Abstract
The title molecule, C9H8N2O2, is essentially planar. The crystal structure is stabilized by hydrogen bonding. An intramolecular N—H⋯O hydrogen bond results in a six-membered ring. Each molecule interacts with two others through N—H⋯O and C—H⋯O hydrogen bonding, resulting in the formation of nine-membered rings. These hydrogen bonds generate a two-dimensional polymeric network. There are also π–π interactions between the aromatic and heterocyclic rings [centroid–centroid distance 3.638 (2) Å].
Related literature
For related literature, see: Berger et al. (1999 ▶); Cignarella et al. (1981 ▶); Goddard (1977 ▶); Goddard & Levitt (1979 ▶); Maliha et al. (2007 ▶); Mancilla et al. (2007 ▶); Momose (1980 ▶); Zuman (2004 ▶).
Experimental
Crystal data
C9H8N2O2
M r = 176.17
Orthorhombic,
a = 3.9839 (3) Å
b = 7.8732 (8) Å
c = 25.651 (2) Å
V = 804.58 (13) Å3
Z = 4
Mo Kα radiation
μ = 0.11 mm−1
T = 296 (2) K
0.25 × 0.12 × 0.10 mm
Data collection
Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005 ▶) T min = 0.975, T max = 0.990
5461 measured reflections
1254 independent reflections
860 reflections with I > 2σ(I)
R int = 0.037
Refinement
R[F 2 > 2σ(F 2)] = 0.040
wR(F 2) = 0.138
S = 1.07
1254 reflections
124 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.23 e Å−3
Δρmin = −0.22 e Å−3
Data collection: APEX2 (Bruker, 2007 ▶); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶) and PLATON (Spek, 2003 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶) and PLATON.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004923/at2545sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004923/at2545Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—H2A⋯O1 | 0.95 (3) | 1.91 (3) | 2.710 (3) | 140 (2) |
| N2—H2B⋯O2i | 0.88 (3) | 2.08 (3) | 2.943 (3) | 167 (3) |
| C8—H8A⋯O2ii | 0.97 | 2.57 | 3.447 (4) | 151 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
The authors acknowledge the Higher Education Commision, Islamabad, Pakistan, for the purchase of the diffractometer.
supplementary crystallographic information
Comment
A number of isoindole type compounds are known due to their wide importance in pharmaceutical industry (Berger et al., 1999; Cignarella et al., 1981). Several isoindoles have exhibited anti-inflammatory and analgesic activity (Mancilla et al., 2007). Certain substituted isoindoles have wide applications as herbicides (Goddard, 1977; Goddard et al., 1979). In continuation to our studies of ortho-phthaldehyde with various types of ureas (Maliha et al., 2007), the present compound is isolated when simple urea is reacted as given in preparation. The estimation of urea present in the biological fluids is determined with the help of color development (Momose, 1980; Zuman, 2004) when it is reacted with ortho-phthaldehyde. This fact was utilized for the formation of the title compond (I).
For comparison the best molecule is of 1-oxo-N-phenylisoindoline-2- carboxamide (Maliha et al., 2007). The bond distances in the aromatic ring (A) containing C3 are in the range of 1.379 (4) Å to 1.392 (4) Å. The formation of heterocyclic ring (B: C1/N1/C8/C7/C2) containing carbonyl group (C1?O1) and attached to ring (A), affects the bond angles in the aromatic ring. These bond angles vary in the range [118.1 (3)°-121.2 (3)°]. In this range there are three values which are compareable for diagonal atoms. The range of the bond angles in the heterocyclic ring is [1.396 (3) Å - 1.500 (4) Å], in comparison to [1.3865 (17) Å - 1.5016 (18) Å] as reported in 1-oxo-N-phenylisoindoline-2-carboxamide. The molecule is essentially planar with a maximum deviation of -0.028 (3) Å for N2. There exists an intramolecular H-bond [N2—H2A···O1], thus forming a six membered ring as shown in Fig 1. The O1-atom is not involved in intermolecular H-bonding. There exist intermolecular H-bond of N—H···O and C—H···O type as given in the Table 1. This kind of H-bond links each asymmetric unit at two places as shown in Fig 2. The distance between ring centroids of aromatic and heterocyclic is 3.638 (2) Å along the a axis, which is indication of π-π interaction.
Experimental
A mixture of o-phthaldehyde (0.67 g, 200 mmol) and urea (0.30 g, 200 mmol) in 100 ml of ethanol was refluxed for 6 h. A blue color developed. The flask contents were allowed to stand for 24 h at room temperature. A white solid was separated from the solution and was washed with ethanol,ether and hexane respectively, and dried in open air. The crystals suitable for X-ray diffraction were grown in a mixture of acetone-ethanol (1:1) by slow evaporation at room temperature. The compound is soluble in DMSO, DMF, acetone, ethyl acetate, and partially soluble in ethanol and chloroform [m.p.: 493 K, yield: 55%].
Refinement
H atoms were positioned geometrically, with C—H = 0.93, 0.97 Å for aromatic and methylene C-atoms and constrained to ride on their parent atoms. The H-atoms attached to N2 were taken from fourier synthesis and their coordinates were refined. The thermal parameter of all H-atoms was taken 1.2 times Ueq of the parent atom.
Figures
Fig. 1.
The ORTEP diagram of the title compound (I) with displacement ellipsoids at 50% probability level; intramolecular interaction has been indicated by broken line. H-atoms are shown by small circles of arbitrary radii.
Fig. 2.
The packing figure (PLATON: Spek, 2003) which shows the H-bonding and the π-π interaction.
Crystal data
| C9H8N2O2 | F000 = 368 |
| Mr = 176.17 | Dx = 1.454 Mg m−3 |
| Orthorhombic, P212121 | Mo Kα radiation λ = 0.71073 Å |
| Hall symbol: P 2ac 2ab | Cell parameters from 1295 reflections |
| a = 3.9839 (3) Å | θ = 1.6–28.6º |
| b = 7.8732 (8) Å | µ = 0.11 mm−1 |
| c = 25.651 (2) Å | T = 296 (2) K |
| V = 804.58 (13) Å3 | Needle, colourless |
| Z = 4 | 0.25 × 0.12 × 0.10 mm |
Data collection
| Bruker KappaAPEXII CCD diffractometer | 1254 independent reflections |
| Radiation source: fine-focus sealed tube | 860 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.037 |
| Detector resolution: 7.40 pixels mm-1 | θmax = 28.6º |
| T = 296(2) K | θmin = 1.6º |
| ω scans | h = −3→5 |
| Absorption correction: multi-scan(SADABS; Bruker, 2005) | k = −9→10 |
| Tmin = 0.975, Tmax = 0.990 | l = −34→22 |
| 5461 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.138 | w = 1/[σ2(Fo2) + (0.0804P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 1.07 | (Δ/σ)max < 0.001 |
| 1254 reflections | Δρmax = 0.23 e Å−3 |
| 124 parameters | Δρmin = −0.22 e Å−3 |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.1443 (8) | 0.5881 (3) | 0.09333 (8) | 0.0599 (8) | |
| O2 | 0.3962 (6) | 0.7070 (2) | 0.24721 (7) | 0.0479 (7) | |
| N1 | 0.1909 (7) | 0.7618 (2) | 0.16626 (8) | 0.0335 (6) | |
| N2 | 0.3940 (9) | 0.4951 (3) | 0.18736 (10) | 0.0512 (8) | |
| H2A | 0.346 (10) | 0.476 (4) | 0.1514 (13) | 0.061* | |
| H2B | 0.478 (10) | 0.421 (4) | 0.2092 (14) | 0.061* | |
| C1 | 0.1002 (9) | 0.7240 (3) | 0.11498 (10) | 0.0380 (7) | |
| C2 | −0.0491 (8) | 0.8806 (3) | 0.09388 (10) | 0.0351 (7) | |
| C3 | −0.1770 (10) | 0.9115 (4) | 0.04430 (11) | 0.0450 (8) | |
| H3 | −0.1780 | 0.8269 | 0.0190 | 0.054* | |
| C4 | −0.3025 (9) | 1.0715 (4) | 0.03378 (12) | 0.0491 (8) | |
| H4 | −0.3903 | 1.0952 | 0.0010 | 0.059* | |
| C5 | −0.2985 (9) | 1.1968 (4) | 0.07165 (12) | 0.0489 (9) | |
| H5 | −0.3837 | 1.3038 | 0.0639 | 0.059* | |
| C6 | −0.1693 (9) | 1.1655 (4) | 0.12114 (11) | 0.0427 (7) | |
| H6 | −0.1652 | 1.2504 | 0.1463 | 0.051* | |
| C7 | −0.0474 (8) | 1.0053 (3) | 0.13185 (10) | 0.0343 (7) | |
| C8 | 0.1037 (9) | 0.9367 (3) | 0.18109 (9) | 0.0335 (7) | |
| H8A | 0.3014 | 1.0006 | 0.1912 | 0.040* | |
| H8B | −0.0569 | 0.9384 | 0.2095 | 0.040* | |
| C9 | 0.3350 (8) | 0.6532 (3) | 0.20346 (10) | 0.0350 (7) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.102 (2) | 0.0398 (11) | 0.0383 (10) | 0.0154 (14) | −0.0116 (14) | −0.0118 (9) |
| O2 | 0.0734 (18) | 0.0362 (11) | 0.0340 (10) | 0.0018 (12) | −0.0113 (11) | 0.0002 (8) |
| N1 | 0.0453 (16) | 0.0263 (10) | 0.0289 (10) | 0.0045 (11) | −0.0024 (10) | −0.0006 (8) |
| N2 | 0.081 (2) | 0.0327 (13) | 0.0404 (13) | 0.0173 (15) | −0.0087 (15) | 0.0015 (10) |
| C1 | 0.050 (2) | 0.0358 (14) | 0.0286 (12) | −0.0004 (15) | −0.0013 (13) | −0.0047 (11) |
| C2 | 0.0382 (18) | 0.0348 (14) | 0.0323 (12) | 0.0001 (13) | 0.0018 (13) | 0.0021 (11) |
| C3 | 0.050 (2) | 0.0502 (17) | 0.0345 (13) | 0.0036 (18) | −0.0019 (14) | 0.0011 (13) |
| C4 | 0.047 (2) | 0.064 (2) | 0.0366 (13) | 0.0042 (19) | −0.0034 (14) | 0.0140 (14) |
| C5 | 0.047 (2) | 0.0477 (18) | 0.0518 (17) | 0.0100 (17) | 0.0017 (16) | 0.0159 (15) |
| C6 | 0.0473 (19) | 0.0352 (14) | 0.0455 (15) | 0.0051 (16) | 0.0040 (15) | 0.0022 (12) |
| C7 | 0.0365 (18) | 0.0344 (14) | 0.0321 (12) | 0.0019 (13) | 0.0018 (12) | 0.0016 (11) |
| C8 | 0.0437 (19) | 0.0274 (12) | 0.0293 (11) | 0.0002 (14) | 0.0001 (12) | −0.0027 (10) |
| C9 | 0.0408 (18) | 0.0314 (13) | 0.0326 (12) | −0.0014 (15) | 0.0028 (13) | 0.0020 (11) |
Geometric parameters (Å, °)
| O1—C1 | 1.218 (3) | C3—C4 | 1.382 (4) |
| O2—C9 | 1.224 (3) | C3—H3 | 0.9300 |
| N1—C1 | 1.396 (3) | C4—C5 | 1.385 (5) |
| N1—C9 | 1.404 (3) | C4—H4 | 0.9300 |
| N1—C8 | 1.470 (3) | C5—C6 | 1.392 (4) |
| N2—C9 | 1.332 (3) | C5—H5 | 0.9300 |
| N2—H2A | 0.95 (3) | C6—C7 | 1.379 (4) |
| N2—H2B | 0.87 (3) | C6—H6 | 0.9300 |
| C1—C2 | 1.472 (4) | C7—C8 | 1.500 (4) |
| C2—C7 | 1.383 (4) | C8—H8A | 0.9700 |
| C2—C3 | 1.392 (4) | C8—H8B | 0.9700 |
| C1—N1—C9 | 128.0 (2) | C4—C5—C6 | 121.2 (3) |
| C1—N1—C8 | 112.5 (2) | C4—C5—H5 | 119.4 |
| C9—N1—C8 | 119.4 (2) | C6—C5—H5 | 119.4 |
| C9—N2—H2A | 114 (2) | C7—C6—C5 | 118.3 (3) |
| C9—N2—H2B | 120 (2) | C7—C6—H6 | 120.8 |
| H2A—N2—H2B | 126 (3) | C5—C6—H6 | 120.8 |
| O1—C1—N1 | 125.4 (3) | C6—C7—C2 | 120.5 (2) |
| O1—C1—C2 | 128.8 (2) | C6—C7—C8 | 129.7 (2) |
| N1—C1—C2 | 105.8 (2) | C2—C7—C8 | 109.8 (2) |
| C7—C2—C3 | 121.4 (3) | N1—C8—C7 | 102.36 (19) |
| C7—C2—C1 | 109.5 (2) | N1—C8—H8A | 111.3 |
| C3—C2—C1 | 129.1 (2) | C7—C8—H8A | 111.3 |
| C4—C3—C2 | 118.1 (3) | N1—C8—H8B | 111.3 |
| C4—C3—H3 | 121.0 | C7—C8—H8B | 111.3 |
| C2—C3—H3 | 121.0 | H8A—C8—H8B | 109.2 |
| C3—C4—C5 | 120.6 (3) | O2—C9—N2 | 124.9 (3) |
| C3—C4—H4 | 119.7 | O2—C9—N1 | 119.6 (2) |
| C5—C4—H4 | 119.7 | N2—C9—N1 | 115.5 (2) |
| C9—N1—C1—O1 | −2.8 (5) | C5—C6—C7—C8 | −179.9 (3) |
| C8—N1—C1—O1 | −179.9 (3) | C3—C2—C7—C6 | −0.9 (5) |
| C9—N1—C1—C2 | 178.1 (3) | C1—C2—C7—C6 | 178.8 (3) |
| C8—N1—C1—C2 | 1.0 (3) | C3—C2—C7—C8 | 179.9 (3) |
| O1—C1—C2—C7 | −179.5 (3) | C1—C2—C7—C8 | −0.4 (4) |
| N1—C1—C2—C7 | −0.4 (4) | C1—N1—C8—C7 | −1.2 (3) |
| O1—C1—C2—C3 | 0.2 (6) | C9—N1—C8—C7 | −178.5 (2) |
| N1—C1—C2—C3 | 179.3 (3) | C6—C7—C8—N1 | −178.1 (3) |
| C7—C2—C3—C4 | 0.2 (5) | C2—C7—C8—N1 | 0.9 (3) |
| C1—C2—C3—C4 | −179.5 (3) | C1—N1—C9—O2 | −179.3 (3) |
| C2—C3—C4—C5 | 0.3 (5) | C8—N1—C9—O2 | −2.4 (4) |
| C3—C4—C5—C6 | −0.1 (5) | C1—N1—C9—N2 | 0.6 (5) |
| C4—C5—C6—C7 | −0.6 (5) | C8—N1—C9—N2 | 177.5 (3) |
| C5—C6—C7—C2 | 1.1 (5) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H2A···O1 | 0.95 (3) | 1.91 (3) | 2.710 (3) | 140 (2) |
| N2—H2B···O2i | 0.88 (3) | 2.08 (3) | 2.943 (3) | 167 (3) |
| C8—H8A···O2ii | 0.97 | 2.57 | 3.447 (4) | 151 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2545).
References
- Berger, D., Citarella, R., Dutia, M., Grenberger, L., Hallett, W., Paul, R. & Poweel, D. (1999). J. Med. Chem.42, 2145–2161. [DOI] [PubMed]
- Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsion, USA.
- Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsion, USA.
- Cignarella, G., Sanna, P., Miele, E., Anania, V. & Desole, M. S. (1981). J. Med. Chem.24, 1003–1010. [DOI] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Goddard, S. J. (1977). US Patent. No. 4 032 326.
- Goddard, S. J. & Levitt, G. (1979). US Patent. No. 4 175 948.
- Maliha, B., Hussain, I., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4728.
- Mancilla, T., Correa-Basurto, J. C., Carbajal, K. S. A., Escalante, E. T. J. S. & Ferrara, J. T. (2007). J. Mex. Chem. Soc.51, 96–102.
- Momose, T. (1980). Talanta, 27, 605–607. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
- Zuman, P. (2004). Chem. Rev.104, 3217–3238. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004923/at2545sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004923/at2545Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


