Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Feb 15;64(Pt 3):o599–o600. doi: 10.1107/S1600536808003346

(2Z)-2-Anilino-2-[oxido(phen­yl)iminio]-N-(2-pyrid­yl)acetamide methanol 0.425-solvate

Maciej Hodorowicz a,*, Katarzyna Stadnicka a, Bartosz Trzewik a, Barbara Zaleska a
PMCID: PMC2960779  PMID: 21201937

Abstract

The title compound, C19H16N4O2·0.425CH4O, crystallizes with two formula units per asymmetric unit. Researching its crystal structure constitutes part of a study of the nature of inter­actions between the N+—O group and the vicinal NH group. The nitrone group and methanol solvent mol­ecules are linked via four N—H⋯O and one O—H⋯O hydrogen bonds, with donor–acceptor distances of 2.603 (3)–2.730 (3) and 2.770 (3) Å, respectively. The crystal structure also involves two intermolecular N—H⋯N hydrogen bonds.

Related literature

For literature related to the synthesis of the title compound, see: Branco et al. (1992); Aurich (1968); Guimanini et al. (1999); Szantay et al. (1965); Southan et al. (1998); Warshaw et al. (1989). For literature on nitro­nes as an active equivalent of the C=O group, see: Boruah et al. (2003); Freisleben et al. (2002); Saito et al. (2001); Gravestock et al. (2000); Torssell (1988). For examples of nitro­nes with a vicinal NH group, see: Janzen et al. (1997); Clement et al. (1987); Baranowska et al. (1977); Aurich et al. (1976); Rosenberg et al. (1972). For literature on the medical use of these compounds, see: Floyd (2006). For related literature, see: Allen et al. (1987).graphic file with name e-64-0o599-scheme1.jpg

Experimental

Crystal data

  • C19H16N4O2·0.425CH4O

  • M r = 345.98

  • Monoclinic, Inline graphic

  • a = 18.7604 (3) Å

  • b = 9.4701 (2) Å

  • c = 21.2839 (5) Å

  • β = 104.375 (1)°

  • V = 3662.97 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.11 × 0.09 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) T min = 0.991, T max = 0.998

  • 12501 measured reflections

  • 6668 independent reflections

  • 3520 reflections with I > 2σ(I)

  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.156

  • S = 1.03

  • 6668 reflections

  • 474 parameters

  • 548 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003346/er2043sup1.cif

e-64-0o599-sup1.cif (31.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003346/er2043Isup2.hkl

e-64-0o599-Isup2.hkl (319.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N7A—H7A⋯O13B 0.86 1.94 2.730 (3) 152
N11A—H11A⋯N1Bi 0.86 2.30 3.095 (3) 153
N11A—H11A⋯O13A 0.86 2.25 2.603 (3) 105
N7B—H7B⋯O13Aii 0.86 1.90 2.724 (3) 160
N11B—H11B⋯N1A 0.86 2.32 3.056 (3) 144
N11B—H11B⋯O13B 0.86 2.28 2.604 (3) 102
O51—H51⋯O13B 0.82 1.95 2.770 (3) 179

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Joint X-ray Laboratory, Faculty of Chemistry, and SLAFiBS, Jagiellonian University, for making available the Nonius KappaCCD diffractometer.

supplementary crystallographic information

Comment

Nitrones have attracted attention of organic chemists as nitrone N+–O- moiety can be treated as an active equivalent of C=O group (Boruah et al. 2003, Freisleben et al. 2002, Saito et al. 2001, Gravestock et al. 2000, Torssell 1988, Floyd 2006). However, only several examples of nitrones bearing a vicinal NH group have been reported so far (Janzen et al. 1997, Clement et al. 1987, Baranowska et al. 1977, Aurich et al. 1976, Rosenberg et al. 1972). As reported, the compounds could be derived from nitriles (Branco et al. 1992), imidoformic acid esters or α-chloroimines (Aurich 1968), hydroxylamines and methylene amines (Aurich 1968, Guimanini et al. 1999), secondary amines (Szantay et al. 1965), and nitroso compounds, from hydroxyguanidines (Southan et al. 1998) or from other nitrones (Warshaw et al.1989). We have succeeded in developing a straightforward way of obtaining nitrones with a vicinal NH group in excellent yields, starting from easily available pyridilides of 3-oxobutanoic acid and nitrosobenzene. The crystal structure analysis of (2Z)-2-anilino-2-[oxido(phenyl)imino]-N-pyridin-2-ylacetamide was performed in order to determine the nature of the interactions between the N+–O- moiety of the title nitrone with the vicinal NH group; this should help us to understand the compound's versatile reactivity towards various diamines. The symmetrically independent part of the unit cell is composed of two 2-anilino-2-[oxido(phenyl)imino]-N-pyridin-2-ylacetamide molecules and a 0.85 methanol molecule disordered between two positions with partial occupancy parameters of 0.586 (7) and 0.264 (7) for O51A—C51A and O51B—C51B, respectively. The conformation of the two symetrically independent nitrone molecules is shown in Figs. 1a and 1 b. No appreciable differences can be observed between the bond lengths and angles of the independent nitrone molecules and they are comparable with the values reported in the literature (Allen et al. 1987). The planarity of the C–C=N+→(O-) part with Z configuration, in respect of N12–C10 double bond, observed for both symmetrically independent molecules is the most interesting feature of the investigated molecules, from the geometrical point of view. The O13—N12—C10—N11 and O13—N12—C10—C8 torsion angles are 2.6° and -174.3°, respectively for molecule A and -4.1° and 174.4°, respectively for molecule B. Significant torsion angles observed for nitrone molecules A and B are compared in Table 1. A l l aryl rings are twisted against each other: 〈 (C14···C19/N1···C6) = 68.0 (1)° for A and 53.8 (1)° for B; 〈 (C20···C25/N1···C6) = 75.5 (1)° for A and 66.4 (1)° for B. The crystal packing (Fig. 2) is controlled by N—H···O, N—H···N and O—H···O hydrogen bonds and weak van der Waals interactions (Table 2). The two N atoms (N7 and N11) in each molecule of the title compound are involved in the hydrogen bonds as donors forming two intra- and one intermolecular hydrogen bonds (Table 2). The intermolecular N11—H11···N1 interactions are relatively weak, with donor–acceptor distances of 3.095 (3) Å and 3.056 (3) Å due to simultaneous donor participation in intramolecular N11—H11···O13 interactions.

Experimental

Slow recrystallization from methanol at room temperature afforded crystals suitable for X-ray measurements. The ratio (2Z)-2-anilino-2-[oxido(phenyl)imino]-N-pyridin-2-ylacetamide to metanol molecule equals 2: 0.85 was confirmed by elemental analysis.

Refinement

The contents of methanol in the asymmetric unit was determined by the refinement of structural parametres assuming its site occupancy factor in the range 1.000 - 0.500. The best solution (using wR2 as criterion) was found for 0.850 methanol molecule per two nitrone molecules. All H atom positions were observed in difference Fourier map. Nevertheless, in the refinement procedure the hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic CH, N—H = 0.86 Å. In methanol molecule CH3 group with assumed tetrahedral angles was refined including free rotation about the C—O bond, C—H = 0.96 Å and O—H = 0.82 Å. Uiso(H) = 1.5Ueq(C) for methyl groups in methanol and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Figures

Fig. 1.

Fig. 1.

An ORTEP-3 (Farrugia, 1997) view of the nitrone molecules with the crystallographic numbering scheme of atoms: the conformation of A molecule in projecton on C8AN11AN12A plane. Displacement ellipsoids of non-H atoms are drawn at 30% probability level.

Fig. 2.

Fig. 2.

An ORTEP-3 (Farrugia, 1997) view of the nitrone molecules with the crystallographic numbering scheme of atoms: the conformation of B molecule in projecton on C8BN11BN12B plane; Displacement ellipsoids of non-H atoms are drawn at 30% probability level.

Fig. 3.

Fig. 3.

Drawing of the crystal packing viewed along [010] (Brandenburg, 2006). Hydrogen atoms were omitted for clarity.

Crystal data

C19H16N4O2·0.425CH4O F(000) = 1453
Mr = 345.98 Dx = 1.255 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 18.7604 (3) Å Cell parameters from 6743 reflections
b = 9.4701 (2) Å θ = 1.0–25.4°
c = 21.2839 (5) Å µ = 0.09 mm1
β = 104.375 (1)° T = 293 K
V = 3662.97 (13) Å3 Plate, colourless
Z = 8 0.11 × 0.09 × 0.02 mm

Data collection

Nonius KappaCCD diffractometer 6668 independent reflections
Radiation source: fine-focus sealed tube 3520 reflections with I > 2σ(I)
horizontally mounted graphite crystal Rint = 0.065
Detector resolution: 9 pixels mm-1 θmax = 25.4°, θmin = 3.4°
φ and ω scans to fill asymmetric unit h = 0→22
Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) k = −10→11
Tmin = 0.991, Tmax = 0.998 l = −25→24
12501 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067 H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.3423P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
6668 reflections Δρmax = 0.28 e Å3
474 parameters Δρmin = −0.14 e Å3
548 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0055 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1A 0.11545 (13) 0.6719 (2) 0.19762 (11) 0.0661 (6)
C2A 0.09371 (14) 0.8040 (3) 0.18252 (11) 0.0483 (6)
C3A 0.02414 (14) 0.8515 (3) 0.17983 (13) 0.0616 (7)
H3A 0.0107 0.9443 0.1682 0.074*
C4A −0.02552 (16) 0.7579 (4) 0.19488 (15) 0.0771 (9)
H4A −0.0732 0.7871 0.1935 0.092*
C5A −0.00442 (19) 0.6229 (4) 0.21166 (16) 0.0817 (9)
H5A −0.0368 0.5585 0.2226 0.098*
C6A 0.06588 (19) 0.5847 (3) 0.21201 (16) 0.0828 (10)
H6A 0.0801 0.4920 0.2230 0.099*
N7A 0.14984 (11) 0.8889 (2) 0.16925 (9) 0.0501 (6)
H7A 0.1889 0.8460 0.1652 0.060*
C8A 0.14887 (14) 1.0299 (3) 0.16219 (12) 0.0502 (7)
O9A 0.09855 (10) 1.10851 (19) 0.16598 (9) 0.0668 (5)
C10A 0.21768 (14) 1.0904 (3) 0.14793 (13) 0.0471 (6)
N11A 0.23810 (11) 1.0608 (2) 0.09302 (10) 0.0524 (6)
H11A 0.2816 1.0874 0.0919 0.063*
N12A 0.25797 (11) 1.1807 (2) 0.18870 (10) 0.0499 (5)
O13A 0.31518 (9) 1.24341 (18) 0.17334 (8) 0.0604 (5)
C14A 0.25051 (13) 1.2046 (3) 0.25341 (12) 0.0504 (7)
C15A 0.24581 (15) 1.3418 (3) 0.27317 (14) 0.0670 (8)
H15A 0.2466 1.4164 0.2449 0.080*
C16A 0.23996 (17) 1.3673 (4) 0.33547 (17) 0.0835 (9)
H16A 0.2365 1.4596 0.3494 0.100*
C17A 0.23921 (18) 1.2574 (5) 0.37671 (17) 0.0926 (11)
H17A 0.2343 1.2749 0.4184 0.111*
C18A 0.24558 (19) 1.1217 (4) 0.35712 (16) 0.0885 (10)
H18A 0.2458 1.0474 0.3858 0.106*
C19A 0.25170 (16) 1.0944 (3) 0.29510 (14) 0.0693 (8)
H19A 0.2566 1.0022 0.2818 0.083*
C20A 0.19658 (15) 0.9913 (3) 0.03686 (12) 0.0496 (7)
C21A 0.12171 (17) 1.0074 (3) 0.01520 (14) 0.0697 (8)
H21A 0.0962 1.0617 0.0388 0.084*
C22A 0.0844 (2) 0.9430 (4) −0.04161 (17) 0.0858 (10)
H22A 0.0335 0.9522 −0.0554 0.103*
C23A 0.1207 (2) 0.8662 (4) −0.07771 (16) 0.0854 (10)
H23A 0.0951 0.8253 −0.1165 0.102*
C24A 0.1954 (2) 0.8495 (3) −0.05644 (16) 0.0801 (9)
H24A 0.2208 0.7974 −0.0810 0.096*
C25A 0.23329 (16) 0.9101 (3) 0.00149 (14) 0.0619 (7)
H25A 0.2837 0.8958 0.0165 0.074*
N1B 0.36559 (12) 0.1853 (2) 0.04201 (11) 0.0607 (6)
C2B 0.37519 (14) 0.3237 (3) 0.03646 (13) 0.0536 (7)
C3B 0.41689 (16) 0.3812 (3) −0.00164 (15) 0.0749 (9)
H3B 0.4225 0.4785 −0.0042 0.090*
C4B 0.45036 (19) 0.2895 (4) −0.03606 (17) 0.0926 (11)
H4B 0.4791 0.3245 −0.0624 0.111*
C5B 0.44097 (18) 0.1478 (4) −0.03111 (17) 0.0851 (10)
H5B 0.4628 0.0846 −0.0541 0.102*
C6B 0.39919 (17) 0.1009 (3) 0.00806 (16) 0.0772 (9)
H6B 0.3935 0.0038 0.0116 0.093*
N7B 0.33914 (11) 0.4052 (2) 0.07475 (10) 0.0536 (6)
H7B 0.3210 0.3604 0.1023 0.064*
C8B 0.33054 (14) 0.5460 (3) 0.07221 (13) 0.0532 (7)
O9B 0.35086 (11) 0.62721 (19) 0.03605 (9) 0.0702 (6)
C10B 0.28999 (14) 0.6032 (3) 0.12011 (12) 0.0485 (7)
N11B 0.22196 (12) 0.5613 (2) 0.12126 (11) 0.0564 (6)
H11B 0.2086 0.5778 0.1564 0.068*
N12B 0.32199 (11) 0.7001 (2) 0.16157 (10) 0.0517 (6)
O13B 0.28421 (9) 0.76002 (18) 0.20063 (8) 0.0605 (5)
C14B 0.39782 (14) 0.7415 (3) 0.17218 (12) 0.0517 (7)
C15B 0.41339 (16) 0.8830 (3) 0.16710 (13) 0.0647 (8)
H15B 0.3756 0.9489 0.1561 0.078*
C16B 0.48549 (18) 0.9248 (4) 0.17850 (14) 0.0761 (9)
H16B 0.4965 1.0195 0.1743 0.091*
C17B 0.54132 (18) 0.8285 (5) 0.19598 (16) 0.0879 (10)
H17B 0.5901 0.8578 0.2038 0.105*
C18B 0.52519 (17) 0.6890 (4) 0.20198 (16) 0.0870 (10)
H18B 0.5632 0.6238 0.2143 0.104*
C19B 0.45248 (16) 0.6438 (3) 0.18974 (14) 0.0700 (8)
H19B 0.4414 0.5489 0.1935 0.084*
C25B 0.11891 (15) 0.4058 (3) 0.08793 (15) 0.0664 (8)
H25B 0.1223 0.3862 0.1314 0.080*
C24B 0.06318 (18) 0.3478 (3) 0.0403 (2) 0.0829 (10)
H24B 0.0276 0.2922 0.0518 0.099*
C23B 0.05954 (19) 0.3712 (3) −0.0239 (2) 0.0888 (10)
H23B 0.0224 0.3300 −0.0559 0.107*
C22B 0.1108 (2) 0.4551 (4) −0.04032 (18) 0.0916 (10)
H22B 0.1086 0.4700 −0.0839 0.110*
C21B 0.16563 (10) 0.51847 (18) 0.00578 (9) 0.0730 (8)
H21B 0.1996 0.5776 −0.0062 0.088*
C20B 0.16951 (10) 0.49270 (18) 0.07069 (9) 0.0549 (7)
O51 0.30526 (10) 0.73186 (18) 0.33354 (9) 0.119 (2) 0.586 (7)
H51 0.2985 0.7400 0.2941 0.178* 0.586 (7)
C51 0.38176 (10) 0.76316 (18) 0.36484 (9) 0.133 (4) 0.586 (7)
H51A 0.3863 0.8606 0.3777 0.200* 0.586 (7)
H51B 0.4117 0.7453 0.3351 0.200* 0.586 (7)
H51C 0.3978 0.7043 0.4024 0.200* 0.586 (7)
O52 0.35159 (10) 0.68397 (18) 0.34082 (9) 0.143 (7) 0.264 (7)
H52 0.3218 0.6949 0.3058 0.215* 0.264 (7)
C52 0.40649 (10) 0.80407 (18) 0.35212 (9) 0.171 (11) 0.264 (7)
H52A 0.3823 0.8894 0.3339 0.257* 0.264 (7)
H52B 0.4455 0.7825 0.3318 0.257* 0.264 (7)
H52C 0.4265 0.8165 0.3979 0.257* 0.264 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1A 0.0653 (16) 0.0595 (15) 0.0838 (17) −0.0015 (12) 0.0379 (13) 0.0106 (13)
C2A 0.0439 (16) 0.0569 (17) 0.0461 (15) −0.0054 (13) 0.0151 (13) −0.0046 (13)
C3A 0.0460 (17) 0.0653 (18) 0.074 (2) −0.0036 (14) 0.0162 (15) −0.0060 (15)
C4A 0.0511 (19) 0.093 (2) 0.092 (2) −0.0105 (17) 0.0272 (17) −0.0084 (19)
C5A 0.079 (2) 0.087 (2) 0.092 (2) −0.0212 (19) 0.046 (2) 0.0020 (19)
C6A 0.084 (2) 0.073 (2) 0.106 (3) −0.0031 (18) 0.051 (2) 0.0174 (18)
N7A 0.0426 (12) 0.0511 (14) 0.0604 (14) 0.0030 (10) 0.0201 (11) −0.0014 (10)
C8A 0.0447 (17) 0.0561 (19) 0.0515 (16) 0.0012 (14) 0.0154 (13) −0.0050 (13)
O9A 0.0513 (12) 0.0618 (12) 0.0934 (15) 0.0078 (10) 0.0297 (11) 0.0021 (10)
C10A 0.0442 (15) 0.0483 (15) 0.0520 (17) 0.0052 (13) 0.0180 (14) 0.0013 (13)
N11A 0.0459 (13) 0.0593 (13) 0.0557 (14) −0.0028 (11) 0.0192 (12) −0.0051 (11)
N12A 0.0442 (13) 0.0550 (13) 0.0519 (14) −0.0028 (11) 0.0150 (11) −0.0001 (11)
O13A 0.0474 (11) 0.0753 (12) 0.0620 (12) −0.0126 (9) 0.0201 (9) −0.0008 (9)
C14A 0.0388 (15) 0.0658 (18) 0.0468 (16) −0.0034 (13) 0.0109 (12) −0.0041 (14)
C15A 0.067 (2) 0.071 (2) 0.064 (2) −0.0014 (15) 0.0177 (16) −0.0080 (15)
C16A 0.077 (2) 0.100 (2) 0.074 (2) −0.0006 (19) 0.0199 (19) −0.026 (2)
C17A 0.078 (2) 0.148 (3) 0.053 (2) −0.011 (2) 0.0190 (18) −0.020 (2)
C18A 0.095 (3) 0.112 (3) 0.057 (2) −0.012 (2) 0.0167 (19) 0.0110 (19)
C19A 0.079 (2) 0.0738 (19) 0.0555 (19) −0.0043 (16) 0.0164 (16) 0.0039 (16)
C20A 0.0537 (17) 0.0462 (15) 0.0496 (16) −0.0016 (13) 0.0142 (14) 0.0028 (13)
C21A 0.062 (2) 0.079 (2) 0.0645 (19) 0.0074 (16) 0.0091 (16) −0.0059 (16)
C22A 0.073 (2) 0.104 (3) 0.071 (2) −0.006 (2) 0.0009 (18) 0.0038 (19)
C23A 0.104 (3) 0.085 (2) 0.062 (2) −0.023 (2) 0.009 (2) −0.0073 (17)
C24A 0.111 (3) 0.070 (2) 0.067 (2) −0.009 (2) 0.036 (2) −0.0120 (16)
C25A 0.0666 (18) 0.0615 (17) 0.0625 (18) −0.0035 (15) 0.0256 (15) −0.0065 (15)
N1B 0.0583 (14) 0.0602 (15) 0.0723 (16) 0.0033 (11) 0.0325 (12) −0.0032 (12)
C2B 0.0468 (16) 0.0611 (18) 0.0580 (17) 0.0001 (13) 0.0226 (14) −0.0036 (14)
C3B 0.083 (2) 0.0724 (19) 0.088 (2) −0.0073 (17) 0.0549 (19) −0.0055 (17)
C4B 0.101 (3) 0.098 (3) 0.104 (3) −0.008 (2) 0.072 (2) −0.008 (2)
C5B 0.085 (2) 0.084 (2) 0.102 (3) 0.0070 (19) 0.054 (2) −0.016 (2)
C6B 0.077 (2) 0.0695 (19) 0.101 (2) 0.0023 (17) 0.053 (2) −0.0116 (18)
N7B 0.0574 (14) 0.0529 (15) 0.0600 (14) −0.0003 (11) 0.0322 (12) −0.0002 (11)
C8B 0.0508 (17) 0.0536 (19) 0.0573 (18) −0.0028 (13) 0.0174 (14) 0.0028 (14)
O9B 0.0851 (14) 0.0621 (12) 0.0752 (14) 0.0014 (10) 0.0421 (12) 0.0134 (11)
C10B 0.0479 (17) 0.0466 (15) 0.0554 (17) 0.0021 (13) 0.0210 (14) 0.0038 (13)
N11B 0.0542 (15) 0.0570 (13) 0.0637 (15) −0.0060 (11) 0.0257 (12) −0.0043 (11)
N12B 0.0452 (14) 0.0566 (13) 0.0564 (14) 0.0059 (11) 0.0184 (12) −0.0021 (11)
O13B 0.0508 (11) 0.0736 (12) 0.0607 (12) 0.0089 (9) 0.0205 (9) −0.0089 (9)
C14B 0.0406 (16) 0.0643 (18) 0.0499 (16) 0.0023 (13) 0.0106 (13) 0.0018 (13)
C15B 0.0551 (18) 0.0648 (19) 0.070 (2) −0.0006 (15) 0.0077 (15) −0.0024 (15)
C16B 0.061 (2) 0.088 (2) 0.077 (2) −0.0195 (18) 0.0125 (17) −0.0088 (17)
C17B 0.050 (2) 0.130 (3) 0.081 (2) −0.012 (2) 0.0120 (17) 0.002 (2)
C18B 0.049 (2) 0.117 (3) 0.089 (2) 0.0193 (19) 0.0043 (17) 0.013 (2)
C19B 0.0535 (19) 0.080 (2) 0.074 (2) 0.0140 (16) 0.0120 (16) 0.0121 (16)
C25B 0.0588 (19) 0.0571 (17) 0.086 (2) −0.0057 (15) 0.0222 (17) −0.0033 (16)
C24B 0.065 (2) 0.063 (2) 0.123 (3) −0.0111 (16) 0.026 (2) −0.012 (2)
C23B 0.069 (2) 0.081 (2) 0.105 (3) −0.0058 (18) 0.002 (2) −0.026 (2)
C22B 0.080 (2) 0.109 (3) 0.079 (2) −0.009 (2) 0.009 (2) −0.010 (2)
C21B 0.065 (2) 0.081 (2) 0.074 (2) −0.0087 (16) 0.0184 (17) 0.0061 (17)
C20B 0.0456 (16) 0.0458 (15) 0.076 (2) 0.0007 (13) 0.0191 (15) −0.0031 (14)
O51 0.155 (5) 0.139 (4) 0.066 (3) −0.005 (4) 0.036 (3) 0.012 (3)
C51 0.128 (7) 0.143 (8) 0.117 (8) −0.016 (7) 0.010 (6) 0.012 (6)
O52 0.099 (11) 0.143 (11) 0.180 (14) −0.009 (8) 0.020 (9) 0.078 (10)
C52 0.24 (2) 0.134 (16) 0.15 (2) −0.043 (14) 0.055 (17) −0.091 (15)

Geometric parameters (Å, °)

N1A—C2A 1.331 (3) C3B—H3B 0.9300
N1A—C6A 1.335 (4) C4B—C5B 1.361 (4)
C2A—C3A 1.368 (3) C4B—H4B 0.9300
C2A—N7A 1.408 (3) C5B—C6B 1.353 (4)
C3A—C4A 1.380 (4) C5B—H5B 0.9300
C3A—H3A 0.9300 C6B—H6B 0.9300
C4A—C5A 1.360 (4) N7B—C8B 1.343 (3)
C4A—H4A 0.9300 N7B—H7B 0.8600
C5A—C6A 1.366 (4) C8B—O9B 1.214 (3)
C5A—H5A 0.9300 C8B—C10B 1.516 (4)
C6A—H6A 0.9300 C10B—N12B 1.311 (3)
N7A—C8A 1.343 (3) C10B—N11B 1.342 (3)
N7A—H7A 0.8600 N11B—C20B 1.422 (3)
C8A—O9A 1.221 (3) N11B—H11B 0.8600
C8A—C10A 1.511 (3) N12B—O13B 1.344 (2)
C10A—N12A 1.315 (3) N12B—C14B 1.438 (3)
C10A—N11A 1.347 (3) C14B—C19B 1.363 (4)
N11A—C20A 1.417 (3) C14B—C15B 1.381 (4)
N11A—H11A 0.8600 C15B—C16B 1.372 (4)
N12A—O13A 1.336 (2) C15B—H15B 0.9300
N12A—C14A 1.436 (3) C16B—C17B 1.369 (4)
C14A—C19A 1.366 (4) C16B—H16B 0.9300
C14A—C15A 1.376 (4) C17B—C18B 1.369 (5)
C15A—C16A 1.379 (4) C17B—H17B 0.9300
C15A—H15A 0.9300 C18B—C19B 1.391 (4)
C16A—C17A 1.364 (5) C18B—H18B 0.9300
C16A—H16A 0.9300 C19B—H19B 0.9300
C17A—C18A 1.365 (5) C25B—C20B 1.374 (3)
C17A—H17A 0.9300 C25B—C24B 1.377 (4)
C18A—C19A 1.378 (4) C25B—H25B 0.9300
C18A—H18A 0.9300 C24B—C23B 1.368 (5)
C19A—H19A 0.9300 C24B—H24B 0.9300
C20A—C21A 1.374 (4) C23B—C22B 1.358 (5)
C20A—C25A 1.375 (4) C23B—H23B 0.9300
C21A—C22A 1.380 (4) C22B—C21B 1.371 (4)
C21A—H21A 0.9300 C22B—H22B 0.9300
C22A—C23A 1.358 (4) C21B—C20B 1.3870
C22A—H22A 0.9300 C21B—H21B 0.9300
C23A—C24A 1.372 (5) O51—C51 1.4549
C23A—H23A 0.9300 O51—H51 0.8200
C24A—C25A 1.385 (4) C51—H51A 0.9600
C24A—H24A 0.9300 C51—H51B 0.9600
C25A—H25A 0.9300 C51—H51C 0.9600
N1B—C2B 1.332 (3) O52—C52 1.5130
N1B—C6B 1.336 (3) O52—H52 0.8200
C2B—C3B 1.372 (4) C52—H52A 0.9600
C2B—N7B 1.410 (3) C52—H52B 0.9600
C3B—C4B 1.384 (4) C52—H52C 0.9600
C2A—N1A—C6A 116.6 (2) C5B—C4B—C3B 119.6 (3)
N1A—C2A—C3A 123.5 (2) C5B—C4B—H4B 120.2
N1A—C2A—N7A 112.7 (2) C3B—C4B—H4B 120.2
C3A—C2A—N7A 123.8 (2) C6B—C5B—C4B 118.5 (3)
C2A—C3A—C4A 118.1 (3) C6B—C5B—H5B 120.8
C2A—C3A—H3A 121.0 C4B—C5B—H5B 120.8
C4A—C3A—H3A 121.0 N1B—C6B—C5B 124.0 (3)
C5A—C4A—C3A 119.7 (3) N1B—C6B—H6B 118.0
C5A—C4A—H4A 120.1 C5B—C6B—H6B 118.0
C3A—C4A—H4A 120.1 C8B—N7B—C2B 126.1 (2)
C4A—C5A—C6A 117.9 (3) C8B—N7B—H7B 116.9
C4A—C5A—H5A 121.0 C2B—N7B—H7B 116.9
C6A—C5A—H5A 121.0 O9B—C8B—N7B 126.9 (2)
N1A—C6A—C5A 124.2 (3) O9B—C8B—C10B 119.3 (2)
N1A—C6A—H6A 117.9 N7B—C8B—C10B 113.8 (2)
C5A—C6A—H6A 117.9 N12B—C10B—N11B 118.2 (2)
C8A—N7A—C2A 126.9 (2) N12B—C10B—C8B 118.7 (2)
C8A—N7A—H7A 116.6 N11B—C10B—C8B 123.0 (2)
C2A—N7A—H7A 116.6 C10B—N11B—C20B 127.1 (2)
O9A—C8A—N7A 126.0 (2) C10B—N11B—H11B 116.4
O9A—C8A—C10A 119.7 (2) C20B—N11B—H11B 116.4
N7A—C8A—C10A 114.3 (2) C10B—N12B—O13B 119.2 (2)
N12A—C10A—N11A 117.8 (2) C10B—N12B—C14B 124.5 (2)
N12A—C10A—C8A 119.6 (2) O13B—N12B—C14B 116.1 (2)
N11A—C10A—C8A 122.5 (2) C19B—C14B—C15B 121.4 (3)
C10A—N11A—C20A 127.8 (2) C19B—C14B—N12B 120.4 (2)
C10A—N11A—H11A 116.1 C15B—C14B—N12B 118.2 (2)
C20A—N11A—H11A 116.1 C16B—C15B—C14B 119.0 (3)
C10A—N12A—O13A 119.5 (2) C16B—C15B—H15B 120.5
C10A—N12A—C14A 123.9 (2) C14B—C15B—H15B 120.5
O13A—N12A—C14A 116.11 (19) C17B—C16B—C15B 120.7 (3)
C19A—C14A—C15A 121.0 (3) C17B—C16B—H16B 119.7
C19A—C14A—N12A 120.8 (2) C15B—C16B—H16B 119.7
C15A—C14A—N12A 118.1 (2) C18B—C17B—C16B 119.8 (3)
C14A—C15A—C16A 119.1 (3) C18B—C17B—H17B 120.1
C14A—C15A—H15A 120.5 C16B—C17B—H17B 120.1
C16A—C15A—H15A 120.5 C17B—C18B—C19B 120.6 (3)
C17A—C16A—C15A 120.1 (3) C17B—C18B—H18B 119.7
C17A—C16A—H16A 120.0 C19B—C18B—H18B 119.7
C15A—C16A—H16A 120.0 C14B—C19B—C18B 118.6 (3)
C16A—C17A—C18A 120.4 (3) C14B—C19B—H19B 120.7
C16A—C17A—H17A 119.8 C18B—C19B—H19B 120.7
C18A—C17A—H17A 119.8 C20B—C25B—C24B 119.4 (3)
C17A—C18A—C19A 120.2 (3) C20B—C25B—H25B 120.3
C17A—C18A—H18A 119.9 C24B—C25B—H25B 120.3
C19A—C18A—H18A 119.9 C23B—C24B—C25B 120.8 (3)
C14A—C19A—C18A 119.2 (3) C23B—C24B—H24B 119.6
C14A—C19A—H19A 120.4 C25B—C24B—H24B 119.6
C18A—C19A—H19A 120.4 C22B—C23B—C24B 119.2 (3)
C21A—C20A—C25A 119.2 (3) C22B—C23B—H23B 120.4
C21A—C20A—N11A 122.3 (2) C24B—C23B—H23B 120.4
C25A—C20A—N11A 118.5 (2) C23B—C22B—C21B 121.7 (3)
C20A—C21A—C22A 120.0 (3) C23B—C22B—H22B 119.2
C20A—C21A—H21A 120.0 C21B—C22B—H22B 119.2
C22A—C21A—H21A 120.0 C22B—C21B—C20B 118.70 (19)
C23A—C22A—C21A 121.0 (3) C22B—C21B—H21B 120.7
C23A—C22A—H22A 119.5 C20B—C21B—H21B 120.7
C21A—C22A—H22A 119.5 C25B—C20B—C21B 120.18 (15)
C22A—C23A—C24A 119.4 (3) C25B—C20B—N11B 117.8 (2)
C22A—C23A—H23A 120.3 C21B—C20B—N11B 121.92 (11)
C24A—C23A—H23A 120.3 C51—O51—H51 109.5
C23A—C24A—C25A 120.1 (3) O51—C51—H51A 109.5
C23A—C24A—H24A 119.9 O51—C51—H51B 109.5
C25A—C24A—H24A 119.9 H51A—C51—H51B 109.5
C20A—C25A—C24A 120.2 (3) O51—C51—H51C 109.5
C20A—C25A—H25A 119.9 H51A—C51—H51C 109.5
C24A—C25A—H25A 119.9 H51B—C51—H51C 109.5
C2B—N1B—C6B 116.7 (2) C52—O52—H52 109.5
N1B—C2B—C3B 123.5 (2) O52—C52—H52A 109.5
N1B—C2B—N7B 113.1 (2) O52—C52—H52B 109.5
C3B—C2B—N7B 123.4 (3) H52A—C52—H52B 109.5
C2B—C3B—C4B 117.7 (3) O52—C52—H52C 109.5
C2B—C3B—H3B 121.2 H52A—C52—H52C 109.5
C4B—C3B—H3B 121.2 H52B—C52—H52C 109.5
C6A—N1A—C2A—C3A −1.5 (4) C6B—N1B—C2B—C3B 0.1 (4)
C6A—N1A—C2A—N7A 178.9 (2) C6B—N1B—C2B—N7B −178.8 (2)
N1A—C2A—C3A—C4A 1.4 (4) N1B—C2B—C3B—C4B 0.2 (4)
N7A—C2A—C3A—C4A −179.1 (2) N7B—C2B—C3B—C4B 179.0 (3)
C2A—C3A—C4A—C5A −0.1 (4) C2B—C3B—C4B—C5B 0.0 (5)
C3A—C4A—C5A—C6A −0.9 (5) C3B—C4B—C5B—C6B −0.4 (5)
C2A—N1A—C6A—C5A 0.4 (5) C2B—N1B—C6B—C5B −0.5 (5)
C4A—C5A—C6A—N1A 0.8 (5) C4B—C5B—C6B—N1B 0.7 (5)
N1A—C2A—N7A—C8A −169.3 (2) N1B—C2B—N7B—C8B −170.1 (2)
C3A—C2A—N7A—C8A 11.1 (4) C3B—C2B—N7B—C8B 11.0 (4)
C2A—N7A—C8A—O9A −0.2 (4) C2B—N7B—C8B—O9B 1.5 (4)
C2A—N7A—C8A—C10A −179.8 (2) C2B—N7B—C8B—C10B −179.3 (2)
O9A—C8A—C10A—N12A 61.7 (3) O9B—C8B—C10B—N12B −57.1 (3)
N7A—C8A—C10A—N12A −118.6 (2) N7B—C8B—C10B—N12B 123.6 (2)
O9A—C8A—C10A—N11A −115.0 (3) O9B—C8B—C10B—N11B 121.4 (3)
N7A—C8A—C10A—N11A 64.7 (3) N7B—C8B—C10B—N11B −57.8 (3)
N12A—C10A—N11A—C20A −166.1 (2) N12B—C10B—N11B—C20B 159.7 (2)
C8A—C10A—N11A—C20A 10.6 (4) C8B—C10B—N11B—C20B −18.9 (4)
N11A—C10A—N12A—O13A 2.6 (3) N11B—C10B—N12B—O13B −4.1 (3)
C8A—C10A—N12A—O13A −174.2 (2) C8B—C10B—N12B—O13B 174.5 (2)
N11A—C10A—N12A—C14A −169.2 (2) N11B—C10B—N12B—C14B 171.1 (2)
C8A—C10A—N12A—C14A 13.9 (3) C8B—C10B—N12B—C14B −10.3 (4)
C10A—N12A—C14A—C19A 51.8 (3) C10B—N12B—C14B—C19B −56.8 (4)
O13A—N12A—C14A—C19A −120.2 (3) O13B—N12B—C14B—C19B 118.6 (3)
C10A—N12A—C14A—C15A −131.3 (3) C10B—N12B—C14B—C15B 126.2 (3)
O13A—N12A—C14A—C15A 56.6 (3) O13B—N12B—C14B—C15B −58.4 (3)
C19A—C14A—C15A—C16A −2.0 (4) C19B—C14B—C15B—C16B 1.6 (4)
N12A—C14A—C15A—C16A −178.8 (2) N12B—C14B—C15B—C16B 178.6 (2)
C14A—C15A—C16A—C17A 0.3 (4) C14B—C15B—C16B—C17B −1.4 (4)
C15A—C16A—C17A—C18A 1.2 (5) C15B—C16B—C17B—C18B 0.2 (5)
C16A—C17A—C18A—C19A −1.0 (5) C16B—C17B—C18B—C19B 0.7 (5)
C15A—C14A—C19A—C18A 2.2 (4) C15B—C14B—C19B—C18B −0.7 (4)
N12A—C14A—C19A—C18A 179.0 (3) N12B—C14B—C19B—C18B −177.6 (3)
C17A—C18A—C19A—C14A −0.7 (5) C17B—C18B—C19B—C14B −0.5 (5)
C10A—N11A—C20A—C21A 35.0 (4) C20B—C25B—C24B—C23B 2.7 (4)
C10A—N11A—C20A—C25A −147.9 (2) C25B—C24B—C23B—C22B −1.4 (5)
C25A—C20A—C21A—C22A −0.3 (4) C24B—C23B—C22B—C21B −0.8 (5)
N11A—C20A—C21A—C22A 176.7 (2) C23B—C22B—C21B—C20B 1.6 (4)
C20A—C21A—C22A—C23A −1.7 (5) C24B—C25B—C20B—C21B −1.8 (3)
C21A—C22A—C23A—C24A 1.7 (5) C24B—C25B—C20B—N11B 174.1 (2)
C22A—C23A—C24A—C25A 0.2 (5) C22B—C21B—C20B—C25B −0.3 (2)
C21A—C20A—C25A—C24A 2.3 (4) C22B—C21B—C20B—N11B −176.0 (3)
N11A—C20A—C25A—C24A −174.9 (2) C10B—N11B—C20B—C25B 152.2 (2)
C23A—C24A—C25A—C20A −2.3 (4) C10B—N11B—C20B—C21B −32.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N7A—H7A···O13B 0.86 1.94 2.730 (3) 152
N11A—H11A···N1Bi 0.86 2.30 3.095 (3) 153
N11A—H11A···O13A 0.86 2.25 2.603 (3) 105
N7B—H7B···O13Aii 0.86 1.90 2.724 (3) 160
N11B—H11B···N1A 0.86 2.32 3.056 (3) 144
N11B—H11B···O13B 0.86 2.28 2.604 (3) 102
O51—H51···O13B 0.82 1.95 2.770 (3) 179

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2043).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S9.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  3. Aurich, H. G. (1968). Chem. Ber.101, 1761–1769.
  4. Aurich, H. G. & Grigo, U. (1976). Chem. Ber.109, 200–211.
  5. Baranowska (1977). Bull. Acad. Pol. Sci. Ser. Sci. Chim.25, 93–99.
  6. Boruah, M., Konwar, D. & Dutta, D. (2003). Indian J. Chem. Sect. B, 42, 2112–2114.
  7. Branco, P. S., Prabhakar, S., Lobo, A. M. & Williams, D. J. (1992). Tetrahedron, 48, 6335–6360.
  8. Brandenburg, K. (2006). DIAMOND Version 3.1d. Crystal Impact GbR, Bonn, Germany.
  9. Clement, B. & Kaempchen, T. (1987). Arch. Pharm. (Weinheim Ger.), 320, 566–569.
  10. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  11. Floyd, R. A. (2006). Aging Cell, 5, 51–57. [DOI] [PubMed]
  12. Freisleben, A., Schieberle, P. & Rychlik, M. (2002). J. Agric. Food Chem.50, 4760–4768. [DOI] [PubMed]
  13. Gravestock, M. B., Knight, D. W., Malik, K. M. A. & Thornton, S. R. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 3292–3305.
  14. Guimanini, A. G., Toniutti, N., Verardo, G. & Merli, M. (1999). Eur. J. Org. Chem.1, 141–144.
  15. Janzen, E. G. & Nutter, D. E. (1997). Magn. Reson. Chem.35, 131–140.
  16. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  17. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  18. Rosenberg, H. M. & Serve, M. P. (1972). J. Org. Chem.37, 1443–1444.
  19. Saito, K., Kawamura, A., Kanie, T., Ueda, Y. & Kondo, S. (2001). Heterocycles, 55, 1071–1080.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Southan, G. J., Srinivasan, A., George, C., Fales, H. M. & Keefer, L. K. (1998). Chem. Commun.11, 1191–1192.
  22. Szantay, C. & Szabo, L. (1965). Chem. Ber.98, 1013–1022.
  23. Torssell, K. B. G. (1988). Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis, p. 75. New York: VCH.
  24. Warshaw, J. A., Gallis, D. E., Acken, B. J., Gonzalez, O. J. & Crist, D. R. (1989). J. Org. Chem.54, 1736–1743.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003346/er2043sup1.cif

e-64-0o599-sup1.cif (31.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003346/er2043Isup2.hkl

e-64-0o599-Isup2.hkl (319.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES