Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Feb 27;64(Pt 3):o627–o628. doi: 10.1107/S1600536808004856

4-(Dimethyl­amino)pyridinium 4-toluene­sulfonate

C John McAdam a, Jim Simpson a,*
PMCID: PMC2960775  PMID: 21201959

Abstract

In the title compound, C7H11N2 +·C7H7O3S, the cation is protonated at the N atom of the heterocyclic ring. The dimethyl­amino group lies close to the pyridinium ring plane with a dihedral angle between the pyridinium and the dimethyl­amine CNC planes of 3.82 (17)°. The N—C bond linking the dimethyl­amino substituent to the pyridinium ring is characteristically short [1.3360 (19) Å], suggesting some delocalization in the cation. In the crystal structure, N—H⋯O hydrogen bonds link individual pairs of cations and anions. The structure is further stabilized by an extensive series of C—H⋯O hydrogen bonds, augmented by π–π [centroid–centroid distance between adjacent pyridinium rings = 3.5807 (10) Å] and C—H⋯π inter­actions, giving a network structure.

Related literature

For the preparation and uses of the title compound, see: Haynes & Indorato (1984); Moore, & Stupp (1990). For structures having the 4-(dimethyl­amino)pyridinium cation, see for example: Chao et al. (1977); Mayr-Stein & Bolte (2000); Sluka et al. (2003). For structures of salts of the 4-toluene­sulfonate anion with pyridinium or similar cations, see for example: Koshima et al. (2001, 2004); Biradha & Mahata (2005). For details of the Cambridge structural database, see: Allen (2002).graphic file with name e-64-0o627-scheme1.jpg

Experimental

Crystal data

  • C7H11N2 +·C7H7O3S

  • M r = 294.36

  • Monoclinic, Inline graphic

  • a = 8.9878 (7) Å

  • b = 17.5897 (12) Å

  • c = 9.8202 (6) Å

  • β = 111.429 (3)°

  • V = 1445.18 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 91 (2) K

  • 0.43 × 0.07 × 0.04 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.860, T max = 0.991

  • 22414 measured reflections

  • 3792 independent reflections

  • 3087 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.125

  • S = 1.05

  • 3792 reflections

  • 188 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000; molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004856/ng2425sup1.cif

e-64-0o627-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004856/ng2425Isup2.hkl

e-64-0o627-Isup2.hkl (185.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3 0.95 2.40 3.201 (2) 142
N1—H1⋯O3i 0.81 (2) 1.92 (2) 2.7160 (18) 171 (2)
C12—H12⋯O2i 0.95 2.64 3.376 (2) 135
C7—H7A⋯O2ii 0.98 2.62 3.553 (3) 160
C13—H13C⋯O1ii 0.98 2.56 3.408 (2) 145
C6—H6⋯O1iii 0.95 2.63 3.490 (2) 151
C9—H9⋯O1iii 0.95 2.44 3.350 (2) 160
C13—H13A⋯O2iii 0.98 2.56 3.502 (2) 161
C14—H14A⋯O3iv 0.98 2.67 3.541 (2) 148
C11—H11⋯Cg2v 0.95 2.72 3.5883 (18) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic. Cg2 is the centroids of the C1–C6 ring.

Acknowledgments

We thank the New Zealand Foundation for Research Science and Technology for a Postdoctoral Fellowship to CJM and the University of Otago for the purchase of the diffractometer.

supplementary crystallographic information

Comment

The title compound (I) was first reported and characterized as a side product by Haynes and Indorato (1984). However, it is better known under the acronym DPTS following the work of Moore and Stupp (1990) for its role as a convenient provider of stoichiometric quantities of anhydrous p-toluenesulfonic acid (PTSA) and 4-(dimethylamino)pyridine (DMAP) for the catalytic synthesis of polyesters at room temperature. Our interest in the synthesis of organometallic polyesters required the synthesis of DPTS and its structure is reported here, Fig 1.

The asymmetric unit of (I), C7H11N2+, C7H7O3S-, consists of a 4-(dimethylamino)pyridinium cation and a 4-toluenesulfonate anion. In common with other DMAPH+ cations (Chao et al., 1977; Mayr-Stein & Bolte, 2000; Sluka et al., 2003), protonation is at the N1 atom of the pyridinium ring. Bond distances and angles in both the cation and anion are normal (Allen et al., 1987) and those in the anion are comparable to those in other 4-toluenesulfonate salts (Koshima et al., 2001, 2004; Biradha & Mahata 2005). The N2—C10 bond linking the dimethylamino substituent to the pyridinium ring is short, 1.3360 (19)Å suggesting some delocalization in the cation. The fact that the dimethylamino group lies close to the plane of the pyridinium ring, with a dihedral between the pyridinium and the dimethylamine C13N2C14 planes of 3.82 (17)°, supports this observation as does the fact that the C10N2C13C14 system is reasonably planar with an r.m.s. deviation of 0.006 Å. A search of the Cambridge structural database (Allen, 2002) reveals 47 similar structures incorporating the 4-(dimethylamino)pyridinium cation for which the mean corresponding N—C distance is 1.34 (1) Å.

In the crystal structure N—H···O hydrogen bonds link individual pairs of cations and anions and the structure is further stabilized by an extensive network of C—H···O hydrogen bonds, Fig. 2, Table 1. In addition π···π stacking beween adjacent pyridinium rings (Cg1···Cg1 = 3.5807 (10) Å), Fig. 3, and C11—H11···Cg2 interactions also contribute to the crystal packing. (Cg1 & Cg2 are the centroids of the N1, C8···C12 and C1···C6 rings respectively).

Experimental

The title compound was prepared according to the method of Moore and Stupp (1990) with X-ray quality crystals grown from 1,2-dichloroethane.

Refinement

The H1 atom involved in N—H···O hydrogen bonding was located in a difference Fourier map and was freely refined with an isotropic displacement parameter. All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms. The highest residual electron density peak is located at 0.76 Å from H2.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Crystal packing of (I) with hydrogen bonds drawn as dashed lines.

Fig. 3.

Fig. 3.

π···π stacking (dotted lines) between adjacent pyridinium rings of (I). The red circles represent pyridinium ring centroids separated by 3.5807 (10) Å. Additional hydrogen bonding interactions are shown as dashed lines.

Crystal data

C7H11N2+·C7H7O3S F000 = 624
Mr = 294.36 Dx = 1.353 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5199 reflections
a = 8.9878 (7) Å θ = 2.3–28.4º
b = 17.5897 (12) Å µ = 0.23 mm1
c = 9.8202 (6) Å T = 91 (2) K
β = 111.429 (3)º Block, colourless
V = 1445.18 (17) Å3 0.43 × 0.07 × 0.04 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 3792 independent reflections
Radiation source: fine-focus sealed tube 3087 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.037
T = 91(2) K θmax = 28.9º
ω scans θmin = 2.7º
Absorption correction: multi-scan(SADABS; Bruker, 2006) h = −12→11
Tmin = 0.860, Tmax = 0.991 k = −23→23
22414 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125   w = 1/[σ2(Fo2) + (0.0662P)2 + 0.7048P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
3792 reflections Δρmax = 1.11 e Å3
188 parameters Δρmin = −0.40 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. As the crystals were weakly diffracting data was collected using 55 sec exposures per frame.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.62942 (4) 0.40655 (2) 0.30685 (4) 0.02071 (12)
O1 0.65251 (15) 0.46441 (8) 0.41760 (13) 0.0300 (3)
O2 0.76431 (14) 0.35591 (8) 0.33293 (14) 0.0305 (3)
O3 0.57456 (14) 0.43952 (7) 0.15893 (12) 0.0253 (3)
C1 0.46612 (19) 0.35035 (9) 0.30817 (17) 0.0218 (3)
C2 0.4183 (2) 0.28743 (10) 0.21659 (18) 0.0262 (3)
H2 0.4773 0.2724 0.1582 0.031*
C3 0.2834 (2) 0.24663 (10) 0.2110 (2) 0.0320 (4)
H3 0.2503 0.2040 0.1477 0.038*
C4 0.1961 (2) 0.26748 (11) 0.2972 (2) 0.0338 (4)
C5 0.2470 (2) 0.32962 (12) 0.3887 (2) 0.0336 (4)
H5 0.1893 0.3440 0.4487 0.040*
C6 0.3805 (2) 0.37166 (11) 0.39512 (18) 0.0275 (4)
H6 0.4129 0.4145 0.4581 0.033*
C7 0.0465 (3) 0.22552 (14) 0.2912 (3) 0.0531 (6)
H7A −0.0405 0.2620 0.2757 0.080*
H7B 0.0674 0.1985 0.3835 0.080*
H7C 0.0160 0.1889 0.2103 0.080*
N1 0.24038 (18) 0.56935 (9) 0.00587 (17) 0.0267 (3)
H1 0.301 (3) 0.5637 (13) −0.037 (2) 0.036 (6)*
C8 0.2816 (2) 0.54668 (9) 0.14560 (19) 0.0250 (3)
H8 0.3848 0.5256 0.1948 0.030*
C9 0.17879 (18) 0.55323 (9) 0.21827 (17) 0.0207 (3)
H9 0.2105 0.5373 0.3173 0.025*
C10 0.02343 (18) 0.58410 (8) 0.14474 (16) 0.0172 (3)
C11 −0.0123 (2) 0.60940 (9) −0.00116 (17) 0.0211 (3)
H11 −0.1129 0.6322 −0.0537 0.025*
C12 0.0971 (2) 0.60106 (10) −0.06569 (18) 0.0254 (3)
H12 0.0717 0.6180 −0.1634 0.031*
N2 −0.08300 (16) 0.58856 (8) 0.21026 (14) 0.0206 (3)
C13 −0.0458 (2) 0.55874 (11) 0.35772 (17) 0.0280 (4)
H13A 0.0303 0.5927 0.4286 0.042*
H13B 0.0013 0.5080 0.3647 0.042*
H13C −0.1441 0.5556 0.3789 0.042*
C14 −0.2376 (2) 0.62548 (12) 0.13823 (19) 0.0296 (4)
H14A −0.2949 0.6003 0.0447 0.044*
H14B −0.2210 0.6791 0.1208 0.044*
H14C −0.3008 0.6218 0.2009 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01460 (19) 0.0296 (2) 0.01777 (19) 0.00256 (14) 0.00579 (14) 0.00122 (14)
O1 0.0244 (6) 0.0395 (7) 0.0268 (6) −0.0059 (5) 0.0103 (5) −0.0087 (5)
O2 0.0181 (6) 0.0409 (7) 0.0314 (6) 0.0095 (5) 0.0077 (5) 0.0044 (5)
O3 0.0191 (6) 0.0375 (7) 0.0220 (6) 0.0038 (5) 0.0107 (4) 0.0071 (5)
C1 0.0185 (7) 0.0270 (8) 0.0187 (7) 0.0030 (6) 0.0052 (6) 0.0067 (6)
C2 0.0254 (8) 0.0247 (8) 0.0262 (8) 0.0076 (7) 0.0069 (6) 0.0069 (6)
C3 0.0305 (9) 0.0217 (8) 0.0368 (10) 0.0022 (7) 0.0040 (8) 0.0065 (7)
C4 0.0253 (9) 0.0304 (9) 0.0448 (11) 0.0019 (7) 0.0118 (8) 0.0155 (8)
C5 0.0282 (9) 0.0409 (11) 0.0368 (10) 0.0026 (8) 0.0181 (8) 0.0090 (8)
C6 0.0244 (8) 0.0359 (10) 0.0235 (8) 0.0010 (7) 0.0102 (7) 0.0030 (7)
C7 0.0366 (12) 0.0412 (12) 0.0846 (19) 0.0004 (9) 0.0258 (12) 0.0119 (12)
N1 0.0268 (7) 0.0282 (8) 0.0331 (8) −0.0029 (6) 0.0205 (6) −0.0057 (6)
C8 0.0209 (8) 0.0213 (8) 0.0347 (9) 0.0010 (6) 0.0126 (7) −0.0004 (7)
C9 0.0189 (7) 0.0191 (7) 0.0229 (7) 0.0016 (6) 0.0064 (6) 0.0018 (6)
C10 0.0183 (7) 0.0161 (7) 0.0172 (7) −0.0013 (5) 0.0067 (5) −0.0020 (5)
C11 0.0224 (8) 0.0230 (8) 0.0176 (7) 0.0009 (6) 0.0070 (6) 0.0008 (6)
C12 0.0295 (9) 0.0285 (9) 0.0208 (7) −0.0042 (7) 0.0121 (6) −0.0021 (6)
N2 0.0173 (6) 0.0286 (7) 0.0164 (6) 0.0026 (5) 0.0067 (5) 0.0020 (5)
C13 0.0232 (8) 0.0437 (10) 0.0184 (7) 0.0004 (7) 0.0093 (6) 0.0057 (7)
C14 0.0185 (8) 0.0445 (10) 0.0259 (8) 0.0094 (7) 0.0082 (6) 0.0047 (7)

Geometric parameters (Å, °)

S1—O1 1.4481 (13) N1—C8 1.344 (2)
S1—O2 1.4499 (12) N1—H1 0.81 (2)
S1—O3 1.4718 (11) C8—C9 1.363 (2)
S1—C1 1.7735 (17) C8—H8 0.9500
C1—C2 1.391 (2) C9—C10 1.425 (2)
C1—C6 1.394 (2) C9—H9 0.9500
C2—C3 1.392 (3) C10—N2 1.3360 (19)
C2—H2 0.9500 C10—C11 1.420 (2)
C3—C4 1.397 (3) C11—C12 1.359 (2)
C3—H3 0.9500 C11—H11 0.9500
C4—C5 1.382 (3) C12—H12 0.9500
C4—C7 1.515 (3) N2—C13 1.4595 (19)
C5—C6 1.391 (3) N2—C14 1.461 (2)
C5—H5 0.9500 C13—H13A 0.9800
C6—H6 0.9500 C13—H13B 0.9800
C7—H7A 0.9800 C13—H13C 0.9800
C7—H7B 0.9800 C14—H14A 0.9800
C7—H7C 0.9800 C14—H14B 0.9800
N1—C12 1.342 (2) C14—H14C 0.9800
O1—S1—O2 114.71 (8) C8—N1—H1 120.4 (16)
O1—S1—O3 111.64 (8) N1—C8—C9 121.48 (16)
O2—S1—O3 111.92 (7) N1—C8—H8 119.3
O1—S1—C1 106.15 (8) C9—C8—H8 119.3
O2—S1—C1 107.29 (8) C8—C9—C10 119.56 (15)
O3—S1—C1 104.31 (7) C8—C9—H9 120.2
C2—C1—C6 120.03 (16) C10—C9—H9 120.2
C2—C1—S1 119.99 (13) N2—C10—C11 121.97 (14)
C6—C1—S1 119.89 (14) N2—C10—C9 121.33 (14)
C1—C2—C3 119.64 (16) C11—C10—C9 116.70 (14)
C1—C2—H2 120.2 C12—C11—C10 120.08 (15)
C3—C2—H2 120.2 C12—C11—H11 120.0
C2—C3—C4 120.97 (18) C10—C11—H11 120.0
C2—C3—H3 119.5 N1—C12—C11 121.34 (15)
C4—C3—H3 119.5 N1—C12—H12 119.3
C5—C4—C3 118.39 (17) C11—C12—H12 119.3
C5—C4—C7 119.3 (2) C10—N2—C13 120.79 (13)
C3—C4—C7 122.3 (2) C10—N2—C14 120.98 (13)
C4—C5—C6 121.65 (17) C13—N2—C14 118.20 (13)
C4—C5—H5 119.2 N2—C13—H13A 109.5
C6—C5—H5 119.2 N2—C13—H13B 109.5
C5—C6—C1 119.31 (17) H13A—C13—H13B 109.5
C5—C6—H6 120.3 N2—C13—H13C 109.5
C1—C6—H6 120.3 H13A—C13—H13C 109.5
C4—C7—H7A 109.5 H13B—C13—H13C 109.5
C4—C7—H7B 109.5 N2—C14—H14A 109.5
H7A—C7—H7B 109.5 N2—C14—H14B 109.5
C4—C7—H7C 109.5 H14A—C14—H14B 109.5
H7A—C7—H7C 109.5 N2—C14—H14C 109.5
H7B—C7—H7C 109.5 H14A—C14—H14C 109.5
C12—N1—C8 120.78 (14) H14B—C14—H14C 109.5
C12—N1—H1 118.9 (16)
O1—S1—C1—C2 −177.44 (13) C2—C1—C6—C5 −0.3 (2)
O2—S1—C1—C2 −54.35 (14) S1—C1—C6—C5 176.27 (13)
O3—S1—C1—C2 64.53 (14) C12—N1—C8—C9 1.7 (3)
O1—S1—C1—C6 6.04 (15) N1—C8—C9—C10 0.6 (2)
O2—S1—C1—C6 129.12 (14) C8—C9—C10—N2 177.23 (15)
O3—S1—C1—C6 −112.00 (14) C8—C9—C10—C11 −2.5 (2)
C6—C1—C2—C3 0.8 (2) N2—C10—C11—C12 −177.39 (15)
S1—C1—C2—C3 −175.68 (12) C9—C10—C11—C12 2.3 (2)
C1—C2—C3—C4 −0.6 (3) C8—N1—C12—C11 −1.8 (3)
C2—C3—C4—C5 −0.2 (3) C10—C11—C12—N1 −0.2 (3)
C2—C3—C4—C7 178.49 (18) C11—C10—N2—C13 176.99 (15)
C3—C4—C5—C6 0.8 (3) C9—C10—N2—C13 −2.7 (2)
C7—C4—C5—C6 −177.93 (19) C11—C10—N2—C14 −4.9 (2)
C4—C5—C6—C1 −0.6 (3) C9—C10—N2—C14 175.34 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8···O3 0.95 2.40 3.201 (2) 142
N1—H1···O3i 0.81 (2) 1.92 (2) 2.7160 (18) 171 (2)
C12—H12···O2i 0.95 2.64 3.376 (2) 135
C7—H7A···O2ii 0.98 2.62 3.553 (3) 160
C13—H13C···O1ii 0.98 2.56 3.408 (2) 145
C6—H6···O1iii 0.95 2.63 3.490 (2) 151
C9—H9···O1iii 0.95 2.44 3.350 (2) 160
C13—H13A···O2iii 0.98 2.56 3.502 (2) 161
C14—H14A···O3iv 0.98 2.67 3.541 (2) 148
C11—H11···Cg2v 0.95 2.72 3.5883 (18) 152

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z; (v) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2425).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  3. Biradha, K. & Mahata, G. (2005). Cryst. Growth Des.5, 49–51.
  4. Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chao, M., Schempp, E. & Rosenstein, D. (1977). Acta Cryst. B33, 1820–1823.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Haynes, R. K. & Indorato, C. (1984). Aust. J. Chem.37, 1183–94.
  8. Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  9. Koshima, H., Hamada, M., Yagi, I. & Uosaki, K. (2001). Cryst. Growth Des.1, 467–471.
  10. Koshima, H., Miyamoto, H., Yagi, I. & Uosaki, K. (2004). Cryst. Growth Des.4, 807–811.
  11. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  12. Mayr-Stein, R. & Bolte, M. (2000). Acta Cryst. C56, e19–e20. [DOI] [PubMed]
  13. Moore, J. S. & Stupp, S. I. (1990). Macromolecules, 23, 65–70.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sluka, R., Nečas, M. & Černík, M. (2003). Acta Cryst. E59, o190–o192.
  16. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004856/ng2425sup1.cif

e-64-0o627-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004856/ng2425Isup2.hkl

e-64-0o627-Isup2.hkl (185.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES