Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Feb 8;64(Pt 3):m464–m465. doi: 10.1107/S1600536808003528

trans-Carbonyl­chloridobis(tri-p-tolyl­phosphine)rhodium(I) acetone solvate

Fabio Lorenzini a,*, Brian O Patrick a, Brian R James a
PMCID: PMC2960764  PMID: 21201856

Abstract

The title compound, [RhCl(C21H21P)2(CO)]·C3H6O, was precipitated in trace yield from a reaction of RhCl(cod)(THP) with P(p-tol)3 in a 1:1 acetone-d 6/CD3OD solution under a hydrogen atmosphere [p-tol = p-tolyl, THP = tris­(hydroxy­meth­yl)phosphine, P(CH2OH)3, and cod = 1,5-cyclo­octa­diene]. The complex displays a square-planar geometry around the RhI atom. The complex mol­ecules and the acetone mol­ecules are linked into a chain along the a axis by inter­molecular C—H⋯Cl and C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Beck et al. (1999, and references therein); Evans et al. (1990); Higham et al. (2004); Hoye et al. (1993); Lorenzini et al. (2007a ,b , 2008a ,b ); Vallarino (1957).graphic file with name e-64-0m464-scheme1.jpg

Experimental

Crystal data

  • [RhCl(C21H21P)2(CO)]·C3H6O

  • M r = 833.14

  • Triclinic, Inline graphic

  • a = 10.784 (2) Å

  • b = 12.859 (3) Å

  • c = 17.086 (3) Å

  • α = 70.852 (7)°

  • β = 84.790 (7)°

  • γ = 71.012 (6)°

  • V = 2116.2 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 173 (2) K

  • 0.25 × 0.10 × 0.07 mm

Data collection

  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.683, T max = 0.960

  • 31662 measured reflections

  • 9909 independent reflections

  • 6378 reflections with I > 2σ(I)

  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.115

  • S = 1.00

  • 9909 reflections

  • 477 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003528/ci2547sup1.cif

e-64-0m464-sup1.cif (31.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003528/ci2547Isup2.hkl

e-64-0m464-Isup2.hkl (474.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

C43—Rh1 1.812 (4)
P1—Rh1 2.3449 (9)
P2—Rh1 2.3283 (9)
Cl1—Rh1 2.3822 (9)
C43—Rh1—P2 91.43 (10)
C43—Rh1—P1 90.55 (10)
P2—Rh1—P1 177.46 (3)
C43—Rh1—Cl1 178.12 (10)
P2—Rh1—Cl1 86.69 (3)
P1—Rh1—Cl1 91.33 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.95 2.38 3.302 (8) 163
C46—H46A⋯Cl1 0.98 2.81 3.773 (7) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Natural Sciences and Engineering Research Council of Canada for financial support via a Discovery Grant.

supplementary crystallographic information

Comment

We have very recently reported the structure of trans-RhCl(CO)(PEtPh2)2, crystals of which precipitated serendipitously in trace yield from a reaction between PEtPh2 and RhCl(cod)(THP), where cod = 1,5-cyclooctadiene and THP = tris(hydroxymethyl)phosphine, P(CH2OH)3, in an acetone/MeOH solvent mixture under a hydrogen atmosphere (Lorenzini et al., 2008b). Such reaction conditions with a phosphine of general formula PRR'2 (R = or ≠ R') lead to formation of the dihydrido complexes cis,mer-Rh(H)2Cl(PRR'2)3 (when R' = Ph, and R = Me or Cy) (Lorenzini et al., 2008a) or, if the reaction is carried out under Ar, the phosphine–phosphinite derivatives RhCl(PRR'2)[P,P-R'(R)POCH2P(CH2OH)2] and trace amounts of the trans-RhCl(CO)(PRR'2)2 species (Lorenzini et al., 2007b). The THP plays a critical role in formation of the dihydrides and the carbonyl complexes (Lorenzini et al., 2008a); the CO ligand is thought to result from decarbonylation of formaldehyde (Beck et al., 1999), which can be readily formed from transition metal–THP species (Higham et al., 2004; Hoye et al., 1993). A corresponding reaction between the p-tolyl phosphine P(p-tol)3 and RhCl(cod)(THP) has now similarly led to formation of trace amounts of trans-RhCl(CO)[P(p-tol)3]2 that was identified by an X-ray structure as an acetone solvated species. The complex has been synthesized previously in high yield from RhCl3.3H2O (Evans et al., 1990), while the method first reported 50 years ago used [RhCl(CO)2]2 as the precursor (Vallarino, 1957). Our structure is a further example of the 125 or so of the type with a trans-RhCl(CO) moiety associated with two trans phosphorus donor atoms (Cambridge Crystallography Data Base).

Experimental

General. The RhCl(cod)(THP) precursor complex was synthesized by our reported method (Lorenzini et al., 2007a); P(p-tol)3 (a Strem Chemicals product), and the deuterated solvents (Cambridge Isotope Laboratory) were used as received. The reaction between these reagents was performed under Ar or H2 using standard Schlenk techniques. 31P{1H}-NMR spectra were measured in acetone-d6/CD3OD at room temperature (~300 K) on a Bruker AV400 spectrometer, relative to external 85% aq H3PO4.

trans-RhCl(CO)[P(p-tol)3]2.(CH3)2CO. P(p-tol)3 (18.3 µl, 0.059 mmol) in acetone-d6 (0.3 ml) was added to a yellow CD3OD solution (0.3 ml) of RhCl(cod)(THP) (10.2 mg, 0.028 mmol) at room temperature under Ar to give rapid formation of a brown solution. Replacement of the Ar by H2 and subsequent shaking of the vessel resulted in a yellow solution. Over 12 h, a minute quantity of X-ray quality, yellow prism crystals of trans-RhCl(CO)[P(p-tol)3]2.(CH3)2CO deposited from the solution; the 31P{1H} spectrum of the solution revealed a complex mixture of species.

Refinement

H atoms were placed in calculated positions [C—H = 0.95 Å (aromatic) and 0.98 Å (methyl)] and refined using a riding-model approximation, with Uiso(H) = 1.2eq(C) and 1.5eq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

 

Crystal data

[RhCl(C21H21P)2(CO)]·C3H6O Z = 2
Mr = 833.14 F000 = 864
Triclinic, P1 Dx = 1.308 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 10.784 (2) Å Cell parameters from 5165 reflections
b = 12.859 (3) Å θ = 2.5–25.0º
c = 17.086 (3) Å µ = 0.58 mm1
α = 70.852 (7)º T = 173 (2) K
β = 84.790 (7)º Prism, yellow
γ = 71.012 (6)º 0.25 × 0.10 × 0.07 mm
V = 2116.2 (7) Å3

Data collection

Bruker X8 APEXII diffractometer 9909 independent reflections
Radiation source: fine-focus sealed tube 6378 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.063
T = 173(2) K θmax = 27.8º
area detector scans θmin = 1.8º
Absorption correction: multi-scan(SADABS; Bruker, 2003) h = −14→14
Tmin = 0.683, Tmax = 0.960 k = −16→16
31662 measured reflections l = −17→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.115   w = 1/[σ2(Fo2) + (0.045P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.008
9909 reflections Δρmax = 0.48 e Å3
477 parameters Δρmin = −0.44 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The molecule crystallizes with one molecule of acetone in the asymmetric unit.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5990 (3) 0.2216 (3) 0.5635 (2) 0.0401 (8)
C2 0.5919 (4) 0.2248 (4) 0.4811 (2) 0.0593 (11)
H2 0.6541 0.2482 0.4422 0.071*
C3 0.4926 (4) 0.1932 (4) 0.4566 (3) 0.0626 (12)
H3 0.4885 0.1961 0.4006 0.075*
C4 0.4011 (4) 0.1583 (3) 0.5109 (3) 0.0500 (10)
C5 0.4086 (4) 0.1555 (3) 0.5919 (2) 0.0497 (9)
H5 0.3462 0.1316 0.6305 0.060*
C6 0.5058 (4) 0.1871 (3) 0.6184 (2) 0.0444 (9)
H6 0.5082 0.1850 0.6743 0.053*
C7 0.2945 (4) 0.1269 (4) 0.4820 (3) 0.0721 (13)
H7A 0.2363 0.1959 0.4424 0.108*
H7B 0.2439 0.0969 0.5297 0.108*
H7C 0.3339 0.0673 0.4552 0.108*
C8 0.8679 (3) 0.1195 (3) 0.6269 (2) 0.0376 (8)
C9 0.9652 (4) 0.1031 (3) 0.6818 (2) 0.0524 (10)
H9 0.9593 0.1624 0.7048 0.063*
C10 1.0716 (4) 0.0011 (4) 0.7039 (2) 0.0647 (12)
H10 1.1376 −0.0074 0.7408 0.078*
C11 1.0815 (4) −0.0885 (3) 0.6721 (2) 0.0580 (11)
C12 0.9877 (4) −0.0710 (3) 0.6161 (2) 0.0568 (11)
H12 0.9946 −0.1297 0.5923 0.068*
C13 0.8816 (4) 0.0319 (3) 0.5932 (2) 0.0482 (9)
H13 0.8182 0.0417 0.5540 0.058*
C14 1.1942 (5) −0.2021 (4) 0.6995 (3) 0.0964 (19)
H14A 1.1901 −0.2389 0.7593 0.145*
H14B 1.2779 −0.1862 0.6863 0.145*
H14C 1.1870 −0.2541 0.6703 0.145*
C15 0.7857 (3) 0.3500 (3) 0.5080 (2) 0.0384 (8)
C16 0.6944 (4) 0.4489 (3) 0.4564 (2) 0.0509 (9)
H16 0.6032 0.4585 0.4624 0.061*
C17 0.7368 (4) 0.5328 (3) 0.3964 (2) 0.0555 (11)
H17 0.6734 0.5988 0.3619 0.067*
C18 0.8699 (4) 0.5233 (3) 0.3852 (2) 0.0502 (10)
C19 0.9593 (4) 0.4223 (3) 0.4345 (2) 0.0537 (10)
H19 1.0505 0.4112 0.4270 0.064*
C20 0.9183 (4) 0.3373 (3) 0.4947 (2) 0.0453 (9)
H20 0.9820 0.2694 0.5271 0.054*
C21 0.9137 (5) 0.6199 (3) 0.3232 (3) 0.0717 (13)
H21A 1.0019 0.6136 0.3385 0.107*
H21B 0.8525 0.6952 0.3234 0.107*
H21C 0.9151 0.6130 0.2676 0.107*
C22 0.4778 (3) 0.4089 (2) 0.8594 (2) 0.0339 (7)
C23 0.3779 (4) 0.4611 (3) 0.7984 (2) 0.0450 (9)
H23 0.3992 0.4906 0.7419 0.054*
C24 0.2485 (4) 0.4700 (3) 0.8197 (2) 0.0499 (9)
H24 0.1825 0.5066 0.7774 0.060*
C25 0.2130 (4) 0.4271 (3) 0.9009 (3) 0.0510 (10)
C26 0.3112 (4) 0.3759 (3) 0.9616 (2) 0.0513 (10)
H26 0.2888 0.3466 1.0178 0.062*
C27 0.4431 (4) 0.3664 (3) 0.9419 (2) 0.0434 (9)
H27 0.5085 0.3311 0.9845 0.052*
C28 0.0725 (4) 0.4330 (4) 0.9218 (3) 0.0729 (13)
H28A 0.0158 0.5136 0.9009 0.109*
H28B 0.0643 0.4036 0.9821 0.109*
H28C 0.0459 0.3855 0.8961 0.109*
C29 0.6443 (3) 0.5526 (2) 0.80580 (19) 0.0338 (7)
C30 0.5354 (4) 0.6404 (3) 0.8164 (2) 0.0430 (9)
H30 0.4555 0.6245 0.8342 0.052*
C31 0.5418 (4) 0.7522 (3) 0.8012 (2) 0.0520 (10)
H31 0.4655 0.8117 0.8075 0.062*
C32 0.6576 (4) 0.7778 (3) 0.7771 (2) 0.0489 (10)
C33 0.7671 (4) 0.6893 (3) 0.7667 (2) 0.0543 (10)
H33 0.8474 0.7050 0.7498 0.065*
C34 0.7607 (4) 0.5780 (3) 0.7807 (2) 0.0462 (9)
H34 0.8364 0.5189 0.7730 0.055*
C35 0.6639 (5) 0.8986 (3) 0.7602 (3) 0.0728 (14)
H35A 0.6054 0.9521 0.7133 0.109*
H35B 0.7540 0.8992 0.7469 0.109*
H35C 0.6363 0.9230 0.8094 0.109*
C36 0.7593 (3) 0.3203 (3) 0.91027 (19) 0.0358 (8)
C37 0.7520 (3) 0.3574 (3) 0.9795 (2) 0.0404 (8)
H37 0.6827 0.4237 0.9833 0.048*
C38 0.8462 (4) 0.2972 (3) 1.0428 (2) 0.0495 (9)
H38 0.8390 0.3224 1.0899 0.059*
C39 0.9505 (4) 0.2012 (3) 1.0386 (2) 0.0546 (10)
C40 0.9580 (4) 0.1654 (3) 0.9697 (2) 0.0545 (10)
H40 1.0287 0.1001 0.9658 0.065*
C41 0.8637 (3) 0.2234 (3) 0.9056 (2) 0.0445 (9)
H41 0.8706 0.1971 0.8590 0.053*
C42 1.0588 (5) 0.1410 (4) 1.1040 (3) 0.0855 (16)
H42A 1.0831 0.0569 1.1159 0.128*
H42B 1.0281 0.1605 1.1547 0.128*
H42C 1.1354 0.1665 1.0837 0.128*
C43 0.7044 (4) 0.4689 (3) 0.6425 (2) 0.0429 (8)
C44 0.3191 (5) 0.0384 (4) 0.8769 (3) 0.0736 (13)
C45 0.3625 (8) −0.0618 (5) 0.9469 (4) 0.163 (3)
H45A 0.3399 −0.1256 0.9391 0.245*
H45B 0.3198 −0.0453 0.9966 0.245*
H45C 0.4578 −0.0836 0.9535 0.245*
C46 0.3191 (6) 0.1494 (4) 0.8789 (4) 0.122 (2)
H46A 0.3996 0.1644 0.8540 0.183*
H46B 0.3148 0.1493 0.9365 0.183*
H46C 0.2428 0.2101 0.8476 0.183*
O1 0.7199 (3) 0.5543 (2) 0.60038 (16) 0.0644 (8)
O2 0.2868 (6) 0.0305 (5) 0.8141 (3) 0.174 (2)
P1 0.73025 (9) 0.25561 (7) 0.60066 (5) 0.0366 (2)
P2 0.64329 (8) 0.40376 (6) 0.82266 (5) 0.0322 (2)
Cl1 0.65594 (10) 0.15903 (7) 0.80268 (5) 0.0504 (2)
Rh1 0.68398 (3) 0.33396 (2) 0.710084 (16) 0.03563 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.042 (2) 0.0352 (18) 0.042 (2) −0.0043 (16) −0.0072 (17) −0.0173 (16)
C2 0.058 (3) 0.082 (3) 0.049 (2) −0.023 (2) 0.005 (2) −0.036 (2)
C3 0.062 (3) 0.083 (3) 0.056 (3) −0.021 (2) −0.010 (2) −0.039 (2)
C4 0.045 (2) 0.042 (2) 0.064 (3) −0.0063 (18) −0.015 (2) −0.0221 (19)
C5 0.048 (2) 0.0373 (19) 0.060 (3) −0.0108 (17) −0.0059 (19) −0.0121 (18)
C6 0.052 (2) 0.0347 (18) 0.045 (2) −0.0094 (17) −0.0073 (18) −0.0127 (16)
C7 0.061 (3) 0.071 (3) 0.093 (3) −0.018 (2) −0.026 (3) −0.032 (3)
C8 0.041 (2) 0.0357 (18) 0.0349 (19) −0.0133 (15) 0.0020 (16) −0.0092 (15)
C9 0.059 (3) 0.050 (2) 0.050 (2) −0.014 (2) −0.009 (2) −0.0178 (19)
C10 0.052 (3) 0.074 (3) 0.050 (3) −0.004 (2) −0.014 (2) −0.008 (2)
C11 0.058 (3) 0.051 (2) 0.042 (2) 0.002 (2) 0.007 (2) −0.0048 (19)
C12 0.073 (3) 0.037 (2) 0.051 (2) −0.004 (2) 0.009 (2) −0.0171 (18)
C13 0.057 (2) 0.044 (2) 0.044 (2) −0.0122 (19) −0.0021 (18) −0.0185 (17)
C14 0.092 (4) 0.081 (3) 0.060 (3) 0.030 (3) 0.008 (3) −0.008 (3)
C15 0.045 (2) 0.0369 (18) 0.0330 (19) −0.0080 (16) −0.0008 (16) −0.0153 (15)
C16 0.047 (2) 0.056 (2) 0.039 (2) −0.0055 (19) 0.0022 (18) −0.0115 (18)
C17 0.072 (3) 0.042 (2) 0.035 (2) −0.001 (2) −0.004 (2) −0.0052 (17)
C18 0.069 (3) 0.039 (2) 0.042 (2) −0.018 (2) 0.002 (2) −0.0110 (17)
C19 0.052 (2) 0.047 (2) 0.058 (3) −0.0141 (19) 0.003 (2) −0.014 (2)
C20 0.051 (2) 0.0350 (18) 0.044 (2) −0.0099 (17) −0.0031 (18) −0.0073 (16)
C21 0.096 (4) 0.054 (3) 0.061 (3) −0.028 (3) 0.004 (3) −0.008 (2)
C22 0.044 (2) 0.0234 (15) 0.0396 (19) −0.0116 (14) −0.0024 (16) −0.0148 (14)
C23 0.053 (2) 0.046 (2) 0.042 (2) −0.0219 (18) −0.0039 (18) −0.0140 (17)
C24 0.046 (2) 0.048 (2) 0.059 (3) −0.0163 (18) −0.0058 (19) −0.0172 (19)
C25 0.051 (2) 0.048 (2) 0.067 (3) −0.0218 (19) 0.011 (2) −0.032 (2)
C26 0.061 (3) 0.048 (2) 0.050 (2) −0.024 (2) 0.009 (2) −0.0179 (19)
C27 0.058 (2) 0.0387 (19) 0.039 (2) −0.0208 (18) −0.0018 (18) −0.0134 (16)
C28 0.061 (3) 0.086 (3) 0.090 (3) −0.037 (3) 0.020 (3) −0.042 (3)
C29 0.046 (2) 0.0251 (15) 0.0323 (18) −0.0110 (15) −0.0060 (15) −0.0097 (13)
C30 0.049 (2) 0.0307 (17) 0.052 (2) −0.0097 (16) −0.0042 (18) −0.0186 (16)
C31 0.063 (3) 0.0278 (17) 0.064 (3) −0.0041 (18) −0.014 (2) −0.0193 (17)
C32 0.073 (3) 0.0269 (17) 0.048 (2) −0.0181 (19) −0.022 (2) −0.0059 (16)
C33 0.064 (3) 0.041 (2) 0.064 (3) −0.029 (2) −0.009 (2) −0.0082 (19)
C34 0.046 (2) 0.0339 (18) 0.061 (2) −0.0130 (17) −0.0028 (18) −0.0166 (17)
C35 0.103 (4) 0.0286 (19) 0.087 (3) −0.024 (2) −0.035 (3) −0.006 (2)
C36 0.044 (2) 0.0261 (16) 0.0368 (19) −0.0108 (15) −0.0026 (15) −0.0084 (14)
C37 0.047 (2) 0.0356 (18) 0.038 (2) −0.0117 (16) −0.0026 (17) −0.0117 (15)
C38 0.059 (3) 0.054 (2) 0.037 (2) −0.021 (2) −0.0058 (18) −0.0114 (18)
C39 0.054 (3) 0.050 (2) 0.053 (2) −0.017 (2) −0.011 (2) −0.0023 (19)
C40 0.052 (2) 0.0330 (19) 0.069 (3) −0.0040 (18) −0.006 (2) −0.0101 (19)
C41 0.047 (2) 0.0332 (18) 0.054 (2) −0.0105 (17) −0.0046 (18) −0.0162 (17)
C42 0.077 (3) 0.093 (4) 0.064 (3) −0.014 (3) −0.030 (3) 0.001 (3)
C43 0.053 (2) 0.0378 (19) 0.040 (2) −0.0105 (17) 0.0023 (17) −0.0192 (17)
C44 0.086 (4) 0.065 (3) 0.079 (3) −0.020 (3) −0.011 (3) −0.035 (3)
C45 0.255 (10) 0.069 (4) 0.099 (5) −0.003 (5) 0.012 (5) 0.008 (4)
C46 0.131 (5) 0.068 (4) 0.176 (6) −0.039 (4) 0.006 (5) −0.044 (4)
O1 0.098 (2) 0.0425 (15) 0.0528 (17) −0.0303 (16) 0.0102 (16) −0.0095 (13)
O2 0.221 (6) 0.186 (5) 0.152 (5) −0.071 (4) −0.059 (4) −0.078 (4)
P1 0.0443 (5) 0.0336 (5) 0.0346 (5) −0.0106 (4) −0.0017 (4) −0.0153 (4)
P2 0.0424 (5) 0.0236 (4) 0.0335 (5) −0.0105 (4) −0.0028 (4) −0.0116 (3)
Cl1 0.0841 (7) 0.0353 (4) 0.0416 (5) −0.0291 (5) 0.0002 (5) −0.0145 (4)
Rh1 0.04978 (18) 0.02744 (14) 0.03398 (16) −0.01380 (12) 0.00046 (12) −0.01354 (11)

Geometric parameters (Å, °)

C1—C6 1.390 (5) C25—C26 1.389 (5)
C1—C2 1.403 (5) C25—C28 1.508 (5)
C1—P1 1.830 (3) C26—C27 1.407 (5)
C2—C3 1.401 (5) C26—H26 0.95
C2—H2 0.95 C27—H27 0.95
C3—C4 1.373 (5) C28—H28A 0.98
C3—H3 0.95 C28—H28B 0.98
C4—C5 1.382 (5) C28—H28C 0.98
C4—C7 1.505 (5) C29—C30 1.386 (4)
C5—C6 1.397 (5) C29—C34 1.395 (5)
C5—H5 0.95 C29—P2 1.843 (3)
C6—H6 0.95 C30—C31 1.399 (4)
C7—H7A 0.98 C30—H30 0.95
C7—H7B 0.98 C31—C32 1.387 (5)
C7—H7C 0.98 C31—H31 0.95
C8—C13 1.387 (4) C32—C33 1.394 (5)
C8—C9 1.389 (5) C32—C35 1.506 (4)
C8—P1 1.840 (3) C33—C34 1.396 (4)
C9—C10 1.397 (5) C33—H33 0.95
C9—H9 0.95 C34—H34 0.95
C10—C11 1.399 (6) C35—H35A 0.98
C10—H10 0.95 C35—H35B 0.98
C11—C12 1.368 (5) C35—H35C 0.98
C11—C14 1.526 (5) C36—C37 1.400 (4)
C12—C13 1.404 (5) C36—C41 1.401 (4)
C12—H12 0.95 C36—P2 1.836 (3)
C13—H13 0.95 C37—C38 1.392 (5)
C14—H14A 0.98 C37—H37 0.95
C14—H14B 0.98 C38—C39 1.391 (5)
C14—H14C 0.98 C38—H38 0.95
C15—C20 1.391 (5) C39—C40 1.385 (5)
C15—C16 1.405 (5) C39—C42 1.515 (5)
C15—P1 1.837 (3) C40—C41 1.401 (5)
C16—C17 1.391 (5) C40—H40 0.95
C16—H16 0.95 C41—H41 0.95
C17—C18 1.400 (5) C42—H42A 0.98
C17—H17 0.95 C42—H42B 0.98
C18—C19 1.393 (5) C42—H42C 0.98
C18—C21 1.523 (5) C43—O1 1.154 (4)
C19—C20 1.394 (5) C43—Rh1 1.812 (4)
C19—H19 0.95 C44—O2 1.203 (6)
C20—H20 0.95 C44—C45 1.417 (6)
C21—H21A 0.98 C44—C46 1.438 (6)
C21—H21B 0.98 C45—H45A 0.98
C21—H21C 0.98 C45—H45B 0.98
C22—C27 1.398 (4) C45—H45C 0.98
C22—C23 1.405 (5) C46—H46A 0.98
C22—P2 1.825 (3) C46—H46B 0.98
C23—C24 1.387 (5) C46—H46C 0.98
C23—H23 0.95 P1—Rh1 2.3449 (9)
C24—C25 1.385 (5) P2—Rh1 2.3283 (9)
C24—H24 0.95 Cl1—Rh1 2.3822 (9)
C6—C1—C2 118.3 (3) C26—C27—H27 120.0
C6—C1—P1 119.8 (3) C25—C28—H28A 109.5
C2—C1—P1 121.9 (3) C25—C28—H28B 109.5
C3—C2—C1 119.7 (4) H28A—C28—H28B 109.5
C3—C2—H2 120.2 C25—C28—H28C 109.5
C1—C2—H2 120.2 H28A—C28—H28C 109.5
C4—C3—C2 122.1 (4) H28B—C28—H28C 109.5
C4—C3—H3 119.0 C30—C29—C34 118.4 (3)
C2—C3—H3 119.0 C30—C29—P2 123.4 (3)
C3—C4—C5 117.9 (3) C34—C29—P2 118.1 (2)
C3—C4—C7 120.6 (4) C29—C30—C31 120.7 (3)
C5—C4—C7 121.5 (4) C29—C30—H30 119.7
C4—C5—C6 121.5 (4) C31—C30—H30 119.7
C4—C5—H5 119.2 C32—C31—C30 121.2 (3)
C6—C5—H5 119.2 C32—C31—H31 119.4
C1—C6—C5 120.5 (3) C30—C31—H31 119.4
C1—C6—H6 119.7 C31—C32—C33 118.0 (3)
C5—C6—H6 119.7 C31—C32—C35 121.1 (4)
C4—C7—H7A 109.5 C33—C32—C35 120.9 (4)
C4—C7—H7B 109.5 C32—C33—C34 121.0 (4)
H7A—C7—H7B 109.5 C32—C33—H33 119.5
C4—C7—H7C 109.5 C34—C33—H33 119.5
H7A—C7—H7C 109.5 C29—C34—C33 120.6 (3)
H7B—C7—H7C 109.5 C29—C34—H34 119.7
C13—C8—C9 117.6 (3) C33—C34—H34 119.7
C13—C8—P1 123.2 (3) C32—C35—H35A 109.5
C9—C8—P1 119.2 (3) C32—C35—H35B 109.5
C8—C9—C10 121.4 (4) H35A—C35—H35B 109.5
C8—C9—H9 119.3 C32—C35—H35C 109.5
C10—C9—H9 119.3 H35A—C35—H35C 109.5
C9—C10—C11 120.4 (4) H35B—C35—H35C 109.5
C9—C10—H10 119.8 C37—C36—C41 118.8 (3)
C11—C10—H10 119.8 C37—C36—P2 121.0 (2)
C12—C11—C10 118.1 (4) C41—C36—P2 120.0 (3)
C12—C11—C14 121.6 (4) C38—C37—C36 120.1 (3)
C10—C11—C14 120.4 (4) C38—C37—H37 119.9
C11—C12—C13 121.5 (4) C36—C37—H37 119.9
C11—C12—H12 119.2 C39—C38—C37 121.5 (3)
C13—C12—H12 119.2 C39—C38—H38 119.2
C8—C13—C12 120.9 (3) C37—C38—H38 119.2
C8—C13—H13 119.6 C40—C39—C38 118.2 (3)
C12—C13—H13 119.6 C40—C39—C42 119.9 (4)
C11—C14—H14A 109.5 C38—C39—C42 121.8 (4)
C11—C14—H14B 109.5 C39—C40—C41 121.5 (3)
H14A—C14—H14B 109.5 C39—C40—H40 119.2
C11—C14—H14C 109.5 C41—C40—H40 119.2
H14A—C14—H14C 109.5 C36—C41—C40 119.8 (3)
H14B—C14—H14C 109.5 C36—C41—H41 120.1
C20—C15—C16 117.9 (3) C40—C41—H41 120.1
C20—C15—P1 121.3 (3) C39—C42—H42A 109.5
C16—C15—P1 120.0 (3) C39—C42—H42B 109.5
C17—C16—C15 120.2 (4) H42A—C42—H42B 109.5
C17—C16—H16 119.9 C39—C42—H42C 109.5
C15—C16—H16 119.9 H42A—C42—H42C 109.5
C16—C17—C18 122.2 (3) H42B—C42—H42C 109.5
C16—C17—H17 118.9 O1—C43—Rh1 178.5 (3)
C18—C17—H17 118.9 O2—C44—C45 120.1 (5)
C19—C18—C17 116.7 (3) O2—C44—C46 119.4 (6)
C19—C18—C21 121.9 (4) C45—C44—C46 120.5 (5)
C17—C18—C21 121.3 (4) C44—C45—H45A 109.5
C18—C19—C20 121.7 (4) C44—C45—H45B 109.5
C18—C19—H19 119.2 H45A—C45—H45B 109.5
C20—C19—H19 119.2 C44—C45—H45C 109.5
C15—C20—C19 121.2 (3) H45A—C45—H45C 109.5
C15—C20—H20 119.4 H45B—C45—H45C 109.5
C19—C20—H20 119.4 C44—C46—H46A 109.5
C18—C21—H21A 109.5 C44—C46—H46B 109.5
C18—C21—H21B 109.5 H46A—C46—H46B 109.5
H21A—C21—H21B 109.5 C44—C46—H46C 109.5
C18—C21—H21C 109.5 H46A—C46—H46C 109.5
H21A—C21—H21C 109.5 H46B—C46—H46C 109.5
H21B—C21—H21C 109.5 C1—P1—C15 105.08 (16)
C27—C22—C23 118.2 (3) C1—P1—C8 104.96 (15)
C27—C22—P2 125.8 (3) C15—P1—C8 103.74 (15)
C23—C22—P2 115.9 (3) C1—P1—Rh1 117.85 (12)
C24—C23—C22 120.6 (3) C15—P1—Rh1 112.37 (10)
C24—C23—H23 119.7 C8—P1—Rh1 111.61 (11)
C22—C23—H23 119.7 C22—P2—C36 108.70 (15)
C25—C24—C23 121.8 (4) C22—P2—C29 102.88 (14)
C25—C24—H24 119.1 C36—P2—C29 101.69 (14)
C23—C24—H24 119.1 C22—P2—Rh1 109.37 (10)
C24—C25—C26 117.9 (4) C36—P2—Rh1 115.03 (11)
C24—C25—C28 120.6 (4) C29—P2—Rh1 118.15 (11)
C26—C25—C28 121.5 (4) C43—Rh1—P2 91.43 (10)
C25—C26—C27 121.6 (4) C43—Rh1—P1 90.55 (10)
C25—C26—H26 119.2 P2—Rh1—P1 177.46 (3)
C27—C26—H26 119.2 C43—Rh1—Cl1 178.12 (10)
C22—C27—C26 119.9 (3) P2—Rh1—Cl1 86.69 (3)
C22—C27—H27 120.0 P1—Rh1—Cl1 91.33 (3)
C6—C1—C2—C3 −0.2 (6) C37—C38—C39—C42 175.2 (4)
P1—C1—C2—C3 177.3 (3) C38—C39—C40—C41 −0.1 (6)
C1—C2—C3—C4 −0.3 (6) C42—C39—C40—C41 −176.1 (4)
C2—C3—C4—C5 0.4 (6) C37—C36—C41—C40 0.2 (5)
C2—C3—C4—C7 179.0 (4) P2—C36—C41—C40 174.9 (3)
C3—C4—C5—C6 0.1 (5) C39—C40—C41—C36 0.4 (6)
C7—C4—C5—C6 −178.6 (3) C6—C1—P1—C15 −157.5 (3)
C2—C1—C6—C5 0.6 (5) C2—C1—P1—C15 25.0 (3)
P1—C1—C6—C5 −176.9 (2) C6—C1—P1—C8 93.4 (3)
C4—C5—C6—C1 −0.5 (5) C2—C1—P1—C8 −84.0 (3)
C13—C8—C9—C10 −1.4 (6) C6—C1—P1—Rh1 −31.5 (3)
P1—C8—C9—C10 179.8 (3) C2—C1—P1—Rh1 151.1 (3)
C8—C9—C10—C11 −1.2 (6) C20—C15—P1—C1 −138.6 (3)
C9—C10—C11—C12 3.0 (6) C16—C15—P1—C1 52.1 (3)
C9—C10—C11—C14 −177.1 (4) C20—C15—P1—C8 −28.7 (3)
C10—C11—C12—C13 −2.3 (6) C16—C15—P1—C8 162.0 (3)
C14—C11—C12—C13 177.7 (4) C20—C15—P1—Rh1 92.0 (3)
C9—C8—C13—C12 2.1 (5) C16—C15—P1—Rh1 −77.3 (3)
P1—C8—C13—C12 −179.2 (3) C13—C8—P1—C1 23.0 (3)
C11—C12—C13—C8 −0.2 (6) C9—C8—P1—C1 −158.4 (3)
C20—C15—C16—C17 −2.6 (5) C13—C8—P1—C15 −87.1 (3)
P1—C15—C16—C17 167.0 (3) C9—C8—P1—C15 91.6 (3)
C15—C16—C17—C18 −0.4 (6) C13—C8—P1—Rh1 151.7 (3)
C16—C17—C18—C19 3.0 (5) C9—C8—P1—Rh1 −29.6 (3)
C16—C17—C18—C21 −175.8 (3) C27—C22—P2—C36 5.7 (3)
C17—C18—C19—C20 −2.7 (5) C23—C22—P2—C36 −174.6 (2)
C21—C18—C19—C20 176.1 (3) C27—C22—P2—C29 −101.5 (3)
C16—C15—C20—C19 2.9 (5) C23—C22—P2—C29 78.1 (3)
P1—C15—C20—C19 −166.6 (3) C27—C22—P2—Rh1 132.1 (2)
C18—C19—C20—C15 −0.2 (5) C23—C22—P2—Rh1 −48.3 (2)
C27—C22—C23—C24 0.0 (5) C37—C36—P2—C22 −61.6 (3)
P2—C22—C23—C24 −179.7 (2) C41—C36—P2—C22 123.7 (3)
C22—C23—C24—C25 −0.8 (5) C37—C36—P2—C29 46.4 (3)
C23—C24—C25—C26 1.1 (5) C41—C36—P2—C29 −128.2 (3)
C23—C24—C25—C28 −177.2 (3) C37—C36—P2—Rh1 175.4 (2)
C24—C25—C26—C27 −0.7 (5) C41—C36—P2—Rh1 0.8 (3)
C28—C25—C26—C27 177.6 (3) C30—C29—P2—C22 −3.3 (3)
C23—C22—C27—C26 0.5 (5) C34—C29—P2—C22 177.0 (3)
P2—C22—C27—C26 −179.9 (2) C30—C29—P2—C36 −115.8 (3)
C25—C26—C27—C22 −0.1 (5) C34—C29—P2—C36 64.5 (3)
C34—C29—C30—C31 0.8 (5) C30—C29—P2—Rh1 117.3 (3)
P2—C29—C30—C31 −178.9 (3) C34—C29—P2—Rh1 −62.4 (3)
C29—C30—C31—C32 −1.6 (6) C22—P2—Rh1—C43 117.67 (16)
C30—C31—C32—C33 1.4 (6) C36—P2—Rh1—C43 −119.70 (16)
C30—C31—C32—C35 179.5 (3) C29—P2—Rh1—C43 0.54 (17)
C31—C32—C33—C34 −0.5 (6) C22—P2—Rh1—Cl1 −62.38 (11)
C35—C32—C33—C34 −178.6 (4) C36—P2—Rh1—Cl1 60.25 (12)
C30—C29—C34—C33 0.1 (5) C29—P2—Rh1—Cl1 −179.51 (12)
P2—C29—C34—C33 179.8 (3) C1—P1—Rh1—C43 −114.47 (17)
C32—C33—C34—C29 −0.2 (6) C15—P1—Rh1—C43 7.91 (16)
C41—C36—C37—C38 −1.0 (5) C8—P1—Rh1—C43 123.98 (16)
P2—C36—C37—C38 −175.7 (3) C1—P1—Rh1—Cl1 65.64 (13)
C36—C37—C38—C39 1.3 (5) C15—P1—Rh1—Cl1 −171.98 (12)
C37—C38—C39—C40 −0.7 (6) C8—P1—Rh1—Cl1 −55.92 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10···O2i 0.95 2.38 3.302 (8) 163
C46—H46A···Cl1 0.98 2.81 3.773 (7) 168

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2547).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Beck, C. M., Rathmill, S. E., Park, Y. J., Chen, J., Crabtree, R. H., Liable-Sands, L. M. & Rheingold, A. L. (1999). Organometallics, 18, 5311–5317.
  3. Bruker (2003). SADABS Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2005). SAINT Version 7.23. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2006). APEX2 Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Evans, D., Osborn, J. A. & Wilkinson, G. (1990). Inorg. Synth.28, 79–80.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Higham, L. J., Whittlesey, M. K. & Wood, P. T. (2004). J. Chem. Soc. Dalton Trans. pp. 4202–4208. [DOI] [PubMed]
  10. Hoye, P. A. T., Pringle, P. G., Smith, M. B. & Worboys, K. (1993). J. Chem. Soc. Dalton Trans. pp. 269–274.
  11. Lorenzini, F., Patrick, B. O. & James, B. R. (2007a). J. Chem. Soc. Dalton Trans. pp. 3224–3226. [DOI] [PubMed]
  12. Lorenzini, F., Patrick, B. O. & James, B. R. (2007b). Inorg. Chem.46, 8998–9002. [DOI] [PubMed]
  13. Lorenzini, F., Patrick, B. O. & James, B. R. (2008a). Inorg. Chim. Acta, doi: 10.1016/j.ica.2007.10.044.
  14. Lorenzini, F., Patrick, B. O. & James, B. R. (2008b). Acta Cryst. E64, m179–m180. [DOI] [PMC free article] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Vallarino, L. (1957). J. Chem. Soc. pp. 2287–2292.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003528/ci2547sup1.cif

e-64-0m464-sup1.cif (31.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003528/ci2547Isup2.hkl

e-64-0m464-Isup2.hkl (474.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES