma et al., 2006; Ueda et al., 2005; Li et al., 2004; Ueda et al., 2003; Oshio et al., 1996; Caneschi et al., 1991). Our contribution in this field is the synthesis (see Scheme 1) and structure characterization of the title compound.

The molecular structure of the complex [Pd(IM2py)Cl2] 0.5THF(I) is shown in Fig. 1 while selected geometric parameters are given in Table 1. Focusing the coordination square of PdII, one can notice that Cl2 atom deviates significantly from the phane defined with atoms N3/N1/Pd1/Cl1 by 0.0843 (23) Å. The mean bond distance of Pd—Cl 2.277 Å is in agreement with the values observed in a similar complex while the average bond length of Pd—N 2.045 Å is slightly longer than seen previously (Fettouhi et al., 2003). Due to a chelation of the iminonitroxide radical with PdII ion, the four atoms which define the PdII coordination plane and the eight atoms which belong to both pyridyl ring and imino fragment are coplanar, the larger deviation to the plane is equal to 0.087 (5) and -0.064 (5) Å for O1 and N3 respectively. Only sp3 carbon C7 and C8 from imino and methyl carbon C9, C10, C11 and C12 deviate significantly from the mean plane.

In the packing, one can notice that intermolecular interactions shorter than the corresponding van-der-Waals radii are only observed between PdII complexes, no short contact are observed around THF molecule. Centrosymetric contacts take place between imino and pyridyl ring (O1—H4) of one neighbouring complex as well as contacts between chlorine Cl1 and H10B atom of methylene group (Table 1). These contacts yield a two-dimensional network of interacting complexes along the (101) plane (Fig. 2). Another short contact is observed between two adjacent 2-D networks thanks to a van-der-Waals interaction between two C1 atoms of pyridyl rings of two neighbouring molecules with C1—C1 3.393 (16) Å. The shortest distance between two palladium take place between ions from two adjacent planes (Pd1—Pd1 = 3.648 (2) Å), onto a plane, the shorter Pd1—Pd1 distance is 8.7834 (7) Å. THF solvent molecules are lying between two planes. A contact O1s—H1 of 2.7445 Å is observed with pyridyl ring.

Experimental

Dichlorobis benzonitrile palladium(II) PdCl2(PhCN)2 and 2-(ortho- pyridyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl-3-oxyde (NIT2Py) were synthesized according to literature method (Evans et al., 1968; Ullman & Holm, 1970; Davis et al., 1972). The complex Pd(IM2py)Cl2 was synthesized as follows: The reaction was performed under a dry nitrogen atmosphere using standard schlenk technique. All solvents used were distilled under nitrogen. To a solution of PdCl2(PhCN)2 (0.1 g;0.26 mmol) in 30 ml of toluene was added with stirring a solution of the radical NIT2Py (0.12 g;0.52 mmol) in 20 ml of toluene. After 2 h of stirring at room temperature, the mixture was filtered and the solvent removed under reduced pressure. Parallelepipedic brown crystals of complex (I) suitable for x-ray crystallographic analysis were obtained by slow diffusion of hexane in THF solution of complex (I).

Refinement

All H atoms were placed in calculated positions and treated as riding model with C—H ranging from 0.93 Å [Uiso(H) = 1.2Ueq(C)] for pyridyl ring to 0.96—0.97 Å with Uiso(H) = 1.5Ueq(C)—1.2Ueq(C)) for methyl and methylene respectively.

Figures

Fig. 1.

Fig. 1.

An ORTEP drawing of title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme. The labels of the H atoms have been omitted for clarity. [Symmetry codes: (i) -x + 1, y, -z + 1.5]

Fig. 2.

Fig. 2.

Partial packing view showing the formation of a two-dimensionnal network through C—H···O and C—H···Cl intermolecular interactions. H bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x –+1, -y, -z + 1; (ii) 1/2 - x, y + 1/2, 3/2 - z]

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

[PdCl2(C12H16N3O)]·0.5C4H8O F000 = 1736
Mr = 431.65 Dx = 1.707 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2981 reflections
a = 19.1398 (10) Å θ = 2.6–25.4º
b = 15.2061 (12) Å µ = 1.43 mm1
c = 13.8291 (10) Å T = 293 (2) K
β = 123.415 (3)º Thick plate, brown
V = 3359.6 (4) Å3 0.7 × 0.3 × 0.3 mm
Z = 8

Data collection

Nonius KappaCCD diffractometer 2049 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.059
Monochromator: graphite θmax = 25.4º
T = 293(2) K θmin = 3.0º
φ and ω scans h = −22→22
Absorption correction: none k = −17→18
5707 measured reflections l = −16→16
3065 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H-atom parameters constrained
wR(F2) = 0.152   w = 1/[σ2(Fo2) + (0.0709P)2 + 4.5052P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
3065 reflections Δρmax = 0.61 e Å3
199 parameters Δρmin = −0.95 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. Multiscan absorption correction methods did not yield a better refinement agreement, then no correction was applied.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4332 (5) 0.2973 (4) 0.6038 (6) 0.0604 (18)
H1 0.4196 0.3511 0.6214 0.073*
C2 0.4905 (5) 0.2955 (5) 0.5741 (8) 0.072 (2)
H2 0.5154 0.3475 0.5723 0.087*
C3 0.5113 (5) 0.2173 (5) 0.5470 (6) 0.0603 (18)
H3 0.5497 0.2151 0.5258 0.072*
C4 0.4733 (5) 0.1419 (4) 0.5520 (6) 0.0558 (18)
H4 0.4851 0.0877 0.5330 0.067*
C5 0.4172 (4) 0.1475 (4) 0.5858 (5) 0.0443 (14)
C6 0.3741 (4) 0.0747 (4) 0.5988 (5) 0.0445 (14)
C7 0.3264 (5) −0.0669 (4) 0.6000 (6) 0.0560 (17)
C8 0.2934 (4) 0.0028 (4) 0.6501 (6) 0.0498 (16)
C9 0.2604 (6) −0.0980 (6) 0.4783 (7) 0.081 (2)
H9A 0.2328 −0.0479 0.4294 0.122*
H9B 0.2201 −0.1339 0.4806 0.122*
H9C 0.2867 −0.1317 0.4480 0.122*
C10 0.3725 (5) −0.1451 (5) 0.6789 (8) 0.078 (2)
H10A 0.3899 −0.1843 0.6415 0.117*
H10B 0.3359 −0.1757 0.6946 0.117*
H10C 0.4208 −0.1246 0.7503 0.117*
C11 0.1983 (5) 0.0032 (5) 0.5897 (7) 0.076 (2)
H11A 0.1824 0.0501 0.6202 0.114*
H11B 0.1805 −0.0520 0.6030 0.114*
H11C 0.1723 0.0116 0.5080 0.114*
C12 0.3364 (5) −0.0032 (5) 0.7811 (6) 0.067 (2)
H12A 0.3951 −0.0143 0.8167 0.101*
H12B 0.3121 −0.0502 0.7994 0.101*
H12C 0.3292 0.0513 0.8098 0.101*
N1 0.3961 (3) 0.2250 (3) 0.6084 (5) 0.0470 (12)
N2 0.3857 (4) −0.0129 (3) 0.5888 (5) 0.0512 (13)
N3 0.3211 (3) 0.0884 (3) 0.6270 (5) 0.0509 (13)
O1 0.4363 (3) −0.0447 (3) 0.5657 (5) 0.0687 (14)
Cl1 0.21890 (16) 0.20499 (14) 0.7093 (2) 0.0865 (7)
Cl2 0.30744 (14) 0.36626 (13) 0.67356 (19) 0.0761 (6)
Pd1 0.30983 (3) 0.21827 (3) 0.65241 (5) 0.0534 (2)
O1S 0.5000 0.4980 (7) 0.7500 0.177 (7)
C2S 0.5251 (8) 0.5487 (7) 0.6926 (10) 0.108 (3)
H2S1 0.4949 0.5319 0.6116 0.130*
H2S2 0.5845 0.5408 0.7263 0.130*
C3S 0.5078 (9) 0.6386 (6) 0.7032 (11) 0.118 (4)
H3S1 0.4590 0.6595 0.6312 0.142*
H3S2 0.5552 0.6758 0.7235 0.142*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.069 (5) 0.050 (4) 0.066 (5) 0.003 (3) 0.040 (4) −0.004 (3)
C2 0.077 (6) 0.059 (5) 0.091 (6) −0.023 (4) 0.052 (5) −0.002 (4)
C3 0.060 (4) 0.068 (5) 0.065 (5) −0.006 (4) 0.041 (4) 0.000 (4)
C4 0.071 (5) 0.053 (4) 0.064 (5) 0.003 (3) 0.050 (4) 0.003 (3)
C5 0.050 (4) 0.045 (3) 0.039 (3) −0.002 (3) 0.026 (3) −0.002 (3)
C6 0.050 (4) 0.046 (3) 0.048 (4) 0.004 (3) 0.034 (3) 0.003 (3)
C7 0.068 (5) 0.046 (3) 0.073 (5) −0.006 (3) 0.050 (4) 0.001 (3)
C8 0.050 (4) 0.053 (4) 0.054 (4) 0.000 (3) 0.034 (4) 0.008 (3)
C9 0.095 (7) 0.079 (5) 0.083 (6) −0.018 (5) 0.057 (6) −0.017 (5)
C10 0.100 (7) 0.060 (5) 0.105 (7) 0.009 (4) 0.075 (6) 0.022 (4)
C11 0.061 (5) 0.085 (6) 0.091 (6) −0.010 (4) 0.048 (5) 0.000 (5)
C12 0.074 (5) 0.078 (5) 0.060 (5) −0.003 (4) 0.044 (4) 0.005 (4)
N1 0.051 (3) 0.043 (3) 0.049 (3) −0.002 (2) 0.029 (3) 0.002 (2)
N2 0.059 (3) 0.043 (3) 0.067 (4) 0.006 (3) 0.044 (3) 0.006 (2)
N3 0.056 (3) 0.052 (3) 0.057 (3) 0.006 (3) 0.039 (3) 0.005 (2)
O1 0.083 (4) 0.052 (3) 0.103 (4) 0.014 (3) 0.072 (4) 0.004 (3)
Cl1 0.0970 (17) 0.0960 (15) 0.1066 (18) 0.0216 (13) 0.0814 (16) 0.0034 (12)
Cl2 0.0873 (15) 0.0578 (10) 0.0865 (15) 0.0200 (10) 0.0499 (13) −0.0037 (9)
Pd1 0.0586 (4) 0.0552 (3) 0.0549 (4) 0.0116 (3) 0.0366 (3) −0.0002 (2)
O1S 0.249 (17) 0.068 (6) 0.35 (2) 0.000 0.246 (18) 0.000
C2S 0.116 (9) 0.094 (7) 0.134 (10) −0.007 (6) 0.081 (8) −0.014 (7)
C3S 0.178 (12) 0.073 (6) 0.142 (10) −0.025 (7) 0.113 (10) −0.009 (6)

Geometric parameters (Å, °)

C1—N1 1.329 (8) C10—H10A 0.9600
C1—C2 1.367 (11) C10—H10B 0.9600
C1—H1 0.9300 C10—H10C 0.9600
C2—C3 1.370 (10) C11—H11A 0.9600
C2—H2 0.9300 C11—H11B 0.9600
C3—C4 1.381 (9) C11—H11C 0.9600
C3—H3 0.9300 C12—H12A 0.9600
C4—C5 1.388 (8) C12—H12B 0.9600
C4—H4 0.9300 C12—H12C 0.9600
C5—N1 1.338 (7) N1—Pd1 2.052 (5)
C5—C6 1.451 (8) N2—O1 1.269 (6)
C6—N3 1.289 (7) N3—Pd1 2.037 (5)
C6—N2 1.370 (8) Cl1—Pd1 2.280 (2)
C7—N2 1.476 (8) Cl2—Pd1 2.273 (2)
C7—C9 1.520 (11) O1S—C2Si 1.370 (10)
C7—C10 1.524 (10) O1S—C2S 1.370 (10)
C7—C8 1.576 (9) C2S—C3S 1.433 (13)
C8—N3 1.505 (8) C2S—H2S1 0.9700
C8—C12 1.526 (9) C2S—H2S2 0.9700
C8—C11 1.529 (10) C3S—C3Si 1.479 (18)
C9—H9A 0.9600 C3S—H3S1 0.9700
C9—H9B 0.9600 C3S—H3S2 0.9700
C9—H9C 0.9600
N1—C1—C2 122.5 (6) H10B—C10—H10C 109.5
N1—C1—H1 118.8 C8—C11—H11A 109.5
C2—C1—H1 118.8 C8—C11—H11B 109.5
C1—C2—C3 120.1 (7) H11A—C11—H11B 109.5
C1—C2—H2 120.0 C8—C11—H11C 109.5
C3—C2—H2 120.0 H11A—C11—H11C 109.5
C2—C3—C4 117.9 (6) H11B—C11—H11C 109.5
C2—C3—H3 121.1 C8—C12—H12A 109.5
C4—C3—H3 121.1 C8—C12—H12B 109.5
C3—C4—C5 119.4 (6) H12A—C12—H12B 109.5
C3—C4—H4 120.3 C8—C12—H12C 109.5
C5—C4—H4 120.3 H12A—C12—H12C 109.5
N1—C5—C4 121.5 (6) H12B—C12—H12C 109.5
N1—C5—C6 112.1 (5) C1—N1—C5 118.6 (6)
C4—C5—C6 126.3 (6) C1—N1—Pd1 126.5 (4)
N3—C6—N2 112.8 (5) C5—N1—Pd1 114.9 (4)
N3—C6—C5 120.7 (5) O1—N2—C6 125.7 (5)
N2—C6—C5 126.4 (5) O1—N2—C7 123.5 (5)
N2—C7—C9 106.0 (6) C6—N2—C7 110.6 (5)
N2—C7—C10 109.5 (6) C6—N3—C8 110.5 (5)
C9—C7—C10 110.5 (7) C6—N3—Pd1 112.6 (4)
N2—C7—C8 100.9 (5) C8—N3—Pd1 136.0 (4)
C9—C7—C8 113.9 (6) N3—Pd1—N1 79.58 (19)
C10—C7—C8 115.1 (6) N3—Pd1—Cl2 173.28 (15)
N3—C8—C12 106.3 (5) N1—Pd1—Cl2 93.72 (14)
N3—C8—C11 109.4 (5) N3—Pd1—Cl1 98.44 (15)
C12—C8—C11 110.5 (5) N1—Pd1—Cl1 176.70 (15)
N3—C8—C7 102.5 (4) Cl2—Pd1—Cl1 88.28 (8)
C12—C8—C7 113.4 (6) C2Si—O1S—C2S 111.5 (11)
C11—C8—C7 114.1 (6) O1S—C2S—C3S 107.6 (9)
C7—C9—H9A 109.5 O1S—C2S—H2S1 110.2
C7—C9—H9B 109.5 C3S—C2S—H2S1 110.2
H9A—C9—H9B 109.5 O1S—C2S—H2S2 110.2
C7—C9—H9C 109.5 C3S—C2S—H2S2 110.2
H9A—C9—H9C 109.5 H2S1—C2S—H2S2 108.5
H9B—C9—H9C 109.5 C2S—C3S—C3Si 105.0 (6)
C7—C10—H10A 109.5 C2S—C3S—H3S1 110.7
C7—C10—H10B 109.5 C3Si—C3S—H3S1 110.7
H10A—C10—H10B 109.5 C2S—C3S—H3S2 110.7
C7—C10—H10C 109.5 C3Si—C3S—H3S2 110.7
H10A—C10—H10C 109.5 H3S1—C3S—H3S2 108.8

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···O1ii 0.93 2.61 3.307 (8) 132
C10—H10B···Cl1iii 0.96 2.77 3.691 (7) 160

Symmetry codes: (ii) −x+1, −y, −z+1; (iii) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2318).

References

  1. Caneschi, A., Gatteschi, D. & Rey, P. (1991). Prog. Inorg. Chem.39, 331–429.
  2. Davis, M. S., Morokuma, K. & Kreilick, R. W. (1972). J. Am. Chem. Soc.94, 5588–5592.
  3. Evans, D., Osborn, J. A. & Wilkinson, G. (1968). Inorg. Synth.11, 99–101.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Fettouhi, M., El Ali, B., Morsy, M., Golhen, S., Ouahab, L., Le Guennic, B., Saillard, J. Y., Daro, N., Sutter, J. P. & Amouyal, E. (2003). Inorg. Chem.42, 1316–1321. [DOI] [PubMed]
  7. Li, L., Liao, D., Jiang, Z. & Yan, S. (2004). Inorg. Chim. Acta, 357, 405–410.
  8. Ma, Y., Gao, D. Z., Zhang, W., Yoshimura, K., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2006). Inorg. Chim. Acta, 359, 4655–4659.
  9. Ma, Y., Zhang, W., Yang, Y. O., Yoshimura, K., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2007). J. Mol. Struct.833, 98–101.
  10. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  11. Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
  12. Oshio, H., Ohto, A. & Ito, T. (1996). Chem. Commun. pp. 1541–1542.
  13. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Ueda, M., Itou, M., Okazawa, K., Mochida, T. & Mori, H. (2005). Polyhedron, 24, 2189–2193.
  16. Ueda, M., Mochida, T., Itou, M., Asanagi, N. & Mori, H. (2003). Inorg. Chim. Acta, 348, 123–128.
  17. Ullman, E. F. & Holm, R. H. (1970). J. Org. Chem.35, 3623–3631.
  18. Xu, Y. H., Qu, X. N., Song, H. B., Li, L. C., Jiang, Z. H. & Liao, D. Z. (2007). Polyhedron, 26, 741–747.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004406/dn2318sup1.cif

e-64-0m487-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004406/dn2318Isup2.hkl

e-64-0m487-Isup2.hkl (147.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES